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Résumé. 2014 La densité d’états et la nature des états propres d’un réseau de Sierpinski à d-dimensions sont étudiées.
Les résultats obtenus sont valables aussi pour le modèle de liaisons fortes et pour tout hamiltonien quadratique.
Pour d &#x3E; 1, la mesure spectrale est la superposition de deux mesures purement ponctuelles, de poids relatifs
d|(d + 1) et 1/(d + 1). Les modes propres associés sont calculés explicitement. A la première partie du spectre
sont associés des modes localisés avec des amplitudes non nulles seulement sur un nombre fini de sites (modes
moléculaires), tandis que la seconde partie correspond à un nouveau type d’états : les modes hiérarchiques. L’in-
fluence des conditions aux limites est élucidée ainsi que l’importance de ce type de spectre en percolation quanti-
que et pour les potentiels incommensurables.

Abstract. 2014The density of states and the nature of the eigenmodes of the vibrating d-dimensional Sierpinski gasket
are investigated. The results hold for the tight-binding or any general quadratic Hamiltonian. For d &#x3E; 1, the
spectral measure is shown to be a superposition of two distinct pure point measures of relative weights d/(d + 1)
and 1/(d + 1). The eigenmodes associated with each part are explicitly calculated The first part of the spectrum
is associated with localized modes, with non zero amplitudes only on a finite number of sites (molecular modes),
whereas the second part is associated with a new kind of states : the hierarchical modes. The influence of the boun-
dary conditions is also elucidated as well as the importance of this kind of spectrum in quantum percolation and
incommensurate potentials.
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1. Introduction,

Many physical properties of a many-body system are
closely related to the spectrum of the Schrodinger
equation. Of particular interest for physical applica-
tions are the nature of the spectral measure (pure point,
absolutely continuous), the behaviour of the wave
functions (localized or extended, chaotic or non

chaotic) and the topological feature of the spectrum
(connected, band spectrum, Cantor spectrum). For
instance, it is well-known that the energy spectrum of
a free particle in a periodic potential consists of bands
of extended eigenstates. On the other hand, random-
ness of the potential may in general create localized
states, arising from destructive quantum interference
caused by the random potential. In addition, a

localization-delocalization transition has been shown
to exist (under special conditions) in almost periodic
potentials (for instance for the « almost-Mathieu »
equation [1]) in one dimension. In this paper we
show that localization may occur also for non-ran-
dom potentials on self-similar structures : determi-

nistic fractals. In this respect, fractals may bridge
the gap between crystalline structures and disordered
materials. From a structural view point, it has been

suggested [2] that fractals may represent the geometri-
cal features of the percolation clusters. Very recently,
this hint was confirmed by many authors [3], showing
that percolating clusters are well-represented as

fractal structures up to the percolation correlation
length. However this example of fractals is not an
isolated one. A linear or branched polymer, a random
or self-avoiding walk in free space or on a periodic
lattice are other examples of fractals. The common
features of these structures in their dilation symmetry
(scale invariance) in contrast with the translation

symmetry possessed by standard Euclidean space.
In addition to the well-known fractal dimensiona-

lity [4] d, the new concept of spectral dimensionality
a7 was introduced recently [5, 6] in order to describe
the classical diffusion on fractals. It describes the
low frequency density of states (e.g for elastic vibra-
tions) : p(co) - w"-’. The dimensions d and J also
seem to control many other physical phenomena such
as localization and self-avoidance of random walks.
Euclidean spaces of dimension d are special and
degenerate cases, because 7 = ? = d in them.
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In this paper, we investigate the spectrum of the
harmonic Hamiltonian on the d-dimensional Sier-

pinski gaskets. This family of self-similar structures
can be built in any Euclidean dimension, and has been
already applied in other studies [2, 7, 8] because it is
particularly convenient for scaling computations.

In section 2, some definitions and appropriate
notations are given. A renormalization procedure
is used in this section in order to obtain the energy
scaling relation associated with a spatial scaling.
The recursion equation then obtained is used to
calculate the spectral dimensionality d as a function
of d.

In section 3, we use another decimation scheme to
calculate the energy spectrum of the gaskets. The set
of iteration equations permit us to distinguish two
parts in the spectrum. The first corresponds to a
pure point spectral measure of relative weight d/(d + 1),
supported by a set of Lebesgue measure zero. The
second part, of relative weight 1 /(d + 1 ) is given by
a Cantor spectrum of Lebesgue measure zero.

Section 4 is devoted to the eigenmode calculation.
In particular, we show that the first part of the energy
spectrum produces localized modes. The associated
amplitudes, for these degenerate eigenmodes, are

non zero only on a finite set of sites. The degree of
localization is measured with one localization length,
which diverges at the lower edge of the spectrum.
The second part of the spectrum is associated with
hierarchical states, having a hierarchy of localization
lengths.

In section 5, the influence of the boundary condi-
tions is discussed, and a comparison with other works
is outlined.

2. Real space renormalization of the equations
of motion.

2.1 SIERPINSKI GASKET. - The Sierpinski gaskets
form a family of non trivial d-dimensional scale
invariant fractal lattices of fmite ramification order,
but not quasi-one-dimensional [2, 4], which can be
built in any Euclidean dimension. To construct a d-
dimensional gasket, we begin with a d-dimensional
hypertetrahedron Go (a triangle for d = 2) at stage
n = 0. Gn + 1 is obtained from G. by juxtaposition of
(d + 1 ) stage n structures, at their external comers.
The scaling factor is b = 2 at each iteration, and the
fractal dimensionality of the gasket is easily found to
be : d = ln (d + I)/ln 2. The total number of. sites
at stage n is given by

and the corresponding number of edges is also given
by

A natural way to label the sites of the gasket con-
sists in the use of p-adic numbers [9,10]. These labels

(see appendix II) are the « normal » coordinates on
the gasket, playing a role similar to the Cartesian
coordinates of Euclidean lattices. Each hypertetra-
hedron is coded with a p-adic number, and thus each
site is labelled by a pair of such p-adic numbers. This
method of coding is very useful in numerical simula-
tion [11].
Assume now a system of Nn identical masses m

placed at the sites of the gasket, and connected by
springs of strength K. We make the simplification that
particles are allowed to move only in a direction ortho-
gonal to the d-dimensional space of the gasket Let
a = mw2/K - w2/w5 denote the reduced squared-
frequency and { Uj eiwt} the eigenstate associated
with a mode of frequency w. The set of equations of
motion for sites i is given by

where j denotes a neighbouring site of i.

Equations like 2.3 occur also in other problems
described by similar finite difference equations. For
instance, in the tight-binding model for electrons on
a lattice we have the same type of eigenvalue problems.
In this case, the analogue of equation 2. 3 is written

where the energy at sites x is s, 1/1 x is the amplitude at
site x, t is the hopping matrix element and E denotes
the eigenvalue. The correspondence in this case is

trivially given by the relation (E - B)lt H 2 d - w2/w2’
In general, equations analogous to 2. 3 occur in the
harmonic approximation. The method and the results
of this paper hold then for a large class of models.
Z . 2 RENORMALIZATION OF THE COUPLING CONSTANT.
- The self-similarity of the gasket leads to a natural
decimation procedure. The idea involves eliminating
in equation 2.2 the lowest scale amplitudes corres-
ponding to the sites located at mid-point of hype-
tetrahedron edges. Then at each decimation, (d+ 1 ) d/2
sites are eliminated, and this procedure leads to a
reduced set of equations describing the same physics
on a gasket scaled down by a factor b = 2. This
exact renormalization leads to a renormalized fre-

quency (one parameter renormalization group). In the
following we shall illustrate this procedure for d = 2,
which gives directly the value of the spectral dimen-
sionality S (the general case is outlined in appendix I).
2. 2.1 Case d = 2. - The set of equations of motion
for the mid-points of the lowest left triangle (see
Fig. 1) is :

The corresponding equation for X, (or Z,) is
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Fig. 1. - Principle of the decimation procedure, to derive
the recursion relations for elastic vibrations on a two dimen-
sional Sierpinski gasket.

Using equations 2.5, one extracts x2 + x3 as a

function of { Xi } and the same for z2 + Z3 as func-
tion of { Zi }. Inserting these values in equation 2.6,
one obtains a new equation where X1 is a function
of X2, X3 and Z2, Z3. This relation can be cast in
the form of the first equation 2. 5 with the renormaliza-
tion :

We note the absence of new coupling constants, in
opposition to the case of Euclidean lattices. Given an
eigenfrequency, this relation permits us to calculate
the corresponding eigenstates from the equations
relating { xi } to { Xi }. Keeping the strength K fixed,
the result (2.7) can be understood as a mass renor-
malization :

In particular, at low frequency (w2/w2o« 5 -"-1 ),
after n iterations, the renormalized mass becomes

mn ~ 5n.m.
For the general d case, one obtains (see appendix I)

the following result :

where 6 = d + 3.

2.2.2 The spectral dimensionality J. - The qua-
dratic character of the map 0(a) = a(d - a) obtained
by the above decimation procedure is mainly due to
the scaling by a factor b = 2 of the gasket The whole
spectrum of the gasket is controlled by the properties
of the map 0, as we shall see below. In particular, the
spectral dimensionality d is given [6] by the slope of
0(a) near its trivial fixed point a = 0 :

For example, ii reduces to the known-value d = d =1
at d = 1. The spectral dimensionality J approaches
monotonically its asymptotic value 2 at d &#x3E; 1 :

whereas J reaches the value d = oo at d = oo. In
table I, the values of d and d are given for increasing
values of the Euclidean dimension Notice that the
inequalities : i  i  d are obeyed for all values of d
A straightforward application of the above result

is that excitations having

as low frequency density of states produce the power
law (Bosons) : C(T) - Ti for the specific heat at low
temperature (T  coo). Similarly, for free particles
of energy 8 - ro2, we have the low energy density of
states

giving rise to a specific heat C(T) - Tii/2 at low tem-
perature. In addition to this example, the relative value
of d governs the physical behaviours of the gasket [6]
(and of fractals in general). For instance, Bose-Eins-
tein condensation cannot take place for particles
having (2.12) as density of states, if i  2. The same
ideas hold also for the ferromagnetic spherical model.
More generally, i controls the infrared catastrophe
and the critical behaviour of non Ising spin models
where spins are located on fractals.

Table I.

2.2.3 On the nature of the map 4&#x3E;( (X). - In general
4&#x3E;( (X) is a rational function (see Eq. A. 8 in the appen-
dix) of a because a occurs in a linear term in the equa-
tions of motion. The only restriction comes from the
property 4&#x3E;( (X = 0) = 0 implying the existence of
an uniform mode at zero frequency (Uj = U for
all j). The precise value of i is given by the slope of
0(a) near this trivial fixed point. On the gaskets, it
is the regularity of the hypertetrahedron that makes
the reduction of 4&#x3E;( (X) into a simple quadratic poly-
nomial possible. The degree of this polynomial
is fixed by the scaling factor b = 2. By a Mobius
transformation of the form :
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One obtains the canonical form

where

Mappings of the form (2.14) were studied by
Julia [12] and Fatou [13], at the beginning of the
century and by Brolin [14] very recently. The nature
of the spectrum of the gasket and more generally
of a self-similar lattice is closely related to the theory
of iteration of maps like 0(m).

3. Functional equation for the Green function and the
integrated density of states.

3.1 GENERAL METHOD. - In order to obtain the

spectrum of the gasket, we can use the recursion equa-
tion 2. 8 together with a set of iteration equations for
the amplitudes of the eigenstates. Such a method was
outlined by Domany et al. [15], and will be discussed
in section 5 below. However this direct approach
requires special boundary conditions in order to be
consistent with equation 2.8 at all stages. A more
serious limitation of this method comes from diffi-
culties when higher values of d (d &#x3E; 3) are considered,
particularly when calculating the eigenmodes and
their degeneracy.
The self similarity of the considered structure per-

mits us to write a functional equation for the Green
function [16]. The imaginary part of the latter func-
tion, and its derivative are closely related to the

integrated density of states on the gasket In the fol-
lowing we shall illustrate the method used for d = 2
and d = 3 with explicit calculations. The basic
trick is this relationship between a symmetrical
n x n matrix A and its determinant :

Here u = (u,, ..., un) denotes a hidden vector, and in
our case A represents the dynamical matrix.

Starting with a Gaussian model, on the gasket at
stage n :

its partition function is written (using 3 .1 ) as :

where G,,(p) is given simply by the determinant of the

dynamical matrix

{ rotn } are the eigenvalues of the quadratic form (3.2).
The integrated density of states is then obtained from
the « free energy » per site :

where Nn denotes the total number of sites on the
gasket at stage n (Eq. 2.1). If N(a) is used to denote
the fraction of modes with squared frequencies below
w2, one obtains [17] :

where is is a small imaginary part added to a near
the real negative axis. The functional equation is then
obtained by first relating G. to Gn+ 1, and then taking
the thermodynamical limit n = oo (this approach
was used for similar problems in Ret 18).
3.1.1 Case d = 2. - The relation between Gn
and Gn+ 1 is obtained using a decimation scheme over
all sites at the lowest scale. For instance, consider
the terms in JC involving X, (see Fig.1) and its neigh-
bouring sites : { xi } and { zi }, i = 1, 2, 3. This partial
Hamiltonian can be decomposed as

where

is a mass term and Jeint contains all other terms in k
involving the interactions between sites and mass terms
relative to { x; } and { z; }. The last term can be cast in
the form :

where

and

In equation 3. 10, G is used to denote the 3 x 3 matrix
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Performing Gaussian integrations over xi and zi,
one obtains finally

where J’ and y’ are the renormalized values of J
and p :

and det G = (f3J)3 (jM + 1)2 (p, - 2) is the determinant
of the matrix G.

Using the homogeneity property (A real)

one obtains the desired recursion equation

and then the functional equation

3.1.2 Case d = 3. - Let consider the case d = 3

(Fig. 2). As above t is written as (Eq. 3.8), with

and

where

and

Fig. 2. - Part of a 3-dimensional Sierpinski gasket, at the
lowest scale.

The 6 x 6 matrix G is given by

with a determinant

Using the same decimation procedure as for d = 2,
one obtains

and

From the last recursion equation, it is easy to deduce
the following functional equation for ft) :

which is analogous of the equation (3.17) for the case
d = 3.
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3.1. 3 Case of general d - A straightforward gene-
ralization of the above decimation procedure yields,
for general the following results :

and

The coefficient in front of the last term in equation 3. 30
is given by

As it should be, we recover the equations 3.17 and
3.27 for d = 2 and d = 3 respectively. For d = 1,
a direct calculation leads to equations 3.28-30. In
this particular case one observes the absence of the
second term in the right side of equation 3.30. The
occurrence of this term at d &#x3E; 1 is at the origin of a
qualitative change in the nature of the spectrum when
compared to that at d = 1.

It should also be noted that the map 4&#x3E;, given by
equation 2.8, appears in the argument of the func-
tion 0 on the right-side of equation 3. 30. Such beha-
viour is naturally associated with the self-similarity
of the gasket, expressing the general relationship

between functional equations and map iteration
theories [19]. The functional equation 3.30 for 0
contains all the information about the spectrum of the
gasket and is used in the following for the calculation
of the integrated density of states. Besides the trivial
case d = 1, where equation 3.30 reduces to the
well-known Schr6der-Abel equation [19, 20], we have
no systematic procedure to solve equation 3.30.
Additional conditions (continuity, differentiability, ...)
are needed to find non trivial solutions for this equa-
tion. For detailed studies of functional equations in a
single variable, we direct the reader to the classical
monographs [Refs 10 and 20].
3.2 THE INTEGRATED DENSITY OF STATES. - In spite
of the difficulties involved in finding a general solution
for equation 3. 30, general features of the spectrum can
be extracted from this functional equation. For

instance, for p » 1, equation 3. 30 reduces to

which has a solution given by

Starting with this limiting solution, we can obtain
an analytical continuation for 0(u) defining this
function in the whole p complex plane and taking
real values on the positive real axis. Branch cuts are
used on the negative real axis because of the occur-
rence of logarithmic branching points produced by
the right term in equation 3.30. When the negative
real axis (u  0) is crossed the values of 0(u) differ
by an imaginary constant. Taking the imaginary part
of equation 3.30 close to the negative real axis, and
using equation 3.7, we deduce the following rela-
tions for the integrated density of states

where 0(x) denotes the step function (8(x) =1 for
x &#x3E; 0 and 8(x) = 0 for x  0). The integrated density
of states is therefore completely determined, using
the functional relations 3.34. We found that N(a)
is a constant function almost everywhere on the real
axis (see below), and a monotonically increasing
function of a. The spectrum is confined in the inter-
val [0, 2 d + 2], with

Using equations 3.34-3.35, the obtained integrated
density of states is a highly singular function of a,
giving rise to a nontrivial spectrum for the gasket
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4. Spectrum and eigenmodes.

The iteration scheme suggested by the equations 3. 34-
3.35 is used in this section in order to find N(a)
on the whole real axis. In the following we shall
illustrate briefly this procedure, as well as the calcu-
lation of the eigenmodes associated with the spectrum.,
4.1 NATURE OF THE SPECTRUM. - The function
N(a) is known (Eq. 3.35) outside the interval

[0, 2(d + 1 )] containing the spectrum of the gasket
Repeated applications of equation 3.34 involve the
map ljJ( 0152) and its inverse

The qualitative features of the spectrum are very
sensitive to the relative value of the « control para-
meter » 6 = d + 3 in respect to the « critical &#x3E;&#x3E; value

d,v = 4, corresponding to the linear chain (d = 1).
In the following we limit ourselves to the case 6 &#x3E; 6,.
The case of the harmonic linear chain is discussed

separately at the end of this section. In general, the
spectrum of the gasket is the superposition of two
distinct parts : a pure point spectral measure of
relative weight d/(d + 1 ), supported by a set of Lebes-
gue measure zero; and a second pure point spectral
measure of relative weight 1 /(d +1), supported by
a Cantor set of Lebesgue measure zero.
4.1.1 First part of the spectrum. - The graph of the
map 0(a) is sketched in figure 3. The two unstable
fixed points are located at a = 0 and d + 2, ø«(X)
reaches its maximum value at am = 6/2 where

Ø( CXm) = ð2/4. The upper edge of the spectrum has two
predecessors : a = 2 and a = d + 1. Using equa-
tions 3. 34 and 3. 35, we obtain

A first jump occurs therefore at the upper edge of the
spectrum. The height of this jump is given by

A second use of equation 3. 34 permits us to obtain
the function N(a) in a new a-interval :

where ai and a2 (&#x3E; ai) are solutions of the equation
4J(a) = d + 3. A new jump of the function N(a) of
height d o = (d - 1)1(d + 1 )2 is then obtained at

a = d + 1. Repeated applications of f t give the
successive images of the basic « cell » shown- in

figure 4. At each stage of the iteration, every jump of
height di gives rise to two jumps, of equal heights :
Ai+ 1 = d i/(d + 1 ). Such a procedure generates there-

Fig. 3. - The graph of the map q5(cx) = ba - a2, for a
d-dimensional structure, where 8 = d + 3 and A = ð2/4 -
6/2. al and a2 are the two solutions of the equation 4J(a.) = 8.

Fig. 4. - Elementary cell in the iteration /±(a) (see text),
showing the occurrence of the jump 40 at a = d + 1,
after the first iteration.

fore a pure point spectral measure (discrete spectrum)
supported by a set of Lebesgue measure zero. The
eigenfrequencies are located at a = 2 d + 2 and
at a = d + 1 and its successive images by f± - This
part of the spectrum of the gasket is self-similar by
construction; its relative weight is given by the sum
(d&#x3E; 1) : 

-
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To each jump of N(a) is associated naturally a highly
degenerate eigenmode (see Fig. 5).
4.1. 2 Second part of the spectrum. - The second part
of the spectrum, of relative weight 1 /(d + 1), is given
by the Julia [14] set associated with the map 0 (i.e.

the complementary set of the attraction domain of
the fixed point at infinity a = oo). This part of the
spectral measure is associated with a Cantor spectrum,
supported by a compact perfect set Cd : the Cantor
set of Lebesgue measure zero, given by

where and
This set is obtained, as above, by repeated applications of equation 3. 34. After the first iteration, the func-.

tion N(a) is calculated in the interval which can be removed At the second

j ...

stage, one obtain a support contained in the set

Fig. 5. - a) Successive steps in the application of f/±(x),
at d = 2. b) Behaviour of the integrated density of states
N(a), at d = 2, after the first iterations. The jumps of heights
d’ and Ao correspond to eigenfrequencies in the first part
of the spectrum.

At each stage n, one obtains a support which consists
of 211-1 such intervals. When n -&#x3E; oo the gaps tend
to be dense and therefore the second part of the
spectral measure is supported by the Cantor set C,,
given by equation 4.6. This construction gives

finally the graph of N(a) shown on figure 5. The

resulting function N(a) is a continuous bounded
monotonic non decreasing function whose derivative
exists and is zero at every point except on the support
of the spectral measure.
Each eigenfrequency given by (4.6) is naturally

coded by an infinite sequence { a 1, where (J¡ = :t 1.
For instance, the sequence ai = + 1 corresponds to
a = d + 3, and that with ai - 1 corresponds to
a = 0. Therefore (4.6) can be generated by repeated
applications of f+ starting from a = 0. Successive

jumps for N(a) are also generated as above : Ao at
a = d + 3, ... and the total weight is given by :

The above coding (4. 6) of the Cantor spectrum permits
to show the invariance of this spectrum under 0 and
f t [21, 22] :

where T denotes the « shift » operator

and

To our knowledge, this kind of spectrum was first
encountered in physical problems by Bellissard et al.
[21 ] in their work on the so-called « quadratic mapping
Hamiltonian ». These authors have studied a one
dimensional crystallographic model, associated with
an almost periodic potential, and assuming a spec-
trum similar to (4.6). The main difference between
the two cases is the nature of the spectral measure
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The absence of an atomic part in the spectral measure
of the quadratic mapping Hamiltonian leads to a
singular continuous spectral measure. In the case of
the gasket, the spectrum is given by (4. 6) but the
associated spectral measure is a pure point one. This
difference comes from the relative weight of the

sequences { a } in (4.6) which is the same in the
first case and not in the second case. Otherwise, the
second part of the gasket’s spectral measure is made
of Dirac functions sitting on a denumerable subset
of the Julia set. Only its closure coincides with the
Julia set which contains a non denumerable set of

points. (This subtle difference is of great importance
from measure theory viewpoint, but will not be
discussed further here.)

4.2 EIGENXnODES (d &#x3E; 1). - The iterative scheme
used in the above section can also be used to find the

eigenmodes on the gasket Having an eigenmode
associated with a, we can obtain using the maps 0
and f t the set of eigenmodes corresponding to other
eigen-frequencies. Two kinds of states are obtained :
localized « molecular » states associated with the
first part of the spectrum, and hierarchical localized
states associated with the Cantor spectrum. To be
clear, the discussion below is limited to the case
d = 2. All obtained results hold also for any d &#x3E; 1.

4.2.1 Localizes« molecular » modes. - We start by
calculating the eigenmodes associated with the upper
edge of the spectrum a = 2(d + 1). The corresponding
amplitudes are easily obtained from the equations of
motion. These modes are degenerate, exhibiting
clearly the rotation invariance of the gasket. For
instance, at this frequency a = 6, there are three

eigenmodes (Fig. 6), Vlll .J 2 and 03C83 localized inside
each triangle of side 4 a (a denotes the length of the
lowest scale side on the gasket). These Nn/3 modes
are similar to the well-known band edge modes in
crystals, as can be seen in figure 7a, where (V/ 1 + 03C82 + .03C8 3)
is shown. The main property of these localized modes
is the vanishing of the amplitude U.’s, outside a finite
set of sites. This behaviour holds also for the other

frequencies of the first part of the spectrum. For
instance, at a = 4&#x3E;-1(6) = 3 the corresponding mode
is shown on figure 7b. Because of this peculiarity, we
call these modes : «molecular» eigenmodes.

In order to quantify these more than localized
states, we use their extension range L(a), such that
Ld(a) measures the occupation «volume» of the
mode associated with a. For instance, L(a = 6) = 2 a,
L(a = 3) = 4 a. It is clear, for n &#x3E; 1, that L is given by

At low frequencies, L(a) is given by

where k is an exponent given by

Fig. 6. - Eigenstates associated with the upper edge of the
spectrum (a = 6) at d = 2. Only non vanishing ampti-
tudes are shown of the figure.

Fig. 7. - a) The eigenmode = (03C81 1 + 03C82 + 03C83) associat-
ed with 0153 = 6 (see Fig. 6). b) The eigenmode associated
with 0153 = 3 = cP -1 (6), deduced from 03C8. As in figure 6,
only non vanishing amptitudes are shown.

The divergence of the range L(a) at w -&#x3E; 0 is naturally
associated with the accumulation point a = 0 cor-
responding to the uniform extended mode. The
result (4.15) can be obtained directly with the help
of the following scaling argument For a given a in
the spectrum, L(a) must be a solution of the scaling
equation (b = 2) :

In particular, if L(a) diverges at m - 0, with an expo-
nent k, equation 4.16 gives immediately the value of
this exponent as
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The « localization » volume scales therefore like

(L(W))d ~ co-’ * For each eigenfrequency a, the

corresponding degenerate eigenstates obtained above
are independent, but they are not orthogonal. A
straightforward orthogonalization procedure can be
outlined within each degenerate subspace.
4.2.2 «Hierarchical» modes. - We now turn to

calculate the eigenmodes associated with the Cantor
spectrum (4.6). The starting point here is the lowest
edge of the spectrum a = 0 corresponding to the
uniform mode, from which we deduce the amplitudes
corresponding to a = d + 3 = 0 - 1 (0). To this value
of a is associated a degenerate mode localized around
the holes inside the gasket. The corresponding ampli-
tudes are non zero only inside a triangle surrounding
the chosen hole and the relative degeneracy, for a
given a E Cd, decreases when the hole size increases.
Therefore to each a E Cd is associated a hierarchy of
localization lengths standing from a finite value L1(a)
to L2(a) = oo, and corresponding to the increasing
size of holes. For this reason, we call these modes
o hierarchical » modes. However these degenerate
states do not mix to create extended states. In parti-

. cular, if an « averaged » localization length is defined
for each a E C ð, then a finite length is obtained L(«),
which is a solution of equation 4.16. As above L(a)
diverges at a -&#x3E; 0 with the exponent k = d/d.
4.2. 3 General features of the eigenmodes. - In gene-
ral the eigenmodes can be expressed with the family
of orthogonal polynomials { Pn } introduced in refe-
rence 22. { Pn } fulfills a three-term recursion relation

where R.’s are rational fraction in ,
generated by the recursion relation

Besides trivial properties (degree, parity, ...) of the
family { Pn }, we have the important property : for
any positive integer n, we have

and more generally

where 4&#x3E;(k) is the k-th iterate of the map 4&#x3E;.
The set of polynomials { Pn } is appropriate for

the dilation symmetry of the gasket : equation 4.21
exhibits clearly this property. From this view point
{ P. }’s are therefore the counterpart of the Bloch
waves in translation invariant structure. In the

particular case d = 1, { Pn } reduces the well-known
Tchebychev polynomials { Tn }, where dilation and
translation symmetries coexist (see section 4.3).

The general pattern of the amplitudes correspond-
in to a given « is illustrated on figure 8. If we choose
the site m as the origin, and label the sites along the
external edge of the gasket by the integers n, one

obtains the scaling relation :

For a E Ca, (4.22) can also be written as

which is a direct consequence of the invariance of

C. under 0. Exceptional sequences {(J} can be

periodic, leading to a periodic behaviour of k - Un.2k,
but this happens with probability zero. An example
of this kind of periodic mode is shown in figure 9a
and corresponds to the fixed point « = 4 obtained
for the sequence { a } : Qo = 1, (J 1 = - 1 and

(Ji = 1 (i &#x3E;, 2). An example of hierarchical states

corresponding to a = 5 is also shown in figure 9b.
In general, no simple rule was obtained between U
in (4.22) and P in (4.20).
4. 3 CASE d = 1. - When 6 = bc = 4, the functional
equation for 0(/,t) reduces to

and the integrated density of states N(a) becomes
the solution of the equation

obeying the boundary conditions

The function N(a) verifies also the duality relation

We found (Fig. 1 ob) :

Fig. 8. - Different amptitudes on an infinite gasket. The
site denoted co was chosen as origin.
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Fig. 9. - Example of : a) periodic state associated with
the eigenvalue a = 4, b) hierarchical state associated with
the eigenvalue a = 5 for the gasket at d = 2.

recovering then the known power law

The procedure outlined above for the case 6 &#x3E; 6,r
continues to work in the critical case. For this critical
value of 6, 0 maps the interval [0, 4] exactly into
itself (Fig. 10a), and the first part of the spectrum
obtained at 6 &#x3E; 4 disappears. Only the Cantor

spectrum C,,=4 remains, becoming a dense set in the
interval [0, 4]. In fact [23], every real number « E [0, 4]
can be written as (A = 2) :

where ai = ± 1.
In the limiting case 6 = 6,, all the gaps in the

spectrum support [0, 4] become filled up and the

resulting measure is absolutely continuous. The

sequence f Rn } defined by equation 4.19 becomes
(A = 2) :

The family of polynomials { Pn } reduces to that of
Tcheybychev polynomials { Tn } obeying the recur-
sion relation

with

Fig. 10. - a) The graph of the map 0(a) = 4 a - rx2
at d = 1. b) The integrated density of states N(a) as function
of a, for the same value of d

When the variable x in the argument of T.’s is iden-
tified with the reduced variable x = (2 - a)/2, one
obtains for even modes ( Uo = 1, U -n = Un) the

following solution

Using the well-known relation, ?’n(cos 0) = cos nO,
we recover :

which is nothing else than the known Bloch wave,
appropriate for the translation symmetry of the linear
chain. In addition it is easy the verify the scaling
property

exhibiting the dilation symmetry of the chain.
The limiting case of the linear chain shows therefore

the connection between two different symmetries :
dilation and translation which coexist together in
this case. It is interesting to remark the occurrence
of a chaotic behaviour associated with the map
4&#x3E;(0152) = 4 a - 01522, but without any effect on standard
physical properties such as the spectrum of the chain.



202

To summarize, the spectrum of the Sierpinski
gasket is very sensitive to the relative value of the
« control parameter)), 6. For 6 &#x3E; 4 (i.e. d &#x3E; 1) the
spectral measure is the superposition of two distinct
parts, given by two pure point spectral measures of
relative weights d/(d + 1) and 1/(d + 1) respectively.
At 6 = 5c, the spectral measure degenerate into an
absolutely continuous one, supported by a band
spectrum [0, 4].

Evidently the model loses its meaning at d  1,
but in this sector 0  6  4 the function 0(a), when
restricted to the domain [0, 6], maps this interval
into itself Phenomena like double-Period bifurca-

tion, occurrence of chaos bands, etc., are known to
occur precisely in this sector. The limiting value
6 = 6c can then be viewed as a critical point for the
one parameter family of maps 0,,(ot). The qualitative
change at 6 = ðc is closely related to the topological
features of the Julia set, associated with this map,
as a function of the parameter 6.

5. Influence of the boundary conditions. Comparaison
with other works.

In the preceding section, we have used an iteration
scheme, mainly based on the validity of equation 2.8.
Such an assumption is only correct on an infinite
gasket, or for periodic boundary conditions (Ref 15).
In this section, we shall investigate the influence of
the boundary conditions on the spectrum of the

gasket. We also compare our results with those
obtained by other authors.

5.1 FINITE GASKETS.
5.1.1 Free boundary conditions. - It is sufficient to
consider the case d = 2. Let consider the Sierpinski
gasket of order n, obtained as explained in section 2.
Using the decimation scheme outlined in section 2,
we reduce the search of the spectrum to that at stage
n = 0 (simple triangle). However, the free boundary
conditions introduce a further complication, because
the three external sites are not equivalent to internal
sites and equation 2.8 breaks down for these sites.
Two parameters are involved in the decimation

procedure : a = mco2/ K for internal sites and
a’ = m’ co2IK for three external sites. The iteration

equations are written :

with the starting point

The Nn eigenfrequencies are then given by
. 

a’ ?1 = 0 (simple) 
(5. 3)

an = 3 (doubly degenerate)

with the exclusion rule an _ 1 = 5 and (Xn-l =1= 2.

Equation 5. 3 can also be written as follows :

and

At low frequencies (ao  5-"-1), equation 5.1 yields

showing clearly the influence of the free boundary’
conditions. In terms of masses, equation S . 5 can be
written as

Using equation 5.4, we have calculated the spectral
density for n = 0, 1 and 2 (see Fig. 11) : almost all
eigenfrequencies are degenerate.
The nature of the associated eigenmodes depends

on the relative position of ce s with respect to the
Julia set (see section 4). For instance, if ai does not

belong to the Julia set for every I  n, then for n &#x3E; 1,
I (Xi I becomes bigger and bigger and ai -&#x3E; oo. For
such eigenvalues, the gasket breaks into smaller

triangles, and the eigenstates are localized on these
triangles, decaying exponentially outside. This part
of the spectrum is expected to evolve and then « con-
verges » towards the first part found in section 4.

For eigenfrequencies a, such that there exists

an (k  n) belonging to the Julia set, the amplitudes

Fig. 1 l. - Spectral density p(co/Mo) for the finite gaskets
(with free boundary conditions) as function of the reduced
frequency w/wo’ a) n = 0, b) n = 1, c) n = 2.
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of the eigenmodes become localized inside triangles
of side 1* ranging from the lowest to the highest
length scale 2k a  l *  2n a. These values of a are
expected to generate the Cantor spectrum obtained
in section 4, which appears only at n = oo.
5.1. 2 Periodic boundary conditions. - This type of
boundary conditions (Ref. 15) is more appropriate
to describe the asymptotic approach (n = oo), because
equation 28 is preserved everywhere. The idea is to
use a « replicated » gasket obtained by the juxtapo-
sition of two identical n stage gaskets at their corres-
ponding external sites. A direct calculation of the

spectrum for d = 2 is outlined in reference 15, and
the main conclusions fully agree with ours.
5.2 COMPARISON WITH OTHER WORKS. - The dis-
tribution of modes in vibrating fractal system was
recently considered from another viewpoint by Berry
[24]. He considered a region R of d-dimensional space
with boundary OR which is d’-dimensional (d’ = d -1
for Euclidean space), and the eigenvalue (resonator
problem)

where 4/,, is an eigenfunction associated with the

eigenvalue kn. If Md (resp. Md,) is the measure of R
(resp. aR) then it is known [25, 26] that the asymp-
totic mode number N(k), defined as the number of
modes with kn  k (at k -&#x3E; 0), is given by the Weyl-
Kac formula

Berry has conjectured that equation 5.9 remains
valid when R and/or OR are fractals provided d and d’
are interpreted as fractal dimensions and Md and Md,
are the fractal measures of R and aR. The above
formula was justified on scaling ground arguments
and a « smoothing » procedure. However, as pointed
out by Berry, V2 cannot be expressed in d-dimensional
coordinates. By using a discrete approximation of P2
on a grid, sampling R on the scale A = 2 n/k of the
wave length, we recover a set of finite difference

equations like equation 2.5. The above study shows
the occurrence of a new number in the expression
of N(W2) instead of d as claimed by Berry. The diffi-
culties with equation 5.9 lie at the following level.
Formally one can define some local geometry on the
fractal, in which the Laplacian has its usual form,
i.e. equivalent to a local k2-expansion. However, the
mode counting in reciprocal space is described by
the spectral dimensionality which is relevant for
a standard Laplacian expansion. d determines a

natural expansion of a gradient expansion to fractals.
An alternative of expanding in Euclidean gradients
leads to an expansion in k2iÏ/d instead of in k2, and

then a reciprocal space of dimensionality d. For these
reasons, equation 5.9 is doubtful when used for
fractal structures.

6. Conclusion.

We believe that the results obtained in this paper are

general and that similar features will be found to
occur on other fractal structures. The map a -&#x3E; cp«(X)
is expected to be a general rational function. It will
also be quite useful to study other fractal structures
as simple as the gasket where would not be restricted
to values smaller than 2. The family of the d-dimen-
sional Sierpinski gaskets is a typical example, where
by increasing the « controls parameter 6 = d + 3, a
qualitative change in the spectrum is observed. At
d = 1, we have an absolutely continuous spectral
measure, whereas for d &#x3E; 1 the geometry of the

gaskets, though regular, is able by itself to localize
an important fraction of states, in the absence of any
disorder. Such behaviour is to be compared with
that of standard Euclidean lattices. A similar situa-
tion occurs in other regular systems like the spectrum
of the almost-Mathieu equation [1]. It would be

interesting to find in this case, scaling properties of
the spectrum, if they exist at the critical point. It will
also be useful to describe the nature of the eigenmodes
at this point : extended chaotic [21] states or hierar-
chical states ? Finally, a spectrum qualitatively simi-
lar to that of the gaskets was recently observed in
the quantum percolation problem [27]. This obser-
vation is consistent with the fractal structure of the
percolation clusters.
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Appendix I.

Recursion equation a’ = 0(ot) in the general d-dimen-
sion case. - The generalization of equation 2. 7 to
arbitrary d is not difficult. We give the main steps for
the derivation of the recursion relation a‘ = 0(m) in
this appendix. Without loss of generality we will
assume d is even. Let consider a site common to two

hypertetrahedrons, like Xo in figure 12. On each of
these two hypertetrahedrons, there are (d + 1) sites
of type X o : Xo and X 1, X Z, ..., X d (resp. Zo = Xo
and Z,, Z2, ..., Za). At the mid points of the edges
(Xo, Xi) the corresponding d(d + 1)/2 sites are denot-
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Fig. 12. - Neighbouring sites of an original site Xo on a
d-dimensional Sierpinski gasket

ed by ui (resp. vi). Site Xo is then connected to d sites
of type u and each site ui is connected to d neigh-
bouring sites : 2 of type X and (2 d - 2) of type u.
Finally, the total number of springs between u’s is :
(d - 1) (d + 1) d/2. The equation of motion at Xo

is written as

For sites {Ui}’ we write similarly, with obvious
notations

and

In equation A. 3, X and X’ 
I denote the two neigh-

bouring sites of type X. Let us define

(similar definitions for V and V’), and add equations
A . 2 together :

When equations A. 2, A. 3 are added, one obtains

The expressions of U and U’ can be extracted from
equations A. 5a, A . 5b. For instance :

Analogous expressions can be written for V and V’. When (A. 6) is replaced in (A .1), one obtains

The last equation is of the same form as (A .1), except the parameter a which is renormalized as

leading to

Equation A. 8 shows that 0(oc) is a rational fraction.
The reduction of this fraction into a simple polyno-
mial function (A. 9) comes from various symmetry

properties of the gasket. The same calculations can
be performed for anisotropic gasket (with three

parameters ai, a2 and a3 for instance at d = 2),
where some symmetry properties are lost. In this

case, the renormalized parameters 4&#x3E;i({ aJ }) become
rational fractions, because I aj I occurs linearly in
the equations of motion. Therefore, the most general
form expected for 4&#x3E;( (X) is a rational fraction.
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Appendix 2.

Labelling procedure [11]. - Starting from the lowest
left corner of the gasket, a natural coding of sites is
easily obtained with the following rules (we shall
illustrate this coding at d = 2). Each up triangle
(plaquette) is labelled on the gasket at stage n by a
word of n elements (xl x2 x3 ... xn) where xi = 0, 1
or 2 (1  i  n) are recursively defined from stage n
to stage n + 1 (Fig. 13). Every plaquette has three
neighbouring ones, which labels are trivially found
using the above coding. In this way, the sites of the
gasket (beside external sites) are labelled with the
two plaquette labels sharing the considered site. This
one-to-one correspondence between plaquettes and
words of n elements is the basic code of the gasket.

i) Two plaquettes p, and p2 are adjacent if and

only if coded as follows :

where xi, y and z are elements of J = { 0, 1, 2 } and
Xk 96 y, z.
The common site to p, and P2 will be coded by

the following n-word :

where u is neither y nor z in JD

Fig. 13. - The Sierpinski gasket (d = 2) at successive

stages : n = 0, 1 and 2. Stage n + 1 is obtained by the jux-
taposition of three n-stage structures. For n = 1 and n = 2,
we have shown the labelling of plaquettes (up triangles)
used in the sites coding.

Inversely, a site coded by :

is the common site to the following two plaquettes :

and

where {u,v,w} = T.
ii) Rules for neighbouring sites : let xo XI ... xk

u 33 ... 3, a given site on the gasket. In order to find
the four nearest neighbouring sites (n.n), two cases
are to be considered.

a) 1= 0 (k = n -1) : the two first n. n sites are

given by

and

where { u, v, w } = T. The two others n.n are :

and

where j « k) denotes the first integer (from the right)
such that xj 0 u and {Xj+ l’ y, z} = T.

b) 1 # 0 : no n.n site has « 3 » in its code, and the
considered site is coded as follows :

The corresponding neighbouring sites are given by :

and

where { u, v, w } = -T.
It is clear that the above coding is easily extended

to dimensions d = 3, 4, ... The set (T becomes

T = { 0, 1, 2, ..., d + I }, and the corresponding label-
ling procedure follows the same scheme illustrated
above.
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