physical analysis can be applied, with some success, to real
wineglasses and other such vessels that can be found in any
household. The analysis is, to be sure, rather unreasonably
heavy in relation to the importance (or lack of it) of the
specific topic, but it does exemplify the power of the energy
method for the analysis of relatively complex vibrating sys-
tems.

One interesting feature is the way in which seemingly
identical glasses (such as the set mentioned in Sec. VI) have
distinctive and widely different frequencies of vibration.
The natural frequency could well be used as an identifying
label or “signature” for a glass or other vessel in cases
where the original was rare and valuable and one wanted a
simple noninvasive test to distinguish it from copies.
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An easy and intuitive introduction to the regularization and renormalization techniques in
elementary particle physics is given. It is based on the use of a simple electrostatic problem.

I. INTRODUCTION

High-energy physics needs by its very nature an elabo-
rate relativistic quantum field theory. In quantum electro-
dynamics the successes of this theory are remarkable.
However, in all its perturbative aspects it has heavy diver-
gence problems. We would like to show schematically what
these problems are and how to solve them. We illustrate
this last point precisely with an electrostatic example
which shows the same type of divergence. The method used
is dimensional regularization.' Since 1973, it is most used
in applications. This example allows us to show the simpli-
city and the elegance of dimensional regularization. More-
over, it illustrates the crucial role played by dimensional
analysis especially for any problem in which there is no
fixed length (or energy) scale. We show that renormaliza-
tion implies the introduction of a scale and therefore breaks
the so-called scale invariance. We study in Sec. V the be-
havior of renormalized quantities such as an electrostatic
potential and a dimensionless quantity of high-energy
physics called R. By doing this, we illustrate a few aspects
of the renormalization group techniques, which are com-
monly used in elementary particle physics.

I1. DIVERGENCES IN QUANTUM FIELD THEORY

Every quantum field theory is basically of perturbative
character. Without going into more details, we can say that
it is most useful whenever we deal with a physical quantity
which can be expressed as a truncated series. Every cross
section and every decay width are of that type. The devel-
opment parameter of this series is the coupling constant. It
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measures the intensity of the interaction under study. In
quantum electrodynamics, this constant is’

a=e*/4r =1/137

(the fine structure constant).

To be specific, let us consider the scattering between two
particles interacting electromagnetically such as Compton
scattering (e~ y—e~¥), electron scattering (e e —e e ™)
or the annihilation process e e —2y. The cross section is
proportional to the square of the scattering amplitude. It is
this last quantity that quantum electrodynamics deter-
mines as a development in powers of a. Each term of this
development can be calculated directly, but it is more con-
venient to write it as a sum of algebraic quantities repre-
sented by the so-called Feynman diagrams. These dia-
grams have a much more intuitive interpretation than the
corresponding algebraic quantities. In the case of e"e™
scattering the first nontrivial order (Born approximation) is
represented by the very simple diagram of Fig. 1. With this
diagram we can calculated its cross section. {Analogously
for e~ y—e~yand e"e™—2y.) The agreement with experi-
ment is very good.

However, experimental data have sometimes such an ac-
curacy that we must calculate the next-order corrections.
These correspond to more complicated diagrams [with

Fig. 1. Two electrons interact by
exchanging a virtual (nonphysical,
nonobservable) photon.

© 1983 American Association of Physics Teachers 694



more vertices]. In the case of e e~ scattering, the second-
order correction is given by the diagram of Fig. 2. We no-
tice the occurence in this diagram of a loop corresponding
to the electron—positron pair. What is happening in the
corresponding algebraic expression? Let us consider the
exchanged photon momentum. It is shared between the
electron and the positron of the loop in an arbitrary way.
One of the two momenta (¢~ or e} is completely arbitrary.
We must therefore integrate over it in the algebraic expres-
sion. The problem is that this integral is generally infinite.
The theory looks therefore unacceptable to this order and
we must modify it. The same is true for all higher-order
terms.

First, we collect all the infinite amplitudes to each order
and afterwards we modify them to get a finite quantity. The
process by which we transform an infinite quantity into a
finite one (called renormalized) has two steps. The first one
is the regularization. We cannot deal directly with infinities
and we would like to see more clearly the occurence of the
divergence. We imagine therefore a new and more general
expression called regularized. It is finite, but depends on a
parameter such that we recover our infinite quantity if this
parameter tends towards a particular value that we shall
call starting value. (We shall see that in the dimensional
regularization, this parameter is the space dimension.) The
regularized expression is not unique because there are sev-
eral regularization methods. The second step is the renor-
malization. It modifies the regularized expression by sub-
tracting terms which diverge when the parameter tends
towards its starting value. There is some arbitrariness in
this subtraction. We fix it putting some constraint on the
new expression (called renormalization condition). The fin-
ite limit of our new expression when the parameter tends
towards its starting value is called the renormalized expres-
sion.

It is this two-step procedure that we are going to illus-
trate with an electrostatic example. We shall use dimen-
sional regularization because it has many advantages and is
mostly used nowadays. It is clear that this procedure must
be used in all next-order calculations in quantum field the-

_ory (such as the anomalous magnetic moment of the elec-
tron). It applies not only to quantum electrodynamics but
also to quantum chromodynamics and many other field
theories as well.

To end this section, we must add that for a theory to be
renormalizable, it is not sufficient to renormalize all infi-
nite amplitudes order by order. The modifications of these
amplitudes must be of a particular kind. The total number
of divergent amplitudes to all orders must be finite and the
modifications of these amplitudes order by order must lead
to a finite theory to all orders.

ITII. DIMENSIONAL REGULARIZATION OF A
DIVERGENT ELECTROSTATIC EXAMPLE

Let us consider a uniformly charged straight line. We
would like to calculate the electrostatic potential created
everywhere in the space.

Fig. 2. Virtual exchanged
photon turns temporarily
into a virtual electron—posi-
tron pair (nonobservable).
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First, we make a dimensional analysis of the problem.
We know from physics, that the potential ¥ must be pro-
portional to the charge density A and is a function of the
radial variable 7 only (there is no other length scale®-) so®

Vir)=(A72mV'(r), (1)

V' is dimensionless. Whatever the particular formula al-
lowing the calculation of ¥ may be, there are only three

possibilitiesS:
(a) V'(r) =c finite constant; 2)
(b) V'(r) = o03

(c) there exists an undetermined length scale A such that
V'=V'(r/A).

Let us now choose as a particular expression allowing a
unique calculation of ¥ the naive classical formula:

1 A(x)
Viy)=— ; (3)
4r J [x—y|
it is such that V-0 if |y|— co. In our case, the appropriate
form is

+ oo
A [T _dx
dr J_ . (X442
We choose this formula also because it does not involve any
length scale. It respects therefore the symmetry of our ex-

ample (no length scale). It formally satisfies scale invar-
iance: if we change r—kr

(4)

N
Vin=2- | 2
dr J_ . X2+ k)Y
/{ + o dy
SR e E—
g B 1 A

Formula (4) clearly illustrates the second case (b) above
because it gives a constant infinite . However, we know
that it is possible to avoid the divergence of the integral
because the electric field is finite. Qur divergent formula (4)
must therefore be renormalizable. Here, we know how to
get a finite result. In general, whatever the renormalization
method may be, the new formula must be finite and cannot
correspond to zero electric field. Therefore, dimensional
analysis (2) tells us that in any renormalized formula a
length scale A must appear such that

Viealr) =V (r/A ). (3)

A is not given by the renormalization procedure, so that the
result will no longer be unique.

We are going to apply the dimensional regularization
method to this electrostatic example. Remember that the
procedure involves two steps: dimensional generalization
of the divergent integral (regularization), followed by the
subtraction of the possible divergences (renormalization).

We write the integral in a / (integer)-dimensional space. /
is our regularizing parameter. In order to keep the dimen-
sion of the potential fixed we must compensate the /-depen-
dent dimension of the integral by an /-dependent length
term:

1
V=2t |
47)' (x2 +r2)1/2
where
x2 = x% R xlz, (6)

A is alength scale which is unspecified. Our aim is to find
a domain of / inside which the integral (6) is meaningful.
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Dimensional regularization respects the spherical symme-

try of the integrand, consequently we use spherical coordi-

nates and we integrate over the angles. We have
dx'=p'~'dp dQ,,

where p is the radial coordinate and df2, the solid angle
element’

/2
ﬂl =jdﬂl = 2171 y
T/
/2 © 1—1
nm=iﬁp—ﬂ# p_dp (7

4rr r{/2)Jo (P> +r3yv*
This last formula, thanks to the introduction of the I" func-
tion, is meaningful even if / is noninteger. Given®

T pldp 1 LU/2AC[1-1)/2] i

2 12~ ' (8)
o (p*+7r) 2 Jr
we get
V,(r)=(/l/477)Al‘117'“_”/21"[(1—1)/2] ri-t 9)

V,(r) is now finite except if / is an odd integer. Formula
(9) is its regularized expression. If, in formula (9), the limit
/-1 had been finite, the expression (4) would have been
renormalized without the second step. Here, however, the
second step is necessary because, in the limit /-1, the
length scale A disappears. However, we know the finite
expression necessary involves A. :

The regularization method is not unique. Another one is
to cut off the the integral range to get

A (F _ ax
== _— 10

Vel = f_l, 2+ )7 (10
L is the regularization parameter. But this procedure
breaks one symmetry of the problem: translation invar-
iance along the charged axis. Dimensional regularization
respects all the symmetries of the problem. This is very
important in quantum field theory and explains its interest.

IV. POTENTIAL RENORMALIZATION

In order to see very clearly the divergence we choose
I =1 + € in the regularized formula (9) and we develop it
for £<1. We have’

(r/A) "'l +eln(r/A) + O(£Y),

AT V2 81 4 (e/2)In 7 + O(€?), ()
r(1“1)=1“(—£)
2 2/
£ 2
- ~£(1 +i7’+0(52))-
£ 2
Therefore,
Lt pe n(2) o
V= ———|—+—In7+ >+ In[—)+ 0/
() 2ﬂ[e+2m+2+n" g

(12)

Physics tells us that we can always add a constant to any
electrostatic potential. Here, we can take advantage of that
to renormalize Eq. (12) by subtracting a constant such that
the limit £—0 is finite. The fact that the divergent term is a
constant is essential for the potential to be renormalizable.®
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We get
ViirN= —(A/2m)[In (r/A’) + O(€)], (13)

where A ' = cA, with ¢ an arbitrary finite constant. The
limiting value (¢—0) is

Velr)= — (A /27) In(r/A ). (14)

It is our renormalized potential, showing the length scale
A ' unspecified by the procedure. Of course, it is the same
formula that we should have calculated classically by
means of the Gauss theorem without imposing ¥—0 when
r—ow.

Whenever we add a constant to a potential we know that
we change the boundary condition. In our case, we had [see

Eq. (9]

V=0 ifrow (ife<0),
V=0 ifr=0 (ife>0),
and now we have
V=0 ifr=4", (15)

which is an intermediate condition involving a length scale
A’ In fact, it is the renormalization condition that gives a
unique renormalized potential. We can see that ¥ (r) is the
limit for e—0 of

o= Sl -eor(-)

which satisfies ¥ %(A ') = 0. To this condition independent
of £ corresponds clearly a subtraction constant which
changes with £ and which is in fact divergent if £—0:

R

(In a way, the singularity has been removed inside the addi-
tive constant.)

In conclusion, we see clearly that, starting with the infi-
nite expression (4) that we cannot modify directly, the first
step consists in writing it in a /-dimensional space, the sec-
ond step involves a renormalization condition in the neigh-
borhood of /=1 such that (if possible) the limit £—0 is
finite. In quantum field theory, the expression (4) is re-
placed by a Feynman diagram with at least one loop. The
procedure to regularize it is nevertheless entirely similar.

V.ILLUSTRATION OF RENORMALIZATION
GROUP TECHNIQUE"

To be specific, let us consider the ratio R between the
cross section of e*e~—anything and the cross section of
ete — —u* . We assume that it no longer depends on
the lepton masses when Q ?is sufficiently big [Q > > 1 GeV?]:

R=73 oglete ox*x")/olete —u pu")=R(Q%);
) (18)

it has nodimension and depends only on Q ? (here Q /2 is the

electron center of mass momentum). The same dimension-

al analysis can be done for R as for V'(r) [cf. Eq. (2)]."!

Either

(i) R(Q%) =c finite constant;

(ii) R (Q%) = oo;

(iii) there exists an energy scale A, unspecified such that
R=R(Q%Y/A%. (19)

Michel Hans 696



From quantum field theory, we know that R is expressed
in the form of a series of Feynman diagrams. Weknow each
term after the first order of perturbation is infinite. We can
renormalize R as we did for V. Furthermore, we have rea-
sons to believe that R cannot be a constant, '™ so the re-
normalized expression must be [cf. Eq. (19)]:

R,., = R(Q?/A?) analogous to ¥ /., (r) = — In(r/A),
(20)

where A 2 is not specified by the theory. (We drop the sub-
script ren in the following.) We have

dR (0 2) 2 av'’

dA? (A )27 dA # 21

Therefore, the absolute value of R [V’ ] dependson A 2[A]
and cannot be predlcted by the theory. On the other hand,
we know that R is a physical quantlty and consequently a
measure of R at a known Q2 gives us A * (experimental
quantity). [In electrostatics, ¥ () may be considered as the
energy needed to move a test charge between a fixed point
to the point 7. The starting point fixes A.]

We can be more specific about the properties of the re-
normalized formula. Using relation (21), it can be assumed
that the function R may be inverted (at least piecewise), we
thus have

2
s =f(R);

-5(E)-

V'= -—lan-—bi =exp V',
r

(22)

where R is the measured value at the energy @ >and ¥’ isthe
value at the distance r. This implies

A?=Q*f[R(@)] =4 fIR ()],
A’ =rexp[V'(r] =pexp[ V)], (23)
where u? is any energy and R (1?) is the value of R at this

energy. [Similarly, u is any distance and ¥ '(u) the value of
V' at this distance.]

Consequences
(A) We have

2
=R(—Z )= F(L.Ru1) (24)

L fIRE)] I’
Thus our renormalized formula provides R (Q?) once we
have measured R at any known energy . It cannot pro-
vide the absolute value of R but only its variation from a|
fixed point. We remark that the value of R (Q?) does not
depend on the chosen energy u becaue using Eqgs. (24) and

(23):

dR
du?
A renormalized formula contains less information than a

convergent one; somehow, it considers R like a potential.
(B) We have

AZ=p’f[R @] (26)
It is the relation between two different energy scales: u? is
arbitrary, A ? is fixed, not by the theory but from experi-
ment.'®

(C) R satisfies a differential equation which determines
completely its variation. This is the only thing that can be
predicted. In fact, starting from Eq. (23), we get

=0. (25)
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2 . (fIR )] 27

In ;tz ln(—————f[R © 2)]), (27)
and, by derivation, we obtain!’

2R _ _ df = 28

o dQ‘ fIR ) B(R). (28)

It is a basic dlﬁ'erentlal equation of renormalization
group."® This differential equation (if we know B ) contains
as much information as the renormalized formula. It can,
in fact, be solved to get Eq. (24),

R(Q*) =K "HK[R{)] +In(Q*/u}, (29)
where K is the primitive of 1/8.

The same consequences are true for the electrostatic po-
tential if we replace the energy u by the length .

(i) The equation corresponding to Eq. (24) is

V'(r)=V'(u) — In(r/u). (24)
It does not depend on the distance & where the potential is
given

v _o. 25')

du

(ii) The equation analogous to Eq. (26) is

A =pexp V). (26)

(iii) ¥’ also satisfies a differential equation which deter-
mines its variations. Starting from

In(r/p) = V'(u) — V'(r), (27')
we obtain by derivation
2arE(r)=A, whereE(r)= — % {28')
r

It corresponds to Eq. (28). This is a particular expression of
the well-known Gauss theorem. We can of course start
from Eq. (28') to get Eq. (24'). It is the classical way to
calculate V.

V1. CONCLUSION

We hope we have shown that some field-theoretic meth-
ods and concepts seemingly difficult to understand can be
illustrated in a very simple way in the context of a purely
classical and even elementary example. The dimensional
regularization procedure gets an intuitive and almost phys-
ical interpretation. The renormalization group equations
(25)and (28) express the arbitrariness of the chosen point on
which the physical quantity is given.
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A Coulomb null experiment is described that enables physics students to obtain rigorous upper
bounds on photon mass. The experimenter searches for subnanovolt signals that would escape a
closed shell were photon mass to be positive. The approach can be adapted for several college
levels. At the simplest level, a “miniature” low-cost experiment allows a student to verify the
exponent “ — 2” in Coulomb’s law to eight or more decimal places. An advanced student given a
full-size apparatus (at greater cost) can obtain mass bounds very close to the established

laboratory limit.

L. INTRODUCTION

The idea that the photon mass is zero, as assumed in the
classical theory of electromagnetism, must always be sub-
ject to experimental scrutiny. A particle is not massless
until proven so. Indeed, the neutrino now presents labora-
tory' and possibly astronomical® evidence of having posi-
tive mass. For the photon there are no positive-mass claims
at the present time. The history of the photon mass prob-
lem is fascinating, however, and is a beautiful introduction
to the concept of a null experiment. Previous methods of
obtaining mass bounds for the photon include: measure-
ment of the speed of light versus wavelength,® measure-
ment of pulsar light dispersion,* magnetic methods,> and
laboratory verifications of Coulomb’s law. This last meth-
od is the most relevant to the present treatment. Williams et
al. obtained (1971) the mass bound’

m<2x10=*g,

while the present author and collaborators have recently
improved this to®

m<8x10~%g,

by bounding the voltage of a radio-frequency signal that
penetrates into a closed conducting shell. The present treat-
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ment describes a similar experiment having simpler, “in-
side-out” geometry suitable for student work. Generally
speaking, the more advanced student can obtain a tighter
mass bound, usually by way of relatively longer signal pro-
cessing time. The experiment is rich in pedagogical physics
and is good for demonstrating precisely what in Maxwell
theory is dependent on Coulomb’s law.

The typical bound obtained by methods in keeping with
introductory physics classes is

m<10~%g,

while for third- and fourth-year laboratory students, the
bound can be lowered to

m<7X107% g,

and serious students with research skill can approach the
bound of Williams et al. stated above.

II. THEORY

When the zero-mass restriction on the photon is lifted,
many interesting changes occur in the standard electrodyn-
amical theory. Excellent treatments of the theory exist,’
some major modifications are lised here:
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