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Localized states in disordered systems 
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Abstract. The Anderson problem of the localization of electrons in disordered systems 
is discussed by analysing the residues of the off diagonal propagator. On the assumption 
that the eigenvalues are statistically independent, Anderson's upper limit is reproduced, 
while improved conditions are obtained by assuming specific correlations amongst 
the levels. The form of the wavefunctions and analytical structure of the selfenergy are 
also discussed. Several types of disorder are analysed and mobility edges are shown to 
exist in some cases. 

1. Introduction 
The problem of localization in certain random lattices has recently been the subject 

of some controversy. Anderson (1958, 1970) introduced a simple model of cellular disorder 
in which he deduced that under certain conditions, the imaginary part of the selfenergy 
must be zero except on a discrete set of points. He therefore concluded that the wave- 
functions for his model decay exponentially on the average away from the centre of localiza- 
tion. This work has been reviewed by Ziman (1969) and Thouless (1970). Halperin (1968) 
has shown that if the variance of the wavefunction is finite, then the residual conductivity 
is zero, whilst Mott (1967) has suggested that there exists a certain critical energy E ,  
separating localized and delocalized states. In this work the following aspects of the subject 
are discussed: (i) the existence of the localized regime; (ii) the properties of the wavefunction 
and selfenergy before and after the transition; (iii) the determination of the transition 
points E,. 

Our analysis of the Anderson model ( 5  2) differs from previous discussions by concentrat- 
ing on the off diagonal propagator, whose residue Rij(8,) at the pole with energy 8, repre- 
sents a probability amplitude of a transition from site i to site j .  This residue is effectively 
an order parameter for the phase transition from localized to delocalized states, and con- 
sequently it seems the natural object to study. R ,  has several advantages over the selfenergy 
of the diagonal Green function in that, for example, it is always bounded by unity, and has 
a direct interpretation in terms of the localized nature of the eigenfunctions. If states are 
localized, then the residue tends to zero exponentially as the distance between sites tends 
to infinity. 

It is shown that Rij  can be written as a sum of products of the form 

where @") is the renormalized local energy and I/ the hopping potential. In the localized 
phase, the renormalized levels are shown to be approximately distributed with the density 
of eigenstates, and the upper limit of Anderson is reproduced under the assumption that 
the eigenvalues are independently distributed. However, this assumption leads to a long 
tail on the distribution of the residue which violates the condition that it is bounded by 
unity. To lessen the importance of the long tail, the distribution of In is first approxi- 
mated by a Gaussian and then by a Gaussian with a cut off. These distributions lead to 
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new estimates of the critical values of the parameter governing the transition, and are 
compared with a lower limit based on percolation theory. In 53, the variance of the wave- 
function for a linear chain is shown to be infinite in the delocalized region and finite other- 
wise. 

The form of the selfenergy before and after the transition has led to some confusion, 
and in $ 4  we show that on the delocalized side, its imaginary part is not zero everywhere, 
whereas on the localized side it is zero except at a discrete set of points. This is in agreement 
with Anderson (1970). The average selfenergy is shown not to possess these pathological 
properties. 

Some simple models with random hopping potentials are investigated in 9 5. For the 
linear chain, a slight disordering of the potentials localizes all the states with the consequent 
absence of a mobility edge, whilst in three dimensions it turns out that a mobility edge 
exists, and is likely to be found in the tail of the level density. Calculations based on a simple 
model suggest that it occurs when the density of states falls to 1/10 or 1/20 of the value at 
the band edge of the ordered crystal. 

2. The Anderson model 
The model introduced by Anderson (1958) consists of atoms situated at lattice sites 

interacting through nearest neighbours with a constant potential V. The disorder is intro- 
duced by stipulating that the energy levels associated with the sites are independent 
stochastic variables uniformly distributed over a range W. 

Initially, we consider the one dimensional case, when the Hamiltonian is 

Hnm = End,, + Vdn, m r 1’ (2.1) 
The energy levels are given by the eigenvalues, say SiN) . . .&y) of equation (2.1), which are 
nondegenerate and all lie inside an interval of width W + 4V (Varga 1962, p 16). The 
Green matrix associated with equation (2.1) is simply the matrix inverse of ( z l  - H), 
where z is a complex energy value. The corner element in a ‘site label’ representation (or 
the off diagonal Green function) is given by 

{cofactor ( z l  - H ) } l N  ( -  V ) N - ’  
(2.2) - - 

det ( z l  - H )  DN 
G I N  = 

where D N  is the determinant of ( z l  - H ) .  

SiN) in G I N  i s  

- 
Let us choose a particular energy eigenvalue, say Then the residue of the pole at 

( -  vy-1 
n (8:” - & ( N I )  k 

‘1N(‘LN)) = N (2.3) 

k +  a 

By definition, this residue is also given by 

(Olal l~)  (+N+ 10) 

where 10) refers to the electron vacuum and /U) denotes an eigenstate. This residue is 
simply the product of the amplitudes of the wavefunction belonging to the state SLN) at 
the first and last sites; it also represents the probability amplitude for a particle in the 
eigenstate with energy to tunnel through the chain (cf Appendix). If the state is localized 
then we expect R,, to decrease in an exponential manner as N increases. 

We now assume that the energy eigenvalues SiN) are distributed with the density of 
states n(E), which for W b 2Vis approximately rectangular (Brouers 1970, private com- 
munication). 

W W 
-<E<---. 
2 2 (2.4) 
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We now express the residue IRlN(&iN))I as exp ( S N -  ’) where 

and assuming for the moment that the eigenvalues are independent of each other, we obtain 
for the probability density of lRINl 

f o r ( 2 1 / / ~ ) ~ - ’  < l ~ l N l  < CO. 

The probability that \R1N(o)l < ( 1 / ~ ) ~ - ’ ,  for y > 1, is given by 

N - 2  { (N - 1) In ay  
k = O  k !  t - exp{-(N - 1) lna)  1 (2.7) 

where a = W/2Vy. Provided a > e, the series in equation (2.7) increases monotonically 
and is therefore bounded by 

const x ( N  - 1)1/2 x (2.8) 

Hence equation (2.8) is exponentially small when 
e In a 
- < 1. 

a 
(2.9) 

I fa  < e, the method ofsteepest descents demonstrates that equation (2.7) tends exponentially 
to zero. Hence the residue RI, almost certainly tends to zero exponentially with the state 
localized. orovided 

W - 
2 v  > e. (2.10) 

This is the result that would be obtained by Anderson’s method in one dimension. 
The important feature of the distribution of the residue in equation (2.6) is its long tail. 

As Anderson and Thouless have emphasized in connection with the diagonal Green 
function, this means that the central limit theorem cannot be applied to the sum in In IRINI. 
However, since the residue is bounded by unity, this long tail is spurious and a proper 
treatment of the correlations between the eigenvalues must remove it. To lessen the effect 
of the tail, the distribution of In lRINl is approximated by a Gaussian, and consequently 

SN- l  =lnlRINl  = ( N -  l ) { l n V - { l n \ & ~ N ’ - B ~ n ( & ) d & }  
(2.11) + ( N  - 1)’/2f 

where the fluctuation term f has a Gaussian distribution. The condition for localization 
is now dependent on the negative nature of the mean in equation (2.11), and independent 
of the fluctuation term. At the centre of the band this gives the same condition as in equation 
(2.10). In one dimension, correlations between the eigenvalues do not affect the critical 
value of W/2V but act in a way to cut off the distribution of the residue beyond unity. 

The average in equation (2.11) can be evaluated for states away from the centre of the 
band and might lead to the possibility of mobility edges (Ziman 1969). For example, if 
the average is evaluated for the distribution (2.4) at the ‘band edge’&“,) = W/2, the condition 
for localization becomes 

W 
- > e. 
V 

(2.12) 
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However, it is unlikely that a mobility edge exists in the one dimensional case because the 
distribution (2.4) becomes inaccurate when W is of the order of 2V and thus equation 
(2.12) is not correct. When W = 0, the states are extended and the brace in equation 
(2.1 1) is zero. When W increases, the density of states is broadened and this tends to increase 
the integral in equation (2.1 1) favouring localization. Nevertheless, equation (2.12) indicates 
that it is easier for disorder to localize states lying near the band edge. This conclusion can 
also be reached from the intuitive approach given in the Appendix. 

The same condition for localization can be obtained by investigating the residue Ri, 
between interior sites i and j .  A complicating factor in this case is that equation (2.3) is 
multiplied by two determinants similar to DN but of lower order. Here the off diagonal 
Green function is 

D(l . . .  i - l ) ( - V ) l - - i l D ( j +  1 , . . .  N )  G.. = 
LJ D ( 1 . .  . N )  

(2.13) 

Where D(l . . . i - 1) is the determinant for a chain with local site energies E, . . . EiP1. 
When the determinants are diagonalized equation (2.13) becomes 

k =  1 k ' =  j-r 1 
G..  = ~ (2.14) N I-I ( z  - @)) 

k" = 1 

When states are localized there is strong correlation between the energies St) and 8r) and 
the separation between the nearest levels tends exponentially to zero as i 4 N .  This is 
because, in the localized phase the perturbation caused by increasing the size of the system, 
has an exponentially small shifting effect on the initial spectrum. Thus the residue of the 
pole of equation (2.14) is a product like that in equation (2.3) but multiplied by a term 

(2.15) 

which is of the order of unity, when the states are localized. 
We now consider the three dimensional lattice case. Feenberg (1948) has shown that 

the perturbation expansions for the residue of a pole at €7 of the off diagonal Green 
matrix G, can be partially summed into a finite series of terms containing renormalized 
energy denominators. Thus if K is the connective constant for the lattice of M dtoms 
(Anderson 1958), then 

(2.16) 

The summation is over distinguishable nonrepeating paths connecting sites i and j .  The 
renormalized levels are aiN), also discussed by Anderson, which depend not only on 
but on the path on which &LN) lies. 

For the localized phase, we have already seen that increasing the size of the system has 
little effect on the energy levels. This must also be true for the renormalized local levels 
and consequently we approximate these levels by the exact eigenvalues. This replacement is 
consistent with the analytical properties of the Green function and reduces to the exact 
results in the one dimensional case. Because it neglects the dependence of €iN) on 8r), 
we call it the static approximation. Effectively Anderson and Thouless make the same 
assumption for the case W $ 2V. 

The renormalized local levels aiN) are not statistically independent and two distinct 
types of correlation are distinguished: (i) correlation between sets of levels belonging to 
distinct paths, (ii) correlation between levels on the same path. 
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When the first type of correlation is neglected, it follows from the fact that the residue 
R, is bounded by unity, that the variance of each product in equation (2.16) must be finite. 
Correlation of the second type must therefore be active in eliminating tails in the distribu- 
tion of the products in equation (2.16). When this is also neglected, Anderson's upper 
estimate of the critical value of W/2V is obtained. Lower estimates are then derived by 
including correlation of the second type, using the Gaussian assumption already discussed 
for the one dimensional case, and also by introducing a cut off at K - N  for the distribution 
of the product. However, correlation of the first type and corrections to the static approxima- 
tion can allow the values of the products in equation (2.16) to exceed K-,. The static 
approximation is expected to be good in the localized region, and in this case contributions 
from the tail of the distribution of the product would be removed by cancellation in the 
summation in equation (2.16). It is argued that even in this case an upper bound for the 
cut off off would be of order J N ,  and consequently the Gaussian distribution for f should 
lead to an upper estimate for the value of the residue. A lower estimate for the critical 
value of W/2V is obtained by choosing the path which gives the maximum contribution 
to equation (2.16). This path is defined by a chain of neighbouring sites having renormalized 
local levels lying closest to the energy eigenvalues 8r). It is encouraging to note that these 
estimates obtained by including correlations are not widely different. 

2.1. Neglect of all types of correlation 

This has the form, if 
In this case the distribution of each product in equation (2.16) is given by equation (2.6). 

= X 

(2.17) 

for x > (2V/W)N, where L(x) is a slowly varying function at x = a. The distribution of a 
sum of KN independent variables each with a distribution of this form is asymptotically 

L(x) P(X  < x) = 1 - - 
X 

K ~ L ( X )  
1---- 

x 

(Feller 1966, p. 271), since the distribution of the sum is dominated by the largest term. 
The probability that this sum is greater than (l/yyV is less than 

(2.18) 

provided W/2Vy > e. The condition that equation (2.18) tends to zero for all y > 1, is 

W W 
- > eK ln-. 
2 v  2 v  (2.19) 

This condition is the same as Anderson's upper limit. 

2.2. Partial account of type-two correlations 
The form of the product in equation (2.16) is the same in three as in one dimension. We 

know that in the latter case, correlations between levels must act to reduce the long tail 
of the distribution of the product so that its variance is finite. 

We propose to estimate this variance by approximating the distribution of S ,  by equation 
(2.11). Let us suppose the mean and variance of S ,  are N m  and N o 2  respectively. Then the 
sum of exp (S,) over independent distinct paths in equation (2.16) is dominated by 

The mean ( X ) ,  and variance, var X, of X are, respectively, just 

{ K  exp (m c 0'/2))~ and { K  exp (2m + 2 ~ 7 ~ ) ) ~ .  

(2.20) 
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Now Chebycheffs inequality (Feller 1966) implies that 

for all values oft > 0. 
Hence provided var X < ( X ) 2 ,  that is 

In K > G’ (2.21) 

(2.22) 

X is dominated by its mean value which tends to zero exponentially when 
o2 
2 

m + - + 1nK < 0. 

Consequently the residue tends to zero exponentially when equations (2.21) and (2.22) are 
~I 

satisfied. For the density of states given in equation (2.4), at the centre of’the band m = 
ln(W/2V) - 1 , ~ ’  = 1. 

Hence for K > e, the condition for localization is 

W 
- > e3I2K, 
2 v  

(2.23) 

This is considerably weaker than Anderson’s upper limit and best estimate. 

2.3. Alternative treatment of type-two correlations 

fluctuation term f so that 
A second approach to the distribution of S, given by equation (2.11) is to cut off the 

exp(S,) < K-,. 

This simply means that fluctuations can never delocalize the states, and the condition 
for localization at the centre of the band is given by equation (2.22) with G~ = 0 

W 
- > Ke.  
2v 

(2.24) 

This estimate was also derived by Ziman using a rather different approach. Equation 
(2.24) can also be obtained directly from the distribution in equation (2.6) by introducing 
a cut off at K-,. Hence when correlations of type two are fully accounted for by forcing 
the residue to be less than unity, the condition for localization (2.24) does not depend on 
the central limit theorem. 

2.4. A lower limit to the critical value of W/2V 
To derive a lower limit to the localization region, we select out of equation (2.16) the 

path which gives the maximum contribution. This occurs when the energy denominators 
are as small as possible. If the renormalized local levels have the distribution given in 
equation (2.4), then for lying at the centre of the band, the probability density for the 
renormalized energy level 6 of a nearest neighbour site having 6 closest to the eigenvalue 
(with the exception of the previous member of the path) is 

f (6)  = -( ( z  - 1) 1 - :J2 
a 

(2.25) 

where a is W Z and z is the coordination number. The average value of S, in equation (2.1 1) 
is then 

+ . ..]I. (2.26) 
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The fluctuations for this expression can be neglected because they are of the order ,/N. 
Consequently the electron will be unable to tunnel if, for z = 6 

(2.27) 

This represents a lower limit because the electron may be propagated through a large 
number of paths whereas we have only considered one. However, when the spread of 
local levels becomes large, the wavefunctions will concentrate along paths of this type and 
hence correlations may force the condition for localization close to (2.27). This estimate is 
similar to one devised by Thouless (1970, equation (19)). 

The expression (2.26) gives the maximum value of S ,  and consequently it can be used 
to obtain an upper estimate for the cut off on the distribution for f. By comparing equation 
(2.26) with equation (2.11) it can easily be shown that f < CI , /N,  where a is of order one. 
Consequently the Gaussian approximation in equation (2.1 1) is expected to give a good 
upper estimate of the condition for localization. 

The conditions for localization have been obtained at the centre of the band. However, 
away from the centre, the relevant integrals can still be evaluated and the condition for 
localization becomes energy dependent, thus leading to the concept of a mobility edge 
(cf Ziman 1969). 

3. Wavefunctions for the linear chain 

and satisfy 

The determinant of the p x p matrix whose elements are 

We have seen in 42 that the eigenvalues of the N atom chain are denoted by x\”. . . x!,”). . . 

DN = 0. (3.1) 

(3.2) (x - Ek) d k ,  I - V 4, I i 1 
is denoted by D, and satisfies the recurrence relation 

D, - (X - E,) D p - l  + V2D,-2 = 0 (3.3) 
with initial conditions Do = 1, D, = (x - El). For convenience, in this and the following 
section we choose a unit of energy such that V = 1. Then equation (3.3) reduces to the 
definition of the unnormalized eigenvectors with x = x!?). It is possible to deduce informa- 
tion about the asymptotic behaviour of D,(x) in two cases. The first case corresponds to the 
situation where the amplitudes D, and the local levels vary slowly with n, and occurs when 
there is intensive correlation between the levels. The second case corresponds to the 
Anderson model, where E, are independently distributed. 

In the first case, the WKB method demonstrates that D,(x), and hence the wavefunction, 
oscillate sinusoidally with slowly varying amplitude for values of n satisfying 
I(E, - x)/2VI < 1. Otherwise D,(x) behaves like an exponential function of n (Dingle and 
Morgan 1967). A disordered system in which the local levels were correlated in this manner 
would then behave like a sequence of metal-insulator junctions and the variance of the 
wavefunction could be infinite. We expect that similar behaviour may occur on the de- 
localized side of the transition, where the density of states must adjust itself to the local 
levels so that the term in the exponent of R, is never positive, otherwise R, would not 
be bounded by unity. Consequently over a large number of sites R, will change slowly and 
each wavefunction amplitude must then be of order l/q‘N. It is this readjustment of the 
density of states to the local levels which makes it so difficult to discuss the transition 
region in detail. 

In the second extreme case, the local levels are independent of each other. The amplitudes 
have the form N 
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where XI") are the eigenvalues of the n level system. From the analysis of the off diagonal 
propagator in $2 it follows that if the condition for localization (2.22) is satisfied, D, tends 
to increase exponentially. It is convenient to consider the probability density fJx) of the 
quotient w, = D,/D,-, for values of energy in the centre of the band. Then if W/2 > 1 0 1 ,  
v = 1  

w 2 - w  

W (3.4) 

This equation can be approximately solved, for W/2 % /mi,  by integrating the left hand 
side from -{(W/2) + U}- '  to {(W/2) - U } - ' .  The solution is then 

and when 1 0 1  % W/2, f, can be shown to decrease like 1/Ww2. 
From this, two important conclusions can be drawn. Firstly, f , (w)  quickly becomes 

independent of n, and secondly the probability that /wI < 1 is quite small (E 2/W); con- 
sequently ID,(O)I is likely to be greater than lD,-l(0)l. If we start to solve the recurrence 
relation (3.3) from the other end of the chain, we are likely to find that the solution also 
increases from that end. It is therefore necessary to explain how D,(xkN)) can turn over at 
some point in the chain and then decrease (on average) until the end of the chain, where 
D,(xiN)) = 0. We have shown in $2 that the residue of a pole in G , ,  almost certainly 
decreases in an exponential manner. This is only true if the shift of the roots caused by 
increasing N is small. To calculate the shift, we assume that D k ( X )  is given by 

Dk(X) = Dh(Xk) (x - x k )  (3.6) 
for x in the neighbourhood of a root x k  of D k ( X ) .  

From the recurrence relation (3.3) we deduce that 

Now if IDh(xk)/ increases at a rate y so that 

IDb(Xk)I 'v exp (yk) ID;(xl)I (3.8) 
then I++ - x k l  decreases at a rate 2y so that 

l x k + l  - xkl exp(-2yk)/x2 - x11. (3.9) 
Consequently we expect that Dn(xkN)) increases on average until a local level Emo is introduced, 
which produces a root of D, lying close to xk,) such that equation (3.6) is valid. Then for 
m > m, 

I Dm(xt") I E I DL(xm) I I (xv (,) - xv ('+I)) + . . . (x,+1 - x,)I 
4 exp (my) [exp ( -  2Ny) + exp { - 2(N - 1) y} + . . . exp ( -  2my)l I D;(x,)l 

e exp (-m7)lDf(x1)1. (3.10) 

Hence, although ID,(x)I continues to increase, ID,(x!,!'))/ decreases on average for m > m,. 
This explains the turnover and shows that the centre of the localized wavefunction is likely 
to be at the position of the local level which lies closest to the eigenvalue. 

However, the behaviour of /Dn(xN)I is not smooth, as there will be fluctuations about the 
exponential. The presence of a second level x, close to x, means that I Dm(xN)I IDm- 2(xN)I 
and Ix, - X , - ~ I  N . I x , - ~  - x , - ~ I .  Nevertheless, the variance of these wavefunctions is 
almost certainly finite, even though their centres are independent random variables, and 
hence the static conductivity is almost certainly zero (Halperin 1968). 
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4. The selfenergy for a linear chain 
Considerable confusion has been caused by the strange analytical behaviour of the 

selfenergy associated with the Green matrix (Anderson 1970). We now consider in detail 
the analytical properties of the selfenergy in the different regions and also the effect of 
averaging the selfenergy or Green matrix. For convenience we choose V = 1, although 
the analysis is also applicable to the case of variable V,  provided each V is of definite sign. 
The diagonal elements of the Green matrix are given by 

{cofactor ( z l  - 
det ( z l  - H )  

which can be expanded into the form 

{z  - Ei - (C, + X2)}-1*  (4.1) 
We denote the determinant of ( z l  - H )  for a system with i atoms whose local levels are 
E,,  . . , El by D(l . . . i). Then 

D ( 1 . .  . i - 2) 
D(1 . .  . i - 1) 

D(i + 2,.  . . N )  
D(i + 1, .  . . N)‘  

E, = 

c, = (4.3) 

The selfenergy is just E, + C,. Since the levels are independent, we may consider without 
loss of generality only the quantity Cz, for the case i = 0. We can then denote D(l . . . N )  
by D, and D(2. .  . N )  by Q,. The zeros of D, and QN correspond to the eigenvalues of the 
( N  - 1) and ( N  - 2)  level systems respectively, and consequently the selfenergy has poles 
at the eigenvalues of the ( N  - 1) level system and zeros at the eigenvalues of the ( N  - 2) 
level system. It is evident that the selfenergy of Goo is simply G,, and can be written in the 
form 

where 6, is the eigenvalue of the ( N  - 1) level system, and la) denotes the corresponding 
eigenstate. 11) is the Wannier state U: IO). If the eigenstates are localized, the residues at 
the poles of Zoo form an exponentially decreasing series with the sum rule Ea( 1 la) (a1 1) = 1. 
This sum rule can be satisfied to any required degree of accuracy by a finite number of 
residues, so that the selfenergy has a discrete pole structure, and in the limit as the length 
of the chain tends to infinity, the imaginary part of the selfenergy is zero, except at a discrete 
set of points. We now consider this situation in more detail. 

It is clear that D, and Q ,  satisfy the recurrence relation 

D, = (X - EN) DN-1 - DN-2 . (4.4) 

with initial conditions 

Do = 1 D ,  = (x - E, )  
Qo = 0 Q1 = 1. 

(4.5) 

Consequently D, and Qn+l are orthogonal polynomials of the first and second kind, of 
degree n in x, since there exists a weight function ~(x) such that 

D,(x) D,(x) d(x) dx = d,,,,,. (4.6) s 
If we denote the zeros of DN(x), which give the energy values, by xtN), then, as we have already 
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seen in $3, the normalized amplitude of the wavefunction on site k is just 
Dk - 1 (xkN’) 

{ $ D;- l ( x l ‘ l j  l’” 

(4.7) 

A considerable number of properties of these orthogonal polynomials are known (cf 
Szego 1939, Shohat and Tamarkin 1943, Akhiezer 1965). For example: (i) the zeros of D ,  
and Q, are all real and simple; (ii) any two zeros of D, are separated by a zero of D,-  and 
vice versa; (iii) any two zeros of Q, are separated by a zero of D, and vice versa; (iv) the 
Darboux-Christoffel formula tells us that 

n -  1 

0 
1 D;(x) = D,-  1 ( ~ )  D ~ ( x )  - D,(x)  DL - I ( x )  

(v) the Liouville equation gives 

Dn - 1(x) Q n ( X )  - Dn(X) Q n -  1(x) = 1. 
From these properties it is clear-that Zz(x) is a function with N poles at x:”’ (that is, the 
eigenvalues of the system which has one atom less) and N - 1 zeros at xiN-’’ .  We know 
from property (iii) that these points are all distinct but become closer as the size of the 
system increases, and it is remarkable that any perturbation series for C,(x) can converge 
at all ! 

We now make a partial fraction expansion of C,(x): 

where the residue has the form 

From properties (iv) and (v), this is simply 

(4.10) 

which is simply related to the normalization constant for the wavefunctions in equation 
(4.7), and its value indicates the nature of the states. The residue obeys the sum rule 

(4.1 1) 

To see this, we note that the selfenergy Z,(x) is the Nth approximant to a continued fraction 
(Wall 1965): 

(4.12) 
1 

x - E N -  
1 

x - EN-1 - 
1 

. . .  1 
x - E1 

Clearly the fraction (4.12) can be expanded in an asymptotic series 

(4.13) 
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where pk are constants, and p, = 1; comparing equation (4.13) with the expansion (4.9), 
we deduce that 

(x$N’)k R N ( X : ” )  =pk. (4.14) 
N 

v =  1 

Putting k = 0 in equation (4.14) we obtain equation (4.11). 

difference relations (4.5) imply that in this case 
As an example let us consider a periodic system where all the E, are equal to E,. The 

sinh (N In Z) 
sinh { ( N  + 1) In Z }  

q x )  = 

where 

(4.15) 

(4.16) 

D,(x) is equal to zero only when l(x - E,)/2( < 1. If we write (x - E,)/2 = cos& it is 
clear that D,(x) and Qn(x)  are closely related to the Chebycheff polynomials of the first and 
second kinds (Szego 1939). If x lies in the band 

sin NQ 
‘2(X) = sin(N + 1)O‘ 

(4.17) 

Clearly no perturbation series for equation (4.17) can converge when N tends to infinity. 
For x outside the band C, converges to 

sign (x - E,) 
((x - E,)/2I + [((x - E,)/2}, - 

(4.18) 

and we can expand this quantity in an asymptotic series like (4.13). It can be shown that 
this series is the same as that obtained by expanding the integral 

(1 - u2)’l2 du ’s 71 - 1  {(x - E,)/2 - U} 
(4.19) 

and that the above representation is unique. 
The interpretation of equation (4.17) is that the separation of the poles of the partial 

fraction (4.9) is 0(1/N). The residue, from the term of (4.10), is O(1,”). Hence the expression 
(4.9) converges to the Riemann integral (4.19) which is analytical everywhere when x is 
not in the band. For x in the band, however, the expression (4.19) defines a function with 
a cut along the real axis. The discontinuity across this cut is the imaginary part of (l/7r)Z2(x), 
which, by an inversion formula (Wall 1965), is just 

2 { 1 -  (x ~ ; EO)2]1’Z 

5 (I x - U  

71 

This is the imaginary part of the selfenergy, which is connected with the decay time of the 
time dependent propagator. Its existence here is due to the fact that the Wannier site 
representation which we have been using does not diagonalize the Hamiltonian. 

In general the expression (4.9) can be written in the form of an integral: 

(4.20) a’(u)du &(x) = -. 

Here a and b are the extremes of the band, and 
N 

a’(u) = lim 1 6(u - X $ ” ) R ~ ( X : ~ ) )  (4.21) 
N - m  v = l  
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where g(u) is the weight or distribution function. Equation (4.14) now reduces to 

Uko‘(U)dU = /.& (4.22) 

The determination of the function .(U) from the moments pk is known as the moment 
problem for a finite interval. The conclusions of studies of this problem (Akhiezer 1965, 
Shohat and Tamarkin 1943) assure us that if the potentials V ,  are of definite sign such that 
E? l/j V,l is divergent, then the moment problem has an essentially unique solution. The 
solution oN(u) for a system of size N is nondecreasing, and continuous everywhere except 
at the points xbN), where the discontinuity is 

(4.23) o,(x:”+) - O,(X;~)-) = RN(x:”). 

The generalization of the inversion formula (Akhiezer 1965), for any interval (c, d) is 

lim 11 Im E,(x + ie) dx = o(d) - o(c). (4.24) 

We are now able to consider the selfenergy on both sides of the transition region, 
On the delocalized side, from $3, we expect that EC+mDi(x,) = O(N),  for some value 

of m. Consequently we expect g(u) to be a continuous function in this case except possibly 
at a number of isolated points. The imaginary part of the selfenergy would not then be 
always zero. On the localized side, we expect D,(xLN)) to tend to decrease on average as 
In - V I  increases ($3), so that the residue R,(X;”) tends to behave like an exponentially 
decreasing series in v. The distribution function o’(x) in equation (4.21) does not converge 
in any sense. In any finite interval of the band, the imaginary part of &(x) is concentrated 
on a discrete set of points and is zero in between. (This agrees with the remarks of Anderson 
1970 and Thouless 1970.) 

These properties disappear on averaging. For example, consider the corner element 
of the Green matrix G,,(x + ic). This has the (convergent) continued fraction expansion 
(4.12) with x replaced by x + ie. We assume that the local levels have a Cauchy distribution 

€-+On: c 

x 
P(E) = (4.25) z(E2 + a’) 

and make use of the identity 

f ( E )  P(E) dE = f (  -ia) (4.26) 

provided that f ( E )  = 0(1)  as E -+ CO, and f ( E )  has no poles in lower half plane. We now 
apply the identity (4.26) to f (El )  = Gll(x + ie, E,, E, . . . EN) ,  noting that both the required 
conditions are satisfied (Wall 1965, p 72, proves that G,,(x + ic) has no poles in the lower 
half plane when E, . . . EN lie there) and obtain 

(Gl,(x + 16)) = (C,(x + ie)) 

s -+: 

(1 - U’)”’ du 
(4.27) = s  ((x + ia)/2 - U >  ’ 

The averaged selfenergy or Green function can be seen to possess an imaginary part (cf 
Lloyd 1969). Thus the averaging destroys the discrete pole structure and the imaginary 
part of (E,) cannot be interpreted as an inverse lifetime. Also an essential difficulty with 
the Cauchy distribution seems to be that it is too broad, so that no moments can be defined. 

5. Randomized hopping potentials 
The local levels are now assumed to be equal and the hopping potentials V,  random 
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variables. We need to examine the distribution of the product 

where 8, are the renormalized ‘local’ levels whose distribution we shall take to be given 
by the density of states. In our model, we consider the potentials to be independently 
distributed with a uniform density 

1 - E <  y < 1  + E .  (5 .2)  
In one dimension the residue can be written in the form 

exp {N((ln v - In 181)) + f JN}. 

The fluctuation term f is negligible and for the periodic case, (In V )  and (In 181) = 0. 
As the system is disordered (E  > 0), (In V )  decreases and (In 181) tends to increase. Thus 
we expect all states to be localized in the one dimensional case. It is interesting to consider 
this case in more detail. For the linear chain, the density of states is given by its average 
periodic value for energies not too far from the centre of the band: 

1 
n(E) = 

I 

n(4 - E’)’”’ 
It is clear that a necessary condition for localization is 

Prob (& > 1) e ?. 1 

(5.3) 

(5.4) 

We thus expect conditions for localization to be more favourable at the band edges. At 
the centre of the band, E = 0, and the condition (5.4) is true for E > 0. Since condition (5.4) 
is insufficient to prove localization, we require the probability density of y = V / l x  - 81, 
which for large y is given by 

For E = 1, and E = 0 

It is difficult to evaluate the distribution of l7:= y j ,  by the technique given in 9 2, owing to 
the Fourier inversion. Hence we approximate the distribution of (5.1) by first of all con- 
centrating on the tails of the distribution in (5.6), 

O < y < l  
2 
- 

n 
f ( Y )  = (5.7) I:; y > 1 say 

The probability that y > 1 is just 1/n. Consequently in the sum In y j  we expect 
roughly N / n  values of y j ,  such that y j  > 1 and the remainder having values less than 1. 

G 
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The latter sum has a mean value of 

with fluctuations which are of order J N .  The first part of the sum can be analysed by the 
techniques in $2. The result confirms our expectation that almost all the states in the band 
are localized. It is interesting to note that we can actually find a state which is not localized 
when E # 1. This occurs precisely at E = 0, and the recurrence relation for the eigenvector 
e, becomes 

Kefl + K+len+l = 0 (5.9) 
with initial conditions e, = 1 and e2 = 0. When N is even, E = 0 is an eigenvalue, and the 
corresponding eigenvector is 

TI 

n odd 

0 n even 

n -  I)/’ y1 ( - - I ) (  
(5.10) 

which is certainly not localized. Statistical arguments, however, show that the states around 
E = 0, are almost certainly localized (cf. Borland 1963). 

The same conclusion is also reached when the distribution of In V / l x  - € 1  is approxi- 
mated by a Gaussian. We have already learnt that the fluctuations about the mean of 
In V / l x  - b /  are not important, and the mean is simply 

(1 + ~ ) l n ( l  + E) - (1 - ~ ) l n ( l  - E) - 2~ 
(5.11) 

2E 

This is negative for E > 0 and hence localization is favoured. For E = 0, it is interesting 
to note that the mean actually becomes zero, confirming that the method is valid right up 
to the delocalization point in one dimension. 

In three dimensions, we use the approximate density of states for the periodic crystal 
when E = 0: 

1 
18n 

n(E) = -(36 - E’)”’ (5.12) 

Using this density, the residue at the centre of the band for the periodic case from equation 
(2.16) turns out to diverge like { K  exp ( -0*6)}N. This is inconsistent with the nature of 
the residue in a periodic assembly and may be due either to the density of states (5.12) being 
too crude for the tight binding cubic lattice, or to the static approximation becoming 
unjustified in the delocalized region. It would be interesting to use a more accurate density 
of states to compute the average for the periodic case. 

To approximate the density of states for a disordered system we replace equation (5.12) 
by the density calculated by averaging the periodic density (36V’ - E2)’12/1 87cV2, for 
/ E l  < 6V, over V given in equation (5.2). This has the effect of removing the Van Hove 
singularities and increasing the band width to 12 (1 + E), and it gives a reasonable spectrum 
when E is not too large. For E = it turns out that 

and 

m = -2,12 for E = 9 

whereas o2 = var V/lE - 81 is 1.33 for E = 6, and 0 8  for E = 9. This means that the 
upper limit associated with equations (2.21) and (2.22) is satisfied in the tail only when 
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4.0 < K -= 5-5 .  In particular, if K = 4.5 (the value for a simple cubic lattice) a mobility 
edge lies in the tail. It is interesting that this edge occurs when the density of states has 
decreased by an order of magnitude from the level density at the band edge. As the density 
(5.12) gives a divergence for the residue in the periodic case, it is weighted towards de- 
localization in our approximations and consequently the existence of localized states 
in this calculation is strong evidence for a mobility edge in the tail. 

6. Conclusion 
It has been shown, within the limits of certain approximations, that the correlations 

between renormalized local levels, which have been neglected by previous authors, can 
have a considerable effect on the conditions for localization. Use of the off diagonal 
propagator greatly facilitates the analysis, and has led to new insight into the nature of 
the Anderson transition in disordered systems. For conveniense, our results on cellular 
disorder are given in table 1. 

Table 1. The conditions for localization at the centre of the band 
with cellular disorder; Wj2 V > x, K = 4.5. 

Approximation X 
1. (a) Anderson’s upper limit 

2. Gaussian approximation for the fluctuations 
3. Neglecting the fluctuations 12 
4. Percolation approximation 10 

45 
(b)  Anderson’s best estimate 30 

20 

The Gaussian approximation for f is expected to give an upper estimate for the true 
value of the residue in the localized phase, and under the assumption that correlation 
between paths is not important, the approximation of neglecting fluctuations f gives an 
upper estimate for x consistent with the fact that the residue is bounded by unity. The 
percolation approach indicates that correlations may also reduce the effective connectivity 
constant. It is gratifying to note that the three estimates for x obtained by including correla- 
tion are quite close, and it is probable that the true value of x lies in the range 10-20 for a 
flat density of states. A more realistic density of states function would have a tail tending 
to increase the value of (In 181) thus favouring localization, and the above approach 
should therefore lead to upper estimates of x. 

The treatment of disorder involving random hopping potentials is much more difficult, 
owing to the uncertainties in the static approximation for the renormalization and the 
sensitivity of effects to the form of the density of states. However, calculations indicate 
that all states are localized in one dimension, and in three dimensions there is probably 
a mobility edge in the tail of the distribution. In $3 we have attempted to present a detailed 
analysis of the analytic structure of the selfenergy which resolves the recent controversy 
raised by the work of Lloyd and gives a physical picture of the discrete pole structure in 
the localized phase. 

All the work in this paper has concentrated on the one electron approximation, and it 
may be that interactions also have an important effect in producing localized states. To 
see how the electron-electron interaction could produce effective cellular disorder, it is 
instructive to consider the Hubbard Hamiltonian for correlation in narrow energy bands 
(Hubbard 1963). This can be written in the form 

H = 1 ( E ,  + Ini, - u ) a ~ a i u  + T/ aLasu. 
i, U i, d, U 

The electron occupation number on any given site fluctuates in time due to band motion, 
and this has the effect of disordering the one electron local levels. A similar effect may occur 
in the disordered systems considered in this work. The ideas of the Anderson transition 
may also be relevant to the many body problem. 
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Appendix. The physical mechanism of localization 
In this section we give an intuitive interpretation of the structure of the residue of the 

off diagonal propagator, which gives some insight into the mechanism of localization. If 
the Hamiltonian is written in the form 

H = 1 Eia:ai + C vi,a+ad 
i i, 6 

then by considering the time derivative of the number operator we are led to define a local 
velocity Cis by 

where la)  is an eigenstate and c is a constant depending on the lattice. This can also be 
written in the form 

where a, = (cllad+ I 0). If we consider the electron in an eigenstate tunnelling through the 
lattice then Cu. has to be sufficient to broaden the renormalized local energy level to en- 
compass the eigenvalue of the state la), and this gives a minimum value to the ratio a,/ai. 
The broadening is given by the uncertainty principle 

AE At  * 11 

where a is the interatomic distance and hence 

a 
h 

iji * - AE. 

If the electron tunnels from site 1 to site N ,  then the ratio of the wave function at these sites 
is 

aN AEi 

where AEi = (E, - Ei). This is the inverse of the residue in one dimension, and of the 
residue obtained in the percolation limit in three dimensions. If the residue tends to zero 
exponentially the wavefunction should be exponentially localized. Hence the factors 
vi,/AEi occurring in the residue can be interpreted as being related to the broadening 
necessary for the electron to tunnel. This point of view shows that conditions for localization 
are much more favourable away from the centre of the band, where tunnelling is more 
difficult. 

-5n- 
a1 i Vi, 
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