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We study the Fourier transform, or diffraction spectrum, of a self-similar structure in one dimension,
generated by a substitution rule, which does not possess the Pisot property. Several consequences of this
number-theoretical property are investigated. The structure exhibits unbounded density fluctuations
with respect to its average lattice, which diverge as a power of the system size. The diffraction spectrum
consists neither of Bragg peaks, nor of diffuse scattering; it is a singular continuous and multifractal mea-
sure. The Fourier transform exhibits peaks of singular scattering and is shown to possess scaling
properties —in a weak sense —around those values of the wave vector. These local properties are ana-
lyzed in detail and put in perspective with open questions concerning the chaotic behavior of a general-
ized Arnold-Sinai cat map. We argue that the peaks of the Fourier intensity cannot be indexed by any
simple scheme, such as a finite number of integers. In that respect, the present structure is therefore
different from periodic or quasiperiodic structures and from most singular continuous cases studied pre-
viously.

I. INTRODUCTION

A ~AAAB
O':

B~BBA .

To this substitution we associate a matrix M, whose
columns give the numbers of letters A and B which occur
in the transforms a(A) and tr(B). This matrix reads
therefore

3 1
M= (1.2)

The characteristic polynomial of the matrix M is
P(k)=det(A. 1 —M)=A, —51I,+5. The eigenvalues of M
are the roots of P (A, ), namely,

I
&

=2+ v =v&5 =4 sin (2n /5) =3.61803,
A2=3 —~=&5/~=4sin (m/5) =1.38197,

where ~=(1+&5)/2 denotes the golden mean.

(1.3)

The aim of this paper is to present a descriptive investi-
gation of the Fourier spectrum of a one-dimensional self-
similar atomic structure generated by a substitution rule,
in a generic case where the substitution does not possess
the Pisot property, to be defined below. This work is
motivated by our previous studies' of the diffraction
spectra of various deterministic distributions of matter,
with emphasis on the relationship between the nature of
their Fourier spectra and the types of order present in
those model structures.

Let us begin with a few definitions. Consider the sub-
stitution cr acting on an alphabet of two letters A and B
according to the rules

Since we have A, , &A,2& 1, the substitution a does not
possess the Pisot property. This statement means the
following. Consider an arbitrary substitution cr acting on

p letters. The associated matrix M has therefore p eigen-
values. The Perron-Frobenius theorem states that the
largest eigenvalue k, is real, positive, and larger than uni-

ty (see, e.g., Ref. 7}. By definition, the substitution cr is
said to have the Pisot-Vijayaraghavan (called PV or Pisot
for short in the following) property if all other eigenval-
ues A,2, . . . , A~ are smaller than unity in modulus. Let us

assume furthermore that the characteristic polynomial
P(A, ) is irreducible over the integers, i.e., cannot be writ-
ten as the product of two polynomials of lower degrees
with integer coefficients. Saying that the substitution cr

has the Pisot property amounts then to saying that the
largest eigenvalue A. , is a Pisot number. By definition, a
Pisot number is an algebraic integer, namely, a solution
of an irreducible polynomial equation of the form
P(p)=A&+a &V '+ +as=0 (a„being ordinary
integers) such that A, , is real, larger than 1, and that all its
algebraic conjugates, namely, the other solutions of
P(A, )=0, are smaller than 1 in modulus. For instance, r
is a Pisot number, whereas 2+ v is not.

Self-similar sequences and structures generated by sub-
stitution rules are not only fascinating mathematical ob-

jects. They are also naturally met in modeling actual
structures. The most celebrated case is the Fibonacci
chain, encountered in the study of quasicrystals. The as-
sociated substitution, recalled in Eq. (2.7), has the Pisot
property. Indeed, the largest eigenvalue of the corre-
sponding matrix M~ is equal to ~, its conjugate being

It is well known that the Fibonacci chain, ob-
tained by associating long and short interatomic bonds to
the letters A and B, is quasiperiodic. The usual way of
realizing this property consists in making use of a geome-
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trical construction, such as the cut and project method.
It is also possible to extract information on the Fourier
spectrum of the structure from the knowledge of the sub-
stitution matrix Mz alone. The connection between the
arithmetical nature of a substitution and the presence of
Bragg peaks in the corresponding Fourier transform has
been pointed out by Bombieri and Taylor. The central
point in this connection is a theorem due to Pisot, which
states the following. If

x8"~0 (mod 1), (1.4)

for some real numbers x and 8, with 8 larger than unity,
then 8 is a Pisot number. Furthermore, x has to belong
to some Z-module, i.e., to be a linear combination, with
integer coefficients, of some elementary "frequencies"
tcok ), which are related to 8 in a known fashion. From
this theorem it is rather easy to deduce the Bombieri-
Taylor criterion, namely, that the Fourier spectrum of a
self-similar structure has generically an atomic com-
ponent (Bragg peaks) if and only if the associated substi-
tution matrix has the Pisot property.

In this paper we address a much more difficult prob-
lem, namely, that of describing the Fourier spectrum of
an atomic structure generated by a non-Pisot substitu-
tion. For short, we have named such a structure a non-
Pisot structure. We have already studied in full detail
a non-Pisot structure, the circle structure, ' and shown,
in a convincing, albeit nonrigourous way, that its Fourier
spectrum is purely singular continuous. This example is
nevertheless special, inasmuch as the second largest ei-
genvalue of the substitution matrix is equal to —1. The
circle sequence is thus a marginal case, at the borderline
between Pisot and non-Pisot structures. Another exam-
ple deserves to be mentioned, namely, the Thue-Morse se-
quence, which is exceptional, since it corresponds to a
Pisot case in the present classification, but exhibits a
purely singular continuous Fourier intensity.

The structure under consideration in the present paper,
already defined in Eq. (1.1), is more generically non-Pisot
than the examples recalled just above, since both eigen-
values given in Eq. (1.3) are strictly larger than unity.
Let us stress at once the origin of the difficulty encoun-
tered in this problem: It is rooted in the state of ig-
norance on the mathematical question of how the se-
quence t x 8" (mod 1)} is distributed on the unit circle, for
particular values of x, when 0 is a non-Pisot algebraic
number.

To conclude this Introduction, let us express our
motivations for the choice of the substitution given in Eq.
(1.1).

First, if one lists all the irreducible binary substitutions
(acting on two letters), one hits upon that studied here if
(i) one restricts consideration to non-Pisot cases (i.e.,
A,

&
& ~kz~ & 1), (ii) one requires a positive second eigenval-

ue A,2, and (iii) one requires the substitution to be
minimal, i.e., the sum of the numbers of letters contained
in the transforms of A and B, after one substitution step,
to be minimal. In the present example, this sum is equal
to 7.

If one relaxes condition (ii), one finds the following sub-

stitution:

A ~AB
B—+AAA, (1.5)

II. PROPERTIES OF THE STRUCTURE
IN REAL SPACE

A. Definition of the structure

We consider the substitution cr which has been intro-
duced in Eq. (1.1) and define the finite words A„=o"( A },
B„=o"(B),obtained by acting repeatedly with the substi-
tution o. on the letters A and B. These words obey the
recursion formulas

A„+i= A„A„A„B„,

Bn+i=BnBn An .

(2.1a)

(2.1b)

The words A„converge to an infinite sequence
o "(A ) = A A AB A A AB, which is left invariant by o
and is thus self-similar. The same would hold true for the
words B„. In the following, by the "infinite sequence" we
always mean o "(A ).

The components of the normalized right eigenvector v

with a sum of letters ~eual to 5. The associated eigenval-
ues read A,

&
z=( 1+&13)/2=(2.30278, —1.30278}. This

example has been considered in Ref. 4.
Second, the structure generated by the substitution

(1.1) is a one-dimensional analog of a fivefold non-Pisot
tiling of the plane, remarkable for its simplicity. This til-
ing has been introduced by Landon and Billard by iterat-
ing a decoration rule described in Ref. 10 (see also Refs. 5
and 11).

This paper is organized as follows. In Sec. II we define
the structural model and study its properties in real
space. We show in particular that the presence of a
second eigenvalue larger than unity induces strongly
diverging fluctuations of the structure in perpendicular
space. In Sec. III we recall the relevant definitions con-
cerning Fourier transforms and especially their measure-
theoretical aspects. We consider the associated
Hendricks-Teller model as an illustration of a random
structure which exhibits "peaks" in reciprocal space. We
then describe our numerical findings concerning various
aspects of the Fourier spectrum of the structure under
study, including the multifractal formalism, and a tenta-
tive local scaling analysis. Section IV presents a discus-
sion, in which we question the possibility of indexing the
peaks in reciprocal space, for a generic non-Pisot self-
similar structural model.

The present study is mostly descriptive and observa-
tional. It is intended both for physicists as a warning of
the possible intricacy of the diffraction spectra of simple
structures which could be found in nature and for
mathematicians as a concrete illustration of questions
pertaining to open number-theoretical problems. We do
not pretend to have solved such questions; we are never-
theless convinced of the interest in underlining both their
physical context and their difficulty.
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associated with the largest eigenvalue A, „namely,

—1
7 —2 7 (2.2)

nates in the fact that the matrix M of the substitution o.

and the matrix Mz of the Fibonacci substitution

which is a mere consequence of Eq. (2.1) and where the
substitution matrix M has been defined in Eq. (1.2}.
Thus, if we define x„as the ratio l„"ll„,the substitution
induces a map T on the x„,namely,

3x„+1

x„+,=T (x„)= x„+2 (2.4)

When the generation label (number of substitution steps}
n increases indefinitely, the ratios x„converge toward the
attractive fixed point of the map T, which is x =~. We
utilize beforehand this special value for the ratio of bond
lengths and choose length units such that 10 =1"=v and

0
The freedom of choosing the ratio of bond lengths is

specific to one-dimensional structures. In the case of
higher dimensions, namely, for tilings, the geometrical
constraint of space filling determines the ratios of the
areas of the different tiles.

The word lengths defined above can then be expressed
as

1„"=~A,", =(a„+b„)~+a„, l„=A,", =a„~+b„, (2.5)

where a„and b„are integers, which obey the same recur-
sion relations (2.3) as the word lengths themselves, with
initial conditions a0=0 and b0=1. These integers have
the following simple interpretation in terms of letter
counting: The word A„consists of v„"=2a„+b„ letters,
among which (a„+b„)are A's and a„are B's, whereas
the word B„consists of v„=a„+b„ letters, among which
a„are A's and b„are B's. The recursion relation (2.3}
can be solved in closed form, allowing one to express the
integers a„,b„ in terms of the Fibonacci numbers Fz,
defined by F =F &+F 2, for p & 2, with Fo =0 and

F& = 1. We have indeed

o~p =5 F~p, a2p+i =5 (F2i, +FR+2�};

bqp
—5 F2p i, be, +i =5 (Fqp i+Fop+i) .

(2.6a)

(2.6b)

The presence of powers of 5 in these expressions origi-

give the frequencies of letters of each kind in the infinite
sequence. In particular, the positivity of these weights is
ensured by the Perron-Frobenius theorem.

To this abstract sequence we associate a structural
model by replacing the letters A and B by long and short
bonds of respective lengths 1" and 1, which we place
successively on a line, starting from an origin 0. The
choice of both bond lengths is a priori arbitrary. We have
been led to make a particular choice according to the fol-
lowing argument. Let us define 1„"(1„}as the length of
the finite structure associated with the word A„(B„).
These lengths obey the linear recursion formulas

n+i M n (2.3)
n+1 n

A —+AB
F. B~A (2.7)

are related by the identity M =5MF. The integers a„,b„
can also be expressed directly in terms of the eigenvalues
of the matrix M, namely,

(gn gn)y~5 b gn —1+gn —i (2.8)

B. Unbounded fluctuations

The non-Pisot nature of the substitution cr, i.e., the
presence of a second eigenvalue larger than unity, has
far-reaching consequences. One of them concerns the un-
boundedness of the fluctuations of the structure with
respect to its average lattice. '

The abscissa of the kth atom of the infinite structure
o "(A) reads

u (k) =v, (k}r+v~(k), (2.10)

where v, (k) [v2(k}=k —v, (k)] is the number of long
(short) bonds among the first k ones.

Let us define the density fluctuation 5(k) as

5(k)=u(k) —ka . (2.1 1)

This difference represents the fluctuation of the position
of the kth atom around the average lattice of periodicity
a. It has been shown rigorously in Ref. 12 that this fluc-
tuation exhibits a strong power-law divergence with the
distance k of the form

5(k) =k~F(k), (2.12)

where the fluctuation (or wandering) exponent P reads

ln 213= =0.251 57 .
ink, )

(2.13)

The amplitude F is a continuous but nowhere
differentiable function, which is self-affine; i.e., one has

F(A, ,x)=F(x) . (2.14)

Equivalently, 5(k) is asymptotically a self-similar func-
tion of the atomic label k of the form

5(k) =k~G
ink, ,

(2.15)

As a consequence of the above properties, the mean
bond length (or average interatomic distance} a of the
structural model reads

1A
a= lim

pf ~ 00
n

This expression may alternatively be deduced from Eq.
(2.2).
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The amplitude G (y) which enters the scaling law (2.15) is
a periodic fractal function of its argument y =ink/ink, &,

with period unity.
Figure 1 shows the fluctuation 5(k) plotted against the

atomic label k for the structure corresponding to the
word A 6, which is made of 2625 atoms.

The scaling behavior [Eqs. (2.12) and (2.15)] of the fluc-
tuation 5(k) can be derived by the following heuristic ar-
gument. If we restrict the analysis to the words A„and
8„,we have to consider the differences 5„"=I„"—v„a and
5„=1„—v„a. The above results, especially (2.8), allow us
to evaluate these quantities explicitly. We thus obtain

respectively. The above results imply indeed with obvi-
ous notations,

VII k)=A, ,
' u(k), Vi(k)= —r A, ,

'i 5(k) . (2.18)

The wandering of V(k) around its average direction
obeys therefore the scaling law [Eqs. (2.12) and (2.15)]. In
other words, the structure under consideration exhibits
an unbounded fluctuation in Ej, which diverges as a
power of its extension in physical space. This effect is a
consequence of the non-Pisot character of the structure,
which also explains the absence of Bragg peaks in its
Fourier transform.

g A
&

—3gn gB &
—2gn (2.16} III. FOURIER SPECTRUM

Roughly speaking, we have the estimate 5(k)-A, z, with a
number of atoms k-A, &, whence the expression (2.13) of
the wandering exponent P.

Let us now turn to the interpretation of the fluctuation
5(k) in the "hyperspace" representation of the one-
dimensional structure considered so far. To do so, we as-
sociate with the letter A the vector e, and with 8 the vec-
tor e2, where [e„ez] form an orthonormal basis of unit
vectors in the two-dimensional Euclidean plane. The
structure is thus lifted up in the plane, and the sequence
of long and short bonds is represented by an infinite
staircase-shaped broken line in this plane. To the kth
atom of the infinite structure corresponds thus an integer
vector V(k), with the convention that V(0)=0. The end
point of this vector fluctuates (wanders) around an aver-
age direction given by the vector v, already defined in Eq.
(2.2), which spans the "physical" space E~~. One has
indeed

A. General de6nitions

p(x)= +5(x —u(k)},
k

(3.1)

where u (k) is the abscissa of the kth atom of the infinite
structure. Let us denote by G„"(q) and G„(q) the Fourier
amplitudes of the finite structures associated with the
words An and 8„,respectively:

G A(q) —y e 'qu(k) GB(q) —y e iqu(k) (3.2)

The diffraction spectrum of the structure defined above
is the Fourier transform of some mass distribution living
on the structure. This distribution is fully defined by as-
sociating a distribution of mass with each species of
bonds. Let us choose for simplicity to put pointlike
atoms at the end points of the bonds. The mass distribu-
tion on the structure reads then

V(k}=v, (k}e,+vz(k)e2= kv+(e, —e2)r5(k), (2.17)
A„

where v, (k) and v2(k) have been introduced in Eq. (2.10).
The orthogonal projections of V(k) onto E~~ and E, are

proportional to the abscissa u(k) and fluctuation 5(k),

5(k)—

2-

The corresponding structure factors, or intensities, are
defined as

S."(q)= „ I G."(q)I', S.'(q) =
I G.'(q) I'

~n n

(3.3)

It will turn out that the intensities S„"(q) and S„(q) do
not exhibit simple convergence or scaling properties, as
the generation index n becomes large, for any fixed value
of the wave vector q. We will come back to this irregular
behavior at length in the following.

In any case, from a rigorous viewpoint, the only well-
defined concept attached to the Fourier spectrum of an
infinite structure is its intensity measure or spectral mea-
sure. The distribution function of this measure, also
called the integrated intensity, is defined as

H(q)= lim f S„"(q')dq'= lim f S„(q')dq' .
n~~ p n~oo P

(3.4)

-1
0 500 1000 1500 2000 I( 2625

This quantity is expected to be well behaved in any cir-
cumstance. In other words, the intensity, or structure
factor, S(q) of the infinite structure, defined formally by

FIG. 1. Plot of the fluctuation 5(k) of the atomic abscissas of
the structure with respect to its average lattice, against the
atomic label k. The data correspond to the word A6 (v6 =2625
atoms).

dH (q) =S(q)dq, (3.5)

has to be thought of as a generalized function or distribu-
tion. Furthermore, dH(q) is best described within the
framework of measure theory. Just as any positive mea-
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sure, the intensity measure can be in general the superpo-
sition of an absolutely continuous (AC) component, a
discrete component (Bragg peaks, i.e., 5 functions), and a
singular continuous (SC) component.

Without claiming too much mathematical rigor, we re-
call here that one may expect three possible kinds of local
behavior of a diffraction spectrum, which are related to
the measure-theoretic nature of the intensity measure. In
the following general presentation, we use the notations
Gz(q) and Stt(q) for the Fourier amplitude and intensity
of a finite chain, using as a subscript the sample size N,
i.e., the number of atoms (see Refs. 3 —5).

I. Diffuse scattering

This situation corresponds to the structure factor S(q)
being a smooth function. This is, for instance, the case
generically in amorphous structures, for which the
Fourier amplitude Gz(q) grows typically as N'~ . The
associated Fourier intensity measure is then AC.

1 sin(Nq /2)
N sin(q l2)

(3.10}

The Fourier transform is made of Bragg peaks for the
values q =2m~ of the wave vector, where m is an arbi-
trary integer. In the neighborhood of each value q, we
do observe a scaling law of the form (3.8), with y= 1,
namely,

SN(q)=Nf(N(q —
q )),

the statistical information provided by multifractal
analysis, to be described later.

As a complement to the above discussion and especial-
ly in order to justify the scaling assumption (3.8) concern-
ing the Fourier spectrum of finite structures, let us con-
sider the simple example of a periodic structure with lat-
tice parameter a=1. The structure factor of a system of
N atoms reads

2. Bragg peaks

These are values qo of q such that

Gtt(qo}=C(q, )N, (3.6)

with

sin(x l2)
x/2

(3.11)

3. Singular scattering

Suppose that one has for some wave vector qo the
power-law growth

G~(qo) —N~ (3.7)

with —,
' &y &1. We have then S~(qo)-N r '. Let us as-

sume furthermore that the intensity obeys the following
scaling law for q ~qo and N large:

S~(q) =N r 'f (N(q —
qo ) ) (3.8)

and that the scaling function f (x) involved is regular
enough. An integration then yields

C(qo) being some complex amplitude. H(q) has then a
discontinuity of strength ~C(qo)~ at q =qo, and the
structure factor S (q) contains a 5 function of the form
~C(qo)~ 5(q —qo). For periodic and quasiperiodic
(almost-periodic) structures, the whole intensity is con-
centrated in Bragg peaks.

We note that the scaling function f (x) is nothing but the
normalized squared Fourier transform of a window func-
tion, corresponding to the finite size of the system. More
generally, the function f (x) of Eq. (3.11) is expected to
describe the scaling behavior of the Fourier transform
around any Bragg peak for periodic, quasiperiodic, and
almost-periodic structures.

For generic values of the exponent y of Eq. (3.7), the
occurrence of scaling laws of the form (3.8), with more
complicated functions f(x), can be demonstrated, at
least in some specific cases, either analytically, e.g. , for
the Thue-Morse sequence, or numerically, e.g., for the
circle sequence.

B. Recursion relations between Fourier amplitudes

Let us come back to the present example. The only
tool at our disposal, in order to study the Fourier trans-
form of the structure generated by the substitution o.,
consists in the following linear recursion relations be-
tween the Fourier amplitudes G„"(q) and G„(q):

~H(q, +e) H(qo) I

- lel— (3.9)

with a =2(1—y ). The local exponents n and y depend
on qo a priori. For —,

' & y & 1, we have 0 & a & 1. Thus the
intensity S (qo), which is formally equal to the derivative
of H(q) at qo, is divergent, but "less infinite" than in the
presence of a Bragg peak, which corresponds formally to
the limiting case y =1, +=0.

It may also turn out that the Fourier amplitude G~(q)
obeys no simple behavior at a11, considered as a function
of the sample size. We suspect that, in the case of SC
Fourier transforms, generic values of the wave vector do
fall into this last class. This statement is to be refined by

(3.12a)

(3.12b)

which can be easily derived from the relations (2.1), con-
cerning the words A„and 8„ themselves. The initial
conditions for the above recursion relations read

G A —iq1 —iq~ 68 —iq& —iqB

0
—e, Go —e (3.13}

and the lengths 1„"and 1„have been given in Eq. (2.5).
Before we present our numerical results, let us note at

once that the whole information is encoded in the asymp-
totic behavior of a product of noncommuting matrices
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II =M ]
'' M&M0 (3.14)

G„~ —iq~=II„";q
n

(3.15}

Equations (3.12) and (3.13) imply indeed that the Fourier
amplitudes are given by

about the Pisot theorem, since k, =2+~ is not a Pisot
number.

In the following we will employ the recursion relations
(3.12) in order to make an extensive numerical analysis of
various aspects of the Fourier spectrum of the structure.
We will henceforth use the notation

More explicitly, we have
qa
2~

(3.19)

M„=
ip„2ip„

e

3ifA
n

(3.16) C. Short-range order in the structure
and the Hendricks- Teller model

where the phases read p„"= —ql„A and pf = —qI~. These
quantities fulfill therefore the same linear recursion as
(2.3), namely,

A, A yANfl +1 M tl (3.17)

&OA= qIA=2~~ A/—sM, go= qP =2~m'/sM—,

(3.18)

where M, m", m are arbitrary integers. The conditions
(3.18) are never met with our choice l "/I =r, except in
the obvious case q=O. As a consequence, the Fourier
transform of the model under study does not contain any
Bragg peak, except for q=O. This result is in agreement
with the general statements made in the Introduction

Since these phases only enter Eq. (3.16}through complex
exponentials, it suSces to consider them modulo 2~, i.e.,
to restrict their domain to the two-torus T=[0,2n],
with periodic boundary conditions. The recursion rela-
tions (3.17) induce a map on T, which is a uniformly hy-
perbolic linear map, similar to the Arnold-Sinai cat
maps, ' up to the noticeable difference that the present
case is not area preserving (detMA1).

The study of the local behavior of the Fourier intensity
essentially amounts to investigating the orbits of the map
(3.17) as a function of their initial point ($0 = q~, —
$0= —q). In spite of the existence of quite remarkable
results, ' concerning especially number-theoretical as-
pects of the classification of the periodic orbits, a sys-
tematic study of the statistics of aperiodic orbits of the
map (3.17) is still beyond the present scope of mathemat-
1cs.

It is nevertheless possible to investigate, using the map
(3.17), the possible presence of Bragg peaks in the Fourier
spectrum, following the argument of Bombieri and Tay-
lor: There is a Bragg peak in the Fourier spectrum for
the value qo of the wave vector if and only if the se-
quences of phases P„" and P„converge to zero (mod2n )

when n —+oo. Indeed, the matrix product of Eq. (3.14)
grows as the nth power of the leading eigenvalue A,

&
un-

der those circumstances, hence building a Bragg peak. In
the present case, the phases P„",((}„converge to zero
(mod2m ) if and only if they are exact multiples of 2m. for n
larger than some integer no. This is equivalent to stating
that the initial conditions of the recursion (3.17) be of the
form

Figure 2 shows a plot of the normalized amplitudes
G„"(q)/v„", corresponding to the finite structures associ-
ated with the words A„, for n = 1-4, against the reduced
wave vector x defined in Eq. (3.19). A progressive, albeit
irregular, emergence of sharper and sharper peaks at
well-defined positions is clearly seen. For the time being,
we employ the word "peaks" with its common meaning
of "sharp maximum. "

We are thus led to wonder why there should be peaks
at all in the Fourier spectrum of the present structure.
Before delving into a more quantitative study of the
Fourier spectrum, it is therefore interesting to compare
the deterministic structure under study, as well as its
Fourier spectrum, to its random counterpart, namely, the
amorphous binary structural model, obtained by putting
at random along a line two types of bonds of lengths
l "=~ and l =1, with respective probabilities p "=~
and p =~ . These probabilities are equal to the com-
ponents of the normalized right Perron-Frobenius eigen-
vector v given in Eq. (2.2).

This comparison will show how far from random the
present structure is and, more precisely, which charac-
teristics of its Fourier spectrum are induced by the
short-range order of the structure, namely, the presence
of only two interatomic distances, the values of these dis-
tances, and their relative weights.

The random structure considered just above is a special
case of the so-called Hendricks-Teller (HT) model, '

defined by covering a line with bonds with independent
random lengths lk, drawn from some common distribu-
tion p(l)dl. It can be shown that the averaged structure
factor of this model reads

1 —zz
SHr(q) =

(1—z}(1—z }

with

z = fp(l)dl e'~'.

(3.20)

p(l) =r '5(l r)+~ o(l —1), —

for which we get

(3.21)

This absolutely continuous structure factor is an illustra-
tion of Sec. III A 1.

In the present case, the content in single bonds of the
substitutional structure is identical to that of the binary
distribution
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D. Multifractal analysis
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15 lier generations. We thus obtain

12—

ao= 1.29, a;„=0.38, a,„=2.55,

a( =0.73, dp =0.93 .
(3.24)

0
0

FIG. 3. Plot of the Fourier intensity SHT of the random
Hendricks-Teller model corresponding to the binary distribu-
tion (3.21) of bond lengths, against the reduced wave vector x.
The indexation of the peaks is discussed in the text.

curve, characterizes to some extent the behavior of the
intensity at a generic wave vector. We have f (ao)=1,
the dimension of the support of the intensity measure,
namely, the whole real q line. The values u;„and a,„
are the extremal values of the local exponent u which
occur with an appreciable weight. As a consequence of
the above interpretation, the quantity dp= f(1) is the di-

mension of the set of wave vectors for which a = 1. It can
be shown that d~ is also the dimension of the set of values
of q for which the structure factor diverges (a ~ 1). dt
can thus be interpreted as the dimension of the peaks of
the diffraction spectrum. Finally, the value a& for which

f(a)=a is usually referred to as the (information) dimen-
sion of the intensity measure.

The characteristic values mentioned above can be
determined in an accurate fashion by extrapolating the
data presented in Fig. 4 and those corresponding to ear-

1(a)

0.8—

0.6—

To conclude this analysis, we recall one of the main
predictions of multifractal analysis in reciprocal space.
Since ao is larger than unity, the Fourier intensity van-

ishes at a generic wave vector q, so that the intensity
measure has no absolutely continuous component. More-
over the Bombieri-Taylor argument has already ruled out
the presence of Bragg peaks, with the exception of a trivi-
al one at q=0. We are thus left with the conclusion that
the Fourier transform is singular continuous.

E. Toward a quantitative local analysis

This last step consists in looking for the genuine peaks
of the diffraction spectrum, in the sense of values qo of
the wave vector such that the scaling laws (3.7)—(3.9) of
singular scattering hold true, at least in some weak sense.

The most direct way of searching peaks in the
diffraction spectrum consists in looking for the values of
q such that the partial Fourier intensities S„"(q)are maxi-
mal. This tautological method suffers from an obvious
resolution problem. Indeed, the intensities S„(q) exhibit
many spiky, and apparently erratic, oscillations down to
the scale of the inverse of the sample size, i.e., hx -A,

&

",
where x has been introduced in Eq. (3.19). The number
of values of q to be explored, in order to find a maximum
which can be trusted, grows therefore as 1/hx, i.e., ex-
ponentially, with the generation label n, so that it is hard-
ly efficient above n = 10 ( A &o has 450000 atoms).

The method can be improved by shrinking at each gen-
eration n the interval to be explored to a "reasonable" vi-

cinity of the wave vector for which the intensity was
maximal at the previous generation. There are neverthe-
less cases where the distance between "father-and-son"
maxima of S„"and S„",is much larger (up to some 1000
times) than the expected scale b,x.

These anomalously large jumps between successive
maxima are a consequence of the seemingly random na-
ture of the oscillations of the partial intensities S„(q),
which are clearly visible in Fig. 2. This complex behavior
of the Fourier intensities originates itself in the chaotic,
or intermittent, behavior of the aperiodic orbits of the
map (3.17). Let us underline once more that, to the best
of our knowledge, no satisfactory quantitative under-
standing of those orbits is available.

Using the above method as a mere numerical scheme,
we have succeeded in locating a very distinct peak, the
word being now taken in the sense of singular scattering,
at the following value of the wave vector:

0.2— qoa
xo = =0.917 638 024 883 44 .

2m
(3.25)

0
0

FIG. 4. Plot of the f(a) spectrum given by the multifractal
analysis of the Fourier intensity discussed in the text, over the
interval 0+x +2.

Figure 5 shows a logarithmic plot of the quantity v'„/S„,
against the generation label n, where the intensity is tak-
en, for each n, at its maximum which is closest to qo.
The data points exhibit irregular but weak fluctuations
around a clear mean linear behavior. The slope s of the
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FIG. 5. Logarithmic plot of the ratios v„"/S„", against the
generation label n. The Fourier intensities are evaluated at their
maximum closest to the wave vector qo, defined in Eq. (3.25).
The straight line shows a least-squares fit of the data, which
yields the value 0.823 for the mean local scaling exponent y.

FIG. 6. Log-log plot of the difFerences of integrated intensity
iH —Hoi, against ix —xoi, for reduced wave vectors x close to
the xo of Eq. (3.25). The straight lines are the result of a com-
mon least-squares fit of the data, according to Eq. (3.26). Solid
curve and line, x )xo', dashed curve and line, x & xo.

~aHi=~, ixx~ as Sx O+-. (3.26)

plot is related to the exponent y of the power law (3.7)
through s =2(l —y)ink, t. A least-squares fit of the nu-

merical data yields the slope s =0.455, whence y =0.823.
Taking for granted the identity (3.9) between the local ex-
ponents a and y, we obtain the value a=0.354. We will
come back to this result later.

Let us nevertheless emphasize that the nice and regular
scaling properties described in Sec. IIIA3 do not hold
true, strictly speaking, in the present case. In particular,
the intensities S„"(q) definitely do not assume an asymp-
totic finite-size scaling law of the form (3.8) for x close to
the selected xo, given in Eq. (3.25). In other words, the
intensities of the successive generations have an intrinsi-
cally complex behavior. This is a manifestation of the
chaotic effects mentioned above, which restrict the validi-

ty of the scaling laws (3.7)—(3.9). Let us therefore adopt
the terminology of mean local scaling and call the values
of y and a determined above the mean local exponents at

q =qo.
We have confirmed the existence of a mean scaling be-

havior for the Fourier transform around qo by the follow-

ing alternative approach, which consists in evaluating the
spectral measure H(q) of the infinite structure, in order
to check the scaling law (3.9) and to measure the ex-
ponent a in a more direct way. It turns out that the in-

tegrals involved in Eq. (3.4) converge very nicely toward
their lirrut, provided they are evaluated properly, in the
sense of the above discussion about resolution, namely,
with a variable integration step 5x, such that the condi-
tion 5x « A. ,

" is always fulfilled.
Figure 6 shows a log-log plot of ibHi = iH(x)

—H(xo)i, against ibxi=ix —
xone, for both x)xo and

x & xo. We have performed a least-squares fit of the data,
assuming that both data series follow power laws with a
common exponent a and two different amplitudes A +,
i.e.,

The numerical fit yields a =0.375, A + = 1.95, and
A =2.32. The fluctuation of the data around the
straight lines seem once more irregular, but rather weak.

To end up this tentative study, let us mention that a
similar analysis has been performed around many other
peaks in other ranges of values of the wave vector. The
main lines of the picture remain unchanged; namely, a
mean scaling behavior of the Fourier intensity is always
observed and the outcomes of both numerical schemes
described above are always consistent with the relation
(3.9) between a and y and yield everywhere the same
value for the mean local scaling exponent, within numeri-
cal accuracy, say,

aloe 0.36+0.02,

for the sake of definiteness.

(3.27)

IV. DISCUSSION

We have investigated a one-dimensional self-similar
structural model generated by one of the simplest generic
non-Pisot substitutions, aiming at understanding the na-
ture of its Fourier transform. We have emphasized suc-
cessively several remarkable consequences of the non-
Pisot property, namely, that both eigenvalues of the sub-
stitution matrix M are larger than unity.

The main outcomes of this study are the following.
The fluctuations of the atomic abscissas with respect to
the average lattice of the structure exhibit a strong diver-
gence, growing as a power of the system size. The gross
features of the Fourier spectrum resemble those of the
binary Hendricks-Teller model of a random structure
with the same content in interatomic bond lengths. The
Fourier transform of the structure, more precisely its in-

tensity measure, is singular continuous, since the
Bombieri-Taylor argument rules out the existence of
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Bragg peaks, except for a trivial one at the wave vector
q=0, whereas multifractal analysis in reciprocal space
shows that there is no intensity at a generic value of the
wave vector (since ao= 1.29) 1) and that the set of peaks
of the Fourier transform has a dimension dz =0.93.

The more dificult question of indexing the peaks of
singular scattering was then addressed. We have present-
ed a detailed numerical analysis of the local behavior of
the diffraction spectrum, which suggests that there exists
a mean scaling behavior around some particular values of
the wave vector, in spite of apparently random variations
of the partial intensities that are due to the chaotic be-
havior of the underlying generalized map (3.17).

For those values of the wave vector, such as, e.g. , qo
given in Eq. (3.25), the local scaling properties have been
explored by looking at (i) the growth of the intensities of
finite samples at q =qo as a function of the system size,

yielding the exponent y, and (ii} the behavior of the in-

tegrated intensity of the infinite system around q =qo,
yielding the exponent a. Both approaches are fully con-
sistent with the scaling law (3.9) between the exponents a
and y and yield an accurate value for a unique mean local
scaling exponent a&„=0.36+0.02.

The above estimate for the local exponent a&„coin-
cides (within numerical accuracy) with the value of
a;„=0.38, determined by multifractal analysis. Our
opinion is that this empirical observation rejects more
than a fortuitous coincidence.

Taking the equality a&„=a;„for granted, we are led

to make the following speculations. According to the
standard interpretation of the multifractal formalism, for
any value of a in the open interval ]a;„,a,„[,there is a

set of positive dimension f (a), and hence a continuous
(noncountable) infinity, of wave vectors which possess the
local exponent a, at least in some weak sense. Even
though multifractal analysis does not bring, strictly
speaking, any precise information about the set of wave

vectors with the minimal exponent a;„,we may suspect
that this set is still continuously infinite

The following scenario seems therefore plausible. The
most pronounced peaks of the diffraction spectrum are all
characterized by the scaling exponent a&„of Eq. (3.27).
They form a continuously infinite set and cannot there-
fore be indexed by any simple scheme, such as a finite set
of integer indices. The value qo given in Eq. (3.25) and
the other values of the wave vector at which we have per-
formed a local scaling analysis are just a few members of

that set, which have been selected somehow at random by
the procedure of Sec. IIIE, just because the intensity
around these wave vectors is very high.

Let us add a few more arguments in favor of this possi-
bility. First, it is worth noting that the value xo of Eq.
(3.25), around which the singularity of the Fourier inten-
sity is exceptionally large, is very close to a maximum of
the structure factor of the Hendricks-Teller model. The
presence of this maximum, which occurs for x =0.91639,
means that the short-range order of the structure is re-
sponsible for the Fourier intensity being large in this
range of wave vectors. Second, we have had many unsuc-
cessful attempts to find a simple indexing scheme for the
value xo and for the location of other large peaks of
singular scattering, either directly (e.g., by looking for re-
gularities in various expansions of the number xo itself)
or in terms of the map (3.17} (e.g., by looking for a sys-
tion of the orbit corresponding to xo in terms of periodic
orbits).

It is well known that, in the case of periodic crystals
and quasiperiodic structures, such as incommensurates
and quasicrystals, the Bragg peaks admit a simple index-
ing scheme in terms of integer indices. It is worth recal-
ling here that most singular continuous diffraction spec-
tra studied so far also share this property. This is espe-
cially the case with the circle and Thue-Morse se-
quences, ' for which the location of the most prominent
peaks of singular scattering is known exactly. Let us
finally note that, in all those instances, a simple indexing
scheme always goes hand in hand with nice finite-size
scaling laws of the form (3.8) for the partial Fourier am-
plitudes. Other such examples can be found in Ref. 5.

If all this holds true, generic non-Pisot self-similar
structures bring, because of intrinsic chaotic effects, a
contradiction to our physicists' intuition that the largest
peaks in a diffraction spectrum should be related to the
structure in some natural way and therefore possess a
simple indexing scheme, such as e.g., by a finite set of in-
tegers, in the case of a simple deterministic structure.
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