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Participation ratio in the nonlinear cr-model representation of localization
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Wegner's analysis of the singularities in participation ratios near the mobility edge is extended to
the case of spin-flip scattering and of random complex hopping. The critical exponents for the par-
ticipation ratio and iriverse participation ratio in 2+@ dimensions are respectively given by

p2 ——(2e) ' +O{e) and m2
——e ' —(2e) ' +O(1). The calculation is based on a unitary nonlinear

o.-model representation for this localization problem.

I. INTRODUCTION II. PARTICIPATION RATIO

Some time ago Wegner' analyzed the concept of par-
ticipation ratio in the mobility edge problem. This con-
cept was originally introduced as an alternative quantity
(besides the conductance) which distinguishes between lo-
calized and extended electronic eigenstates. Wegner's
analysis was based on a field-theoretic description (non-
linear cr inodel) of the Anderson model of electronic disor-
der which was made possible due to the replica
method. Making use of the field-theoretic results ob-
tained by Brezin et a/. , Wegner showed that the singu-
larity in the (inverse) participation ratio near the metal-
insulator transition is very unusual from the point of view
of ordinary second-order phase transitions. This singular-
ity derives in a very peculiar fashion from the zero-
component field theory in that it is associated with the oc-
currence of critical operators of dimension larger than the
spatial one. Wegner's analysis is both elegant and neces-
sary: his results are very hard (if not impossible) to obtain
via other means; furthermore, his analysis is necessary if
this field-theoretical description is to give a complete and
consistent account on the physics of the problem.

Surprisingly, Wegner's analysis has not been checked
for another candidate for the mobility edge problem:
namely, the zero-component U(m +n)IU(m) && U(n)
nonlinear cr model, which shows asymptotic freedom in
two dimensions. This field theory applies to problems in
which time-reversal invariance is broken; in particular, in
case spin-flip scattering is significantly present' ' and
in case of random complex hopping in tight-binding
models. ' ' Furthermore, in the more recent analysis of
the integral quantum Hall effect' ' this field theory
plays a central, nonperturbative role.

In this paper, I consider the critical behavior in the (in-
verse) participation ratio for the aforementioned localiza-
tion problems. In Sec. II I briefly review Wegner's scaling
equations and state the results of this work. In Sec. III, I
give the details of the calculation of critical exponents, us-
ing the analysis of Brezin et al. as a starting point.

A. Model

This paper concerns the following one-particle Hamil-
tonians:

H= p +h(r) r,
2m

where h(r) denotes a random field due to magnetic im-
purities and ~ denotes the three Pauli matrices. Further-
more,

H =f(r,o, r', o'), (2)

which is defined on a lattice; f is a random Hermitian
matrix with matrix indices r (lattice site) and o=+ 1 (spin
degree of freedom). The Hamiltonians of Eqs. (1) and (2)
have in common that they are random and Hermitian. In
both cases, the effective Lagrangian for the description of
the transport quantities is given by the o. model with uni-
tary symmetry, ' ' ' ' as mentioned earlier. This is in
contrast to the original Anderson model, which is defined
in terms of a real-symmetric Hamiltonian. The appropri-
ate effective field theory for the latter is given by a cr

model with orthogonal symmetries, specifically
O(n, m)IO(n) &&O(m) in the limit n, m~O. '

Quite commonly, the Hamiltonians given in Eqs. (1)
and (2) are referred to as localization problems in which
time-reversal symmetry is broken. Such a statement is
true only in a local sense. At macroscopic length scales,
however, all possible random configurations do occur (we
assume short-ranged correlated randomness) and from
this we can conclude that time-reversal symmetry has
been restored. This is a subtle but essential difference
with the localization problem in which a constant magnet-
ic background field is present. In this case, time-reversal
symmetry is truly broken, i.e., at microscopic as well as
macroscopic length scales. The consequences for scaling
have been discussed in Refs. 16—18.

B. Scaling relations and results

As a general remark, information on the nature of the electron's eigenstates is contained in the two-particle Green's
function'
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K(E,g)=( Tr(r
(

1

E —H+~q
1 1

E —H —ig E —H+iq E —H —ig
Ir) (3)

where ( ),„ indicates an ensemble average over disorder
and E,H denote the Fermi energy, respectively, the Ham-
iltonian of the disordered electronic system. The trace is
over the spin degrees of freedom and r denotes the spatial
position. That is, the quantity

ized states, one expects a scaling behavior'

[gK(g,E)]„o

P(E)= [gK(E,g)]q o,1

2m.p E (4a)

P;= g[TrIV;(r) I ] (4b)

with %'; representing the wave function at energy E;. It is
a measure for the (averaged) inverse of the volume that is
taken by the state with energy E;.

On the other hand,

with p(E) representing the density of electronic levels, is
the ensemble averaged version of the inverse participation
ratio. For a single realization of the ensemble, this quan-
tity is defined as

such that in this case, this inverse participation ratio van-
ishes according to

P(E)

m2 ——(x +d)v=e ' (2F) '—+0(1), (12)

m2 ——e ' —1+0(e) . (13)

for the spin-Aip scattering or complex hopping case. For
potential scattering, one has in contrast

(
4m. p(E)

K(E,g~o) (5a) III. NONLINEAR o.-MODEL REPRESENTATION

has been introduced as the averaged version of the partici-
pation ratio

(5b)

Averaged two-particle Green's functions, such as Eq.
(3), can be obtained from an effective field theory of in-
teracting matrices governed by a Lagrangian

which measures the volume fraction taken by the state E;
(X= number of sites). For an extended electronic level,
P(E) vanishes in the thermodynamic limit whereas p(E)
is presumably positive (and has a maximum value of one).
For a localized electronic state, P (E) is positive and p (E)
vanishes.

In the neighborhood of the mobility edge, E„one ex-
pects that scaling behavior'

K(E,q) —
I
E E, I

""f(g/
I

E—E, I

"')— (6)

if E, is approached from the extended states regime. The
participation ratio falls off to zero, such as

p (E)

where the critical exponent p2 will be calculated in Sec.
III. The result in 2+@dimensions is

1
p2 ———xv= +0(V e),

26

which is to be compared with Anderson localization' (or
potential scattering)

pq ——+2+0(e) .

The unusual feature of this scaling result is that it derives
from a critical operator with a negative critical exponent
X.

Approaching the mobility edge from the side of local-

+ rip(E) f d "rTr( —Pg~f (r), (14)

Equation (15) expresses the most singular contribution to
K as the expectation of a local operator. (There are other
contributions involving operators of higher dimensions
but these can be neglected as one approaches the mobility
edge E, .) The coefficients A,B are determined by an
underlying noncritical theory and are not universal.

According to the theory of nonlinear cr model, ' a criti-
cal index is associated with each irreducible representation
of such operators with respect to the symmetry group,
which is in this case U(m +n). Notice that the operator
(15) can be written in more general form

1C= g UgQ p(r)g„n(r)),
aPy5

(16)

where Q in this case belongs to the coset space
U(m +n)/U(m) X U(n) and where the trace stands for
the sum over a, b (replica indices) which run from 1 to
m, n for p =1,2. The quantity 1/t plays the role of
"bare" conductance and the results for the disordered
electronic system are obtained in the limit m, n ~0.

In this representation, Eq. (3) can be written as

K= g ( —P+~'[A(gg(r)gf, ~(r))
pp'=1, 2

+&(g~~(r)ggy~ (r) )],~$ . (15)
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There are two irreducible representations for these opera-
tors, a symmetric one

aY ya
Ups =Ups (18)

where a. . .5 stand for the pair of indices (p, a), etc. Ob-
viously, v is invariant under interchange of the pairs
(ap), (y5). Furthermore, v, according to (13), is traceless:

Qvi5 =Qvpi 0. (17)
E

exploited in Ref. 19.
The parametrization of Qe[U(m +n)/U(m) X U(n)]

is most conveniently done in terms of the projectors
I' = —,

' Q+ —,
'

leading to n && m complex components V~ as
independent field components. In terms of V, the opera-
tors 0+(r) can be written, up to a normalization factor

g ~+ ~jg +j vl +I+2
2(m +n+1) 2[nm+(m +n)+1]

and an antisymmetric one X ( V" V' V~p' Vjp+ V" Vp Vjp* VJ ) (26)

aV ya
Ups = —Upg (19)

(20)

The quantity E wiH, in general, pick up a contribution
from both representations.

The easiest way to calculate the anomalous dimension
of these operators is to add a term to the Lagrangian, pro-
portional to these operators, thus providing the necessary
infrared regularization. A gauge invariant [i.e.,
U(m) &( U(n) invariant] regularization is provided by us-
ing the representation

g ( ) y I ~1~2[ Q
1 1( )Q

2 2( )
P)Pp

ab

using the convention of summation over repeated indices.
On the other hand, the action becomes an infinite series

+ 2 V~ VpV~~VJp*V~Vp+g(V6) . (27)

The free energy is obtained by treating all but the Gauss-
ian fluctuations as a perturbation. Using dimensional reg-
ularization, one gets up to one-loop order

+ 1f+ = h+Z;/tz,
2(m +n+1)

—I ln(1+h+Z2—/q )+ —,th+(m +n+2)

1

& q+h+

2

(28)

kP )P2

1
Pl + 1

The addition of a term t 'h+ 0+(r):

L~ f d r [TrV„—QV&Q +h+ 0+ (r)]

(21)

(22)

from which one deduces the renormalization constants via
minimal subtraction

Z t= 1—2(m+n+1)—
Zf

leads to a renormalizable theory by power counting in two
dimensions. There are only two renormalization con-
stants needed, namely, the coupling-constant renormaliza-
tion t =tzZi and a multiplicative renormalization Zq of
the traceless operator 0+. The final renormalized action
reads

+(m +n+2)(m +n+1) — +O(t3),

Z2 =1—(m+n+2) —+O(t ) .

(29)

(30)

L~ f d r[TrV&QV„Q+h+Z20+(r)] .
tz1

(23)

A factor of 2m has been absorbed in t. Equations (24),
(25), (29), and (30) imply for the anomalous dimension

The renormalization-group functions are obtained in the
standard fashion

y+(t)= —2(m+n+1)t+O(t') . (31)

(t)=,e=d —21+tBin(Z, )/Bt ' (24)
On the other hand, the p function is known to fourth or-
der"

y+(t) =P(t) In(Zp /Z) ),8 +
at

(25) p( t) =et —(m +n )t —2(mn + 1)t

——,(3nm+7)(m+n)t +O(t ) . (32)
whereas the renormalization constants Z& and Z2 are
determined by requiring that the free energy be finite. 7

The critical exponents v and x+ are obtained asThis method is advantageous, because it gives y+ one or-
der higher than would be normally obtained in a one-loop
computation. The same is true in a calculation of the in- 1/v= p'(t, )=@+2 e +O—(e'),
variant two-point function which has been discussed and (n +m)

(33)
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m+n+1 (mn+1)(m+n+1)x+= —y~ t~ =2 4
m+n (m+n)'

x+ —— y—+(t, ) =+V 2e+O(e i2),

1/2
(36)

Xe'+ O (~'),

(34)

t2= E

2
+O(e) .

e
2

mn+1
m+n (m+n)

In the limit of zero field components we obtain

1/v= P'(t,—) =2@+0(e2), .(35)

For m =n =1, the unitary model reduces to the O(3)
nonlinear o. model. The 0+ functions correspond to a
composite operator in the O(3) model and y+, y have
been calculated in Ref. 9 as g2, respectively, g~.

' The
critical exponent x in Eqs. (6) and (10) correspond with
x in Eq. (36) since the antisymmetric one yields the
dominant contribution.
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