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We review the results of the scaling and multifractal analyses for the spectra and wave-
functions of the finite-difference Schrédinger equation:

_¢n+1 —Yna + /\V(nw)'ll’n = E"pn .

Here V is a function of period 1 and w is irrational. For the Fibonacci model, V takes
only two values (it is constant except for discontinuities} and the spectrum is purely
singular continuous (critical wavefunctions). When V is a smooth function, the spectrum
is purely absolutely continuous (extended wavefunctions) for A small and purely dense
point (localized wavefunctions) for X large. For an intermediate )\, the spectrum is a
mixture of absolutely continuous parts and dense point parts which are separated by a
finite number of mobility edges. There is no singular continuous part. (An exception is
the Harper model V(z) = cos (2mz), where the spectrum is always pure and the singular
continuous one appears at A = 2.)

1. Introduction

In periodic systems, one electron eigenstates are always extended because of Bloch’s
theorem. In non-periodic systems, on the other hand, the eigenstates exhibit various
characters. In particular, random systems have been extensively studied as the
Anderson localization problem, and many important properties have been clarified.!

Quasiperiodic (QP) systems,? which are the subject of this article, are another
category of non-periodic systems. Although the QP Schrodinger equations are in-
teresting in themselves, wider attention has been attracted since the discovery of
quasicrystals®* which belong to a class of QP systems.
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The simplest model to study the electronic properties of the QP systems is a
one-dimensional QP tight-binding model (finite-difference Schrodinger equation):

_¢n+1 - wn—l + A‘/(n‘-'-))'l/}n = E'/’n y (11)

where w is an irrational number and V is a periodic function, i.e., V(z+1) = V().
In one-dimensional random systems, it is rigorously proved that the eigenstates are
always localized. On the other hand, it is known that the QP systems can have
both extended and localized states even in one dimension. Furthermore, “critical”
states which may be regarded as being intermediate between localized and extended
can appear.

One of the most intensively studied QP systems is the Harper model:

V(z) = cos(27z) . (1.2)

It is known that all the states are extended for A < 2 and all the states are localized
for A > 2 with an irrational w.® At the critical coupling A, = 2, all the states are
critical. Namely, the spectrum of this model is purely absolutely continuous for
A < 2, purely dense point for A > 2, and purely singular continuous for A = 2.
In the model defined by
V(z) = tan(27z) , (1.3)

on the other hand, all the states are localized, irrespective of A.¢ This is presumably
due to the unboundedness of the potential.
Another well-studied example is the Fibonacci model”® defined by

w:os(\/f_)—l)/Q, (1.4)

(1/ is the golden mean) and

-1 (m—0o<z<m)
(- "

(m<z<m+l-9g)’

where m stands for arbitrary integers. The sequence {V(w), V(2w), V(3w), V(4w),
V(5w), ...} corresponds to the Fibonacci sequence generated by the well-known
generation rule (A — AB, B — A). The Fibonacci sequence can be thought of
as a one-dimensional version of the quasicrystals. In this model, all the states are
critical (purely singular continuous spectrum) for any value of A.

On seeing the above models, we are apt to consider that the one-dimensional
QP models have always pure spectra, i.e., extended, localized and critical states do
not coexist in a spectrum. However, this is not the case. The above models are
rather special cases. In fact, we have recently found that mobility edges separating
extended and localized states in a spectrum can appear in the model defined by®

AV(z) = Ay cos (27z) + A3 cos (67z) , (1.6)
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and the model defined by'®
V(z) = tanh[y cos (27z)] /tanh p . (1.7)

In this article, we show, mainly following our recent works, that the spectra and
the wavefunctions of the one-dimensional QP Schrodinger equations in (1.1) exhibit
varieties of properties depending on the form of V.

In order to analyze the spectra and wavefunctions, we adopt a scaling approach.
When w in (1.1) is a rational number M/N (where M and N are integers), the
potential is periodic with period N. Thus the spectrum consits of N bands and the
wavefunctions are of Bloch type. With increasing N, each band splits into many
sub-bands. QP systems are described as a limit of N — oo. Thus, the spectrum
in QP models has a tendency to be a Cantor set. Namely the spectrum consists
of infinitely many bands with zero width. We analytically or numerically study
asymptotic scaling behaviors of the spectrum and wavefunctions for large N. The
wavefunctions are in general classified into two classes: normalizable one and un-
normalizable one. The normalizable wavefunction corresponds to a point spectrum,
and we call such a wavefunction localized. The unnormalizable wavefunction usu-
ally corresponds to an absolutely continuous spectrum which gives a non-singular
density of states. We call such a wavefunction extended. However, there can be
an unnormalizable wavefunction corresponding to a singular continuous spectrum
which gives a singular density of states. We call such a wavefunction critical. We
can distinguish localized, extended and critical states through the scaling behav-
ior of the spectrum and the wavefunctions. We employ the multifractal technique
developed by Halsey et al!! to make a systematic analysis of the spectra and the
wavefunctions'? in the formulation of Kohmoto.!?

The outline of the remainder of this article is as follows. In Sec. 2. we explain
the method of the multifractal analysis on the spectra and the wavefunctions of
one-dimensional QP systems. Section 3 is devoted to a review of the applications
of the multifractal method to the two ideal models: the Harper model and the
Fibonacci model. In addition, as an example of physical phenomena reflecting the
existence of the critical states, we show the results of the numerical experiments for
the time evolution of a wave packet in the Fibonacci model and the Harper model.
In Sec. 4. we demonstrate that mobility edges can appear in a spectrum when a
model is not so special as the Fibonacci model or the Harper model. Furthermore,
we find that critical states hardly appear except for the special cases. In Sec. 5,
the stability of the critical states in the Fibonacci model and the critical case of
the Harper model against an electron-electron interaction is studied within the
mean-field approximation. In the Fibonacci model, the one-body spectrum remains
singular continuous when the interaction is not so large. In the Harper model, on
the other hand, the singular continuous spectrum disappear no matter how small
the interaction is.
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2. Scaling Analysis of the Spectra and Wavefunctions

In a scaling analysis of a fractal set with measure (multifractal), we consider a
systematic partition of the set. The nth level of the partition consists of a number
of bars with length ;. A scaling index for I; is given by l; ~ e™"¢*. We consider a
situation where a probability measure p; is associated with each bar. The scaling
index of the singular measure is given by p; ~ IJ*. Now distributions of ¢ and a
specify the scaling properties of the multifractal. Here one can use a formalism
equilavent to statistical mechanics to obtain the distributions. The analysis of the
spectrum is a special case where we have a distribution of I;, but where p; is constant.
On the other hand, the wavefunction has a distribution of p;, but /; is constant. For
a more detailed discussion on the statistical-mechanical formalism of multifractals,
see Ref. 13.

2.1. Spectrum

In order to understand the scaling of the spectrum, we need to define appropriate
scaling indices and the entropy function for them. It is convenient then to consider
systematic approximations or finite partitions of the Cantor-set spectrum. This can
be done by replacing the irrational number w by a series of rational numbers which
are obtained by truncating the continued-fraction expansion of w. For example, the
inverse of the golden mean (o = (v/5 — 1) /2) is approximated by a series of rational
numbers F,_;/F, = {— 222 } where F, is a Fibonacci number defined
recursively as Fy = Fy = land Fr41 = F,+F,_1. At the nth level of approximation
of the Carton-set spectrum, we have N bands whose widths are denoted by A;(i =
1,...,N). The number of bands grows exponentially with respect to n as N ~ a™.
In the example above we have N = F, and e = 1/0 = (V5 + 1) /2.
Let us define a scaling index for A; by

1
€ = ;ln Aj . (21)
We also define an entropy function S(¢) by
1
S(e) = - InQ(e) , (2.2)

where (¢)de is the number of bands whose scaling index lies between ¢ and € + de.
Here it is important to notice that A; and Q(¢) depend exponentially on n. A
band at the nth level splits into many bands at a higher level and may thus yield
a number of different values of the scaling indices e. However, we expect that the
entropy function which represents the distribution of ¢ will converge to a smooth
limiting form as n tends to infinity, and give the complete information about the
scaling behavior.

As in the formalism of statistical mechanics, it is convenient to introduce a
“partition function” and a “free energy” which are defined by
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N
Za(B) =) _Af (2.3)
i=1
and )
F(f)= lim ~InZn(B) . (2.4)

Once the free energy is calculated, the entropy function is obtained by a Legendre
tansformation,

S(e) = F(B) + e , (25)
_ _4drp)
€= T (2.6)

Thus by changing “temperature” 8 one can pick a value of £ and then the corre-

sponding S(e) is calculated. On the other hand, 8 can be written in terms of ¢

as

dS(e)
de ~

Usually S(e) is defined on an interval [y, €max] and there is no scaling behavior
corresponding to € which is outside the interval and S(¢) = 0. However, F(8) is
still defined there and from (2.5) it is given by F(8) = —&max0 for 8 > Bmin and
F(B3) = —€minP for B < Bmax- Thus useful information is only contained in F(3)
for the region between B, and Bmax Where it is not linear.

The Hausdorff dimension Dy is the zero B. of the free energy (see (2.3) and
(2.4)), i.e.,

g =

(2.7)

 F(Dw)=0. (2.8)
From (2.5), (2.7), and(2.8) we have

_ S(e) _ dS(e)
=== (2.9)
Thus the Hausdorff dimension Dy = (. has a geometrical interpretation in ¢-S(¢)
plot: it is a slope of the line through the origin tangent to S(e).

The index ¢ which represents scaling of the Lebesgue measure of the energy
spectrum can actually be related to the singular behavior of the density of states.
At the nth level of approximation, each band carries the same number of states:
pi = 1/N = a™" (the total number of states is normalized to unity, i.e., Y;pi=1).
An index o; which represents the singular behavior of the density of states is defined
as

pi ~ AX . (2.10)

Since p; = 1/N = a™" and A; ~ e™™ (see (2.1)), it is related to ¢ by

ag=Ina . (2.11)
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1.11

The spectrum of singularity introduced by Halsey et al'' is given by

Q'(a) ~ (AY (@) (2.12)

where ’(a)da is the number of bands whose scaling index o lies between o and
o + da, namely Q'(a) = Q(¢)|de/dal, and (A) is a representative value of A which
was not specified clearly in Ref. 11. If one identifies (A) = exp(—ne) (see (2.1)),
f(a) can be related to the entropy function by

flay =2 (2.13)

€

This simple relation between f{a) and S(¢) holds since the measure p; is constant
in this case. In general the measure has its own scaling behavior and we do not
have a simple relation like (2.13).

An absolute continuous spectrum, for which the states are extended, has a non-
singular density of states (apart from possible Van Hove singularities) and « is
given by 1 (see (2.10}). On the other hand, a point spectrum, which corresponds
to localized states, would give @ = 0. If « is different from 0 or 1, the spectrum
has a nontrivial scaling and one can expect a singular continuous spectrum. The
corresponding wavefunctions are neither localized nor extended in the standard way
and are called “critical”. Thus the entropy functions S(¢) and f(«a) give the essential
information on the spectral type and the nature of the wavefunction.

2.2. Wavefunctions

A wavefunction is defined on lattice sites which are regular. Therefore the wave-
function is not singular nor fractal as it is. However, for the QP problem there is
a consistent way to take a scaling limit of the lattice which is a continuous inter-
val {0,1]. Then the wavefunction defined on the interval can have singularities and
scaling which we shall analyze.

In the nth approximation the system is periodic with period N. Consider now
the square of the wavefunction at site 7 as a probability measure, namely,

pi = |vil® (2.14)

We normalize p; by
N N
o= lil*=1 (2.15)
i=1 i=1

for a finite system with N sites. Assign a uniform Lebesgue measure | = N~! to
all the sites. Then the size of the system is normalized to unity. In the limit of n
tending to infinity, the probability measure is defined on the interval [0,1] and one
can discuss singularities and scaling. Here the support of the probability measure
is not a fractal, but the distribution of the measure can have scaling. Note the
difference from the previous case of the spectrum in which the probability measure
is uniformly assigned but the support may be a Cantor set (a fractal).
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The scaling index for the Lebesgue measure is given by { = exp(—ne) and is
constant:
€= Ina. (2.16)

The scaling index for the probability measure is defined as
pi =1 (2.17)

and the entropy for « is defined as
, 1
S'(a) = ;l-ln Qa), (2.18)

where Q(«)da is the number of sites which have index between & and a+da. Asnis
increased a single site is split into a number of sites and it is not possible in general
to follow a single scaling index. However we expect that the entropy function S’'(«)
which represents the distribution of a converges to a smooth limiting form as n
tends to infinity. Thus the scaling behavior of the wavefunction is well represented
by S’(«). As in the previous case of the spectrum, it is convenient to introduce a
partition function

Zn(a) =20t (2.19)

and free energy
G(g) = lim lln Z(q) . (2.20)
n—oo N

The entropy function is given by the Legendre transformation

S'(a) = G(g) + qac . (2.21)
and
aE = —%;q) . (2.22)

The function f(«) in this case is defined as'!

Qa) ~ 1) (2.23)
and relates to the entropy function by (see (2.18))

S'(a) =cf(a) . (2.24)

For an extended wavefunction we should have oo = 1, and a localized wavefunc-
tion has f(a) consisting of two points: f = 0 at « = 0 and f = 1 at « going to
infinity. The point & = 0 corresponds to the sites with nonzero ¥; and the point o at
infinity at all the other sites. For a critical wavefunction with a distribution of scal-
ing indices we expect to have a smooth f(«) defined in a finite region [amin, @max]-
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(a) 1=1 (b) 2=2 _ {c) 1=¢

Fig. 1. Spectra for the Harper model with (a) A = 1, (b) A = 2 and (c) A = 4. The energy is
normalized appropriately.

3. Models with Pure Spectrum
3.1. Harper model

The Harper model defined by (1.1) and (1.2) has been studied for many years
in connection with the problem of two-dimensional Bloch electrons in a magnetic
field 1415 Aubry and Andre® showed that this model has a “duality”, which means
that if the transformation ¢,, = >, exp(i27wmn)i, is made, the Harper equation
transforms to the same form with the potential strength 4/A. Using this duality and
Thouless’ formula for the Lyapunov exponent,' they pointed out that this model
with an irrational w undergoes a metal-insulator transition at A = 2. That is, for
A < 2, all the states are extended, while for A > 2, all the states are localized. At
the critical point A = 2, all the states are critical.

The spectra of the Harper model is shown in Fig. 1 for (a) A =1, (b) A = 2
and (c¢) A = 4. The similarity between Fig. 1(a) and Fig. 1(¢c) is due to the duality
discussed above. The wavefunctions at the center and the edge of the spectrum is
shown in Figs. 2 and 3. The Harper model is appropriate as the first example of
the scaling analysis for the spectrum and the wavefunctions because all the possible
types of states, extended, localized and critical, appear depending on A.17

We take w to be o = (v/5 — 1)/2. As mentioned in Sec. 2, w is approached by a
series of rational numbers w, = F,_;1/F,. In this case, each band for a value of n
splits into three sub-bands as n is increased by 2 or 3. Therefore, each point in the
spectrum for the irrational limit (n — oo) (a Cantor set) is specified by an infinite
series of 1, 0 and —1, which represent the upper, middle and lower sub-bands,
respectively. ‘

First, we show the scaling of the spectrum for several states.® When the state un-
der investigation is specified by an infinite sequence {C) C2C3C3C5CsC7Cs...}
(Cj =1,0,—1), we measure the width of the band specified by a finite subsequence
{C1C2C3C4...C,}, which is a band of a periodic system with N = F,,. Hereafter,
we denote this quantity as B,. In the notation of the previous section, this is A (the
Lebesgue measure of the spectrum). We can estimate the spectrum scaling index «
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Fig. 2. The wavefunction for the Harper model at the edge of the spectrun with (a) A = 1.9, (b)
A=20and (c) A =2.1.

in (2.10) by tracing the relation between F, and B, (the probability measure p is
1/F,).
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(c) 1=2.1

I ¢

M

6000 6300
]

Fig. 2. (Continued)

(a) 2=1.9

0 B/ 2
j

Fig. 3. The wavefunction for the Harper model at the center of the spectrum with (a) A = 1.9,
(b) A =2.0 and (c) X = 2.1.
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(b) 1=2.0

(c) 2=2.1

5300 5600

Fig. 3. (Continued)
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Figure 4 shows plots of F, B, versus n(~ In(F,)/In(1/c0)) for several states
with (a) A = 1.9, (b) A = 2.0, and A = 2.1. The states displayed in this figure
are (1) {0000 0...} (center of the spectrum), (2) {—-1 -1 —1 —1...} (edge
of the spectrum), (3) {0 -1 -1-1-1-1...},(4) {-100000...} and (5)
{-10-10-10-10-1...}. For A = 1.9, it is observed that F,B,, ~ 1 (i.e.,a = 1)
for (1), (4) and (5), while F,, B, ~ 1/F, (i.e., « = 1/2) for (2) and (3). This means
that all these states are extended. As mentioned in the previous section, the state is
extended when o = 1. The states (2) and (3) corresponds to “band edges” which are
in general identified by {C; C3...11111...}or {C1Cy...—1-1—-1-1-1-1...}.
At the “band edges”, o is 1/2 when the state is extended. This behavior comes
from a remnant of Van Hove singularities in one-dimensional bands.

For A = 2.0, the situation is quite different. It is observed that o = 0.547
for (1) and (4); & = 0.421 for (2) and (3); and a« = 0.513 for (5). Thus these
states are critical at A = 2.0. Here is a point to be noted. The states (1) and (4)
are governed by the same index, and the states (2) and (3) we also governed by
the same index. By investigating other states, we can conclude that all the states
specified by {C;C>2C5...000 00 0...} (the “band centers”) have an identical
value of a(= ac = 0.547), and all the states specified by {C; C>C3...111...} or

2

Lo ' j 0(:)oooolooo..<}§
i (a) O{-1-1-1-1-1-1-1-1...}]
- X {0 -1-1-1-1-1-1-1. .}
3 A{-1000000 O0...}]
100 . E +{10-10-10-10...}]
L a0
« a9 a0 a9 a% 4% a°
; a + s+ + o+ +
o]
3 x E
FnBn ; o x
[ o ]
to ?k o*
o E
X
L A=1.9 o .
o
x
af X
10 PRSI TP S | I i i J o
0 5 10 {5 20 25
n

Fig. 4. Plots of F, By, against n for several states of the Harper model with (a} A = 1.9, (b) A = 2.0
and (c) A = 2.1. In (a), the values of o, which is defined by F;; ! ~ B2, are 1 or 1/2 (a remnant of
Van Hove singularity) for all these states; thus they are extended. In (c), a’s go to zero; thus all
the states are localized. In (b), the values of & are 0.547 for the states {...000000...}, 0.421
for the states {...~1—-1—-1-1-1—1...} and 1.961 for the state {~10-10-10-10...};
all these states are critical.
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Fig. 4. (Continved)
{CiC3C3...—1 —1 —1...} (the“band edges”) have an identical value of a(=

ag = 0.421) as well. This situation is the same as the Fibonacci model, where it
can be understood from the exact renormalization group (RG).!® (See also Q. Niu
and F. Nori,'® and T. Dotera,?® for example.) For the state (5), o takes a value
between a¢ and ag.
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The fact that all the “edges states” and the “center states” have identical values
of a (o and ac¢) suggests the existence of a renormalization-group structure in the
Harper model. In fact, Ostlund and Pandit?! followed this direction.

For A = 2.1, B,, is observed to decrease rapidly for all these states and we have
a = 0. Thus all these states are localized for A = 2.1.

So far we have studied several special states. To confirm that the spectrum is
purely absolutely continuous for A < 2, purely singular continuous at A = 2 and
purely dense point for A > 2, we must go to a multifractal analysis of the whole
spectrum. This was carried out by Tang and Kohmoto.?? At A = 2, the spectrum
has a smooth f(a) which has a value on the interval [ag, ac] (see Fig. 5). The
smooth f(a) shows that the spectrum is purely singular continuous. For A < 2,
f(a) consists of two points: f =1 for @« = 1 and f = 0 for a« = 1/2. The point
f = 1for a = 1 represents that the spectrum is absolutely continuous with a non-
zero Lebesgue measure (i.e., the fractal dimension is one), while the point f = 0 for
a = 1/2 represents the remnant of Van Hove singularities as mentioned above. For
A > 2, f(«@) does not converge well in the numerical calculation as the system size in-
creased. This might be a sign of a point spectrum which has localized wavefunctions.

Next we make a multifractal analysis for the wavefunctions.® Although this is
a direct way to distinguish the extended, localized and critical wavefunctions, we
must be deliberate on the finite size effect. A finite system always gives a smooth
f(a). Thus, when we numerically calculate f(«) using the formalism in the previous
section, it is very important to do an interpolation to n — oo from data for finite
n’s.

0.5 : :
Harper
A=2) A

v
0. 4 ‘ 0. b 8 0. 6
G Clmaxﬁ‘o.547

Fig. 5. f(a) for the spectrum of the Harper model with the critical case (A = 2).
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It turns out that the calculation of f(a) at amj, which represents largest |1; 1%’s
is most effective in distinguishing the extended, localized and critical wavefunctions.
Figures 6(a) and 6(b) are plots of af:i)n and f,(n':,), (¥min and f(amin) calculated for
wp = F,_1/F,) against 1/n for the wavefunction at the outermost edge of the

spectrum {—1 —1 -1 -1 —1...}. The following behaviors are clearly seen:

1, amin=1 for an extended state ,
flomin) = 0, omin #0,1 for a critical state ,
0, amin=20 for a localized state .

The leading finite-size correction is O(1/n). This is consistent with the formal
analogy between the present method and statistical mechanics in the canonical
ensemble formalism (see (2.19) and (2.20); n corresponds to the system size).

At the critical point A = 2, f(a) is determined to be a smooth curve and shown
in Fig. 7 for the states of (a) the edge of the spectrum {—1—-1—-1-1-1...}, and (b)
the center of the spectrum {0 00 0 0...}. The convergence of numerical estimate
1s good except for the larger side of a (near amax). Notice that this goodness of
the convergence is due to the fact that the wavefunctions for (a) and (b) are self-
similar. When the wavefunction is “chaotic”, the convergence of the numerical data
for f(a) is not good. This is similar to the situation in the Fibonacci model.23 We
do not know whether f(a) for the chaotic case converges or not in the infinite limit.

1. 0 —\\\ T v T v v LA | T -r ]
RN a2=1.9 ]
0.8 L RN c2=2.0 ]
F (a ) A&A X A =2. 1 h
3 ‘A\\&
0.6 F A 5
Gnginn) t * e
0 4 F & ‘*j
[ 0. 168 ©
—_—eo-00— % 1
0 2 —_— T _e.______q’_/x;_x:‘__e ]
N —a ]
0.0 B e e hiri e SN _)eug '
0 1/50 1710

1,/n

Fig. 6. Plots of (a) asn"iz\ and (b) ffn':r)‘ against 1/n. It is seen that the leading finite-size correction
is O(1/n).
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0.8 _ ]
- x 2=2.1 -
(b )
0.6 F T, :
T M,
0.4 F 7S ]
\ﬁ\
0 2 » //’&/;é‘T -
ae— T
- a ]
0.0 e wtiP P W S la_.___.__;_“_a__;a.-n-l—t—l—ﬂ—l—v
0 1760 1710
1./n
Fig. 6. (Continued)
o]

Fig. 7. f(o) for the wavefunctions of the Harper model {A = 2) (a) at the edge of the spectrum
({-1=-1-1-1-1...}) and (b) at the center of the spectrum ({00000...}).
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However, we can distinguish the extended, localized and critical wavefunctions by
observing the behavior of ayin and f(omin) for large n’s.

3.2. Fibonacct model

The exact RG transformation”® which is a six-dimensional map exists in the
Fibonacci model. It has a three-dimensional sub-map (trace map) and a constant
of motion whose value is given by A2.7 The constant of motion determines a two-
dimensional non-compact manifold. The points obtained by successive application
of the trace map are always on the manifold. The Cantor-set spectrum and its
scaling, and purely singular continuous spectrum for any value (except zero) of
the potential strength A was conjectured from the study of the trace map'® (in
fact this conjecture was recently proved rigorously by Suto?* following the work of
Kotani?®). The scaling of the wavefunctions is also obtained by the study of the
full RG map.2627 See Ref. 28 for a review.

In this section, we treat the off-diagonal version of the Fibonacci model, which
1s considered to have the same properties as the diagonal version defined by (1.1),
(1.3) and (1.4). The off-diagonal version is written

i1+ + ;0 = EY; (3.1)

wheret;’s ( = 1,2, ...) take two values t 4 and ¢ arranged in a Fibonacci sequence
T which is defined as the limit of a recursion T4 = T T—1 with Ty = {A} and
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T, = {AB}. So one has T3 = {ABA}, Ty = {ABAAB}, and so on. In order to
investigate the infinite system, we take a series of finite system 7,, whose number
of sites is a Fibonacci number F,, defined by F,yy = F,,_1 + F,, with Fs = F;, = L.

A multifractal analysis of the spectrum was given by Kohmoto, Sutherland,
and Tang.2” Here we report an exact f(a) for the wavefunction at the center
of the spectrum which was obtained by Fujiwara, Kohmoto, and Tokihiro.?® In
order to investigate the wavefunctions on the Fibonacci lattice, (3.1) is written as
U; = M(tj41,1;)¥;_1 with ¥; = (""ﬁ‘), ¥, = (%il) and a transfer matrix

M(tjg1,t) = (E/tlj*'1 ~tj{)tj+1 . A wavefunction is obtained by multiplying

W, by transfer matrices successively once the energy is taken in the spectrum. There
are three types of transfer matrices M(t4,t4), M(t4,tg), and M(tg,t4) (note that
there is no successive B’s in the Fibonacci sequence). Denote the product of the
first F,, transfer matrices by M(")| then we have a RG map

M(n+1) — M(n—l)M(n) , (32)

with M) = B = M(ta,t4) and M = A = M(ta,tp)M(tp,ta). 7326

Let us define z, = Tr{M{*)}/2, then the energy spectrum of a periodic system
consisting of 7;,’s is determined by a condition |z,| < 1. It can be shown” that z,
obeys a trace map

LTng1 = 2,201 — Tp-2 . (33)

The energy E enters in the initial condition and those which give bounded orbits
determine the spectrum. In particular, the center of the spectrum has a six cycle!®
and the outermost edge of the spectrum has a two cycle.2” Most of the bounded
orbits, however, are chaotic.

When E = 0, not only the trace map (3.3) but also the full RG map (3.2) has a

0 1) and A = M(ta,ig)M(tg,ta) =

six cycle starting from B = M(t4,t4) = (_1 0

<_0R —IO/R) with R = tp/t4.2 The wavefunction is shown in Fig. 8. This re-

markable property allows us to determine f(a) exactly as

1 d
flo) = 55— [lny(qu) - qd—qlny(qu)] (3.4)
and . P
o= [m y(R?) — %m y(R2q)] , (3.5)
with

y(z) = (1/22) {(x +1)2+ A+ 200+ 41:2} , (3.6)

where 7 is the golden mean 3/%*'—1- It is plotted in Fig. 9.
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Fig. 9. f(a) for the wavefunction of the Fibonacci model.
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The range of o where f(c) is defined is given by [emin, ®max] = [1/(3InT)
{lny(R?) — In R?}, 1/(3In7) {Iny(R?) + In R?}), and f(a) = 0 for both ap,, and
Omax- The minimum value o, corresponds to the largest square amplitude of the
wavefunction and amayx corresponds to the smallest one. The maximum value of
f(a) gives the Hausdorff dimension of the support of the wavefunction. This is as
it should be since the support is an interval [0,1] in our formulation. The maximum
occurs at o = Iny(R?)/(3In7). It is not difficult to prove that f(a) is symmetric
about the maximum as is seen in Fig. 9.

3.3. Time evolution of wave packets

As shown above, the Harper model and the Fibonacci model can have critical states
(singular continuous spectrum), which do not appear in usual systems (periodic or
random systems). Hiramoto and Abe??3% carried out numerical experiments on
quantum-mechanical diffusion in the Harper model and the Fibonacci model to
study what kind of exotic physical phenomena are observed in the systems with
singular continuous spectra.

At the time ¢ = 0, an electron is placed at a site n = ng, i.e., Y, (t = 0) = b, n,.
The time evolution of the wavefunction ¢ which is governed by the time-dependent
Schrodinger equation

d

lawn = —Yn41 = Yn-1+ V()i , (3.7

is traced. The width of the wave packet is estimated by

Vi@ = \/Z(n — o)D) (38)

When the eigenstates are localized, \/((Az)?) remains finite for ¢ — oo. When
the eigenstates are extended, \/{(Az)?) increases with increasing t. If we write the
overall asymptotic time dependence as

V{(Az)?2) ~t7 | (3.9)

v is 0 for the localized states, while v is 1 or 1/2 for the extended states. In
perfectly periodic systems, the eigenstates are of Bloch type and the motion of an
electron is ballistic, i.e., ¥ = 1. In three-dimensional random systems with extended
eigenstates, the motion is diffusive, i.e., ¥ = 1/2. Thus, in usual systems, all the
possible values of ¥ are 0, 1/2 and 1.

In Fig. 10, we show a log-log plot of \/{(Az)?) vs. t for the Fibonacci model
with several values of A. The overall behavior of these curves are well fitted by
(3.9). In contrast to the usual systems (periodic or random), however, the index -y
continuously decreases from 1 to 0, accordingly as X is increased as shown in Fig. 11.
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Fig. 10. Plot of the wave packet width /((Az)2) as a function of time t for several values of A in
the Fibonacci model. The overall behavior of these curves are expressed by the power-law form

(3.9) in the text.
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Cax®)

Fig. 12. Plot of {/((Az)2) as a function of t for several values of ) in the Harper model. It turn
out that v is 1 for A < 2, 0 for A > 2 and 0.485 at A = 2.

This anomalous power-law behavior is in striking contrast to that in the systems
which have usual extended states and/or localized states.

In Fig. 12 the data for the Harper model with w = o is presented. It turns
out that v is 1 (ballistic) for A < 2 and is 0 for A > 2. In the critical case A = 2,
v is about 0.485. These behaviors are consistent with the electronic properties
discussed in Sec. 3.1. From these results, we may say that the anomalous power-
law “quantum diffusion” is a characteristic feature of the systems with singular
continuous spectrum.

4. Models with Non-pure Spectrum

The Fibonacci model and the Harper model treated in Sec. 3 have a remarkable
feature: the spectra are pure, l.e., the extended, localized and critical states do not
coexist in the spectra. However, this is not a general feature of the one-dimensional
QP systems. The purity of the spectrain the Fibonacci model and the Harper model
1s presumably due to their special forms of V(z). In the Fibonacci model, V(z) takes
only two values. In the Harper model, V(z) has only one Fourier component, and
as a result, this model has a duality.

In this section, we study more general models and demonstrate that non-pure
spectra can appear. Once we know that the non-pure spectra can appear in the one-
dimensional QP models, the next question to be addressed is: what is the structure
of the non-pure spectra? One of the possibilities is that the structure would be
similar to that of three-dimensional random systems in which localized and extended
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states are separated by a finite number of mobility edges in the spectrum. Another
candidate for the structure is that there would be infinitely many mobility edges.®
Since one-dimensional QP systems have in general a topologically self-similar band
structure, we may except that every “sub-band” would have mobility edges and
there would be an infinite hierarchy of the mobility edges.

It is shown that the non-pure spectra in the one-dimensional QP systems have
a finite number of mobility edges at least for the models treated in the following.
Further, we see that critical states do not appear except for ideal cases.

4.1. Generalized Harper model

When V(z) has a finite number of Fourier components, i.e.,
AV(z) = Z Ap cos (2wpe) (4.1)
p=1

it was proved by Herman®! that the Lyapunov exponent v(E) satisfies the inequality
Y(E) < In(JAn|/2) for almost every w. That is, if [A,| > 2, the Lyapunov exponent
v¥(E) > 0 irrespective of E. Thus all the states are exponentially localized. However,
this theorem says nothing about the case |A,| < 2.

Hiramoto and Kohmoto® numerically studied the model (1.1) with (1.6) in which
V(z) has only two Fourier components and w is (v/5 — 1)/2. Similar models have
previously been studied by several authors.?:?:23 Here we review our work in which
the appearance of the non-pure spectrum and the precise mobility-edge structure
are demonstrated.

Since a relation V(z+1/2) = —V(z) holds as in the Harper model, the spectrum
is symmetric with respect to £ = 0 in the QP limit. Thus, we perform numerical
calculations only for £ < 0. Each point in the spectrum can be specified by an
infinite sequence of 1, 0 and —1 as in the Harper model and the Fibonacci model
discussed in Sec. 3 because we take w = o = (Vb — 1)/2.

When A; = 0 or A3 = 0, this model reduces to the ordinary Harper model. Thus
if Ay > 2 (A < 2) and A3 = 0, all the states are localized (extended). If also Az > 2
(A3 < 2) and Ay = 0, all the states are localized (extended). Furthermore, if A3 > 2,
Herman'’s theorem®! tells that all the states are localized for any value of A;. In the
general case (A; # 0 and A3 # 0), localized and extended states may coexist.

We show numerical data for A; = 2.0 and A3 = 0.25 as an example of scaling
analysis. First we show the bandwidth analysis. Figure 13 is a plot of n versus F,, B,
for several states. It is clearly seen that the states specified by {-1 -1 —-1-1 -1 —
1...},{-10000...} and {—1111...} are localized, whereas the states specified
by {00000...},{0 —1—-1—1—-1...} are extended. Note that from the plot one
sees that the state {0 —1 —~1 —1 —1...} have a = 1/2 for the bandwidth scaling
index. This is due to the remnant of the Van Hove singularity rather than the
critical state (see Sec. 3.1). By applying the same analysis to other states, we can
see that all the states specified by {0...} are extended and all the states specified
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Fig. 13. Plot of F, B, against n for \; = 2.0 and A3 = 0.25. The states specified by {-1 —1 —
1-1...},{-10000...} and {-11111...} turn out to be localized, while the states specified
by{0-1~1-1-1...}and{00000...} are extended.

by {1...} or {—1...} are localized. Thus the spectrum has two mobility edges
located in the gap between the states {0 —1 —1 -1 —1...} and {-11111...},
and in the gap between the states {01111...}and {1 -1 -1-1-1...}.

Next we show the wavefunction analysis. Figure 14 is a plot of 1/n versus (a)
al™ and (b) f, W for{0-1~1-1-1. ..}and {-11111...}. It is found that

mln min
Omin = lim_ ol =1 and f(omin) = hm Ff = 1for{0-1-1-1-1...},

while am.n =0 and f(omin) = 0 for {— 1 1 111...}. Thus it is concluded that the
states {0 —1 —1 —1 —1...} is extended and the state {—11111...} is localized.
This is consistent with the bandwidth analysis.

We use both the bandwidth analysis and the wavefunction analysis to obtain
the results. We checked that the results obtained from the two methods are always
consistent.

Now we show an overall behavior of the spectrum. Figure 15 shows the spectra
for various values of A; and A3 = 0.25 fixed. The solid line in the figure represents
mobility edges. In the lower energy side of the line, the states are localized, while in
the upper side, the states are extended. For \; < ,\§°" (= 1.04), all the states are
extended and the spectrum is purely absolutely continuous. For A; > )\(CZ) (=~ 2.66),
on the other hand, all the states are localized and the spectrum is pure point. For
/\(Cl) <A1 < /\(CZ) the spectrum is non-pure: extended states and localized states
coexist in the spectrum. At A\; > /\(1°1), the states of the lowest (highest) energy
become localized, and for A; > ,\§°1) the mobility edges appear and divide the
spectrum into two regions: the states in the outer sides of the mobility edges are
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Fig. 14. Plots of (a) a{?) and (b)
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extended states are clearly distinguished. The results are consistent with those of the bandwidth

analysis in Fig. 13.
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Fig. 15. The energy spectra for various values of A\ and A3 = 0.25 fixed.

localized, whereas the states in the inner side are extended. This behavior is similar
to the Anderson localization in the three-dimensional random systems. The mobility
edges move towards the center of the spectrum as A; is increased, and finally all
the states become localized at A\, = /\(1°2).

In /\gd) <A1 < A(lcz), the mobility edges have a tendency to locate in a large
gap in the spectrum. In Fig. 16, we show how the position of a mobility edge moves
with A\ when Az = 0.25. For 1.115 < A; < 1.310, the mobility edge stays in the gap
between {—1 ~111111...}and {-10-1—-1—-1—-1...}, and for 1.355 < A\; <
1.590, it stays in the gap between {—1011111...}and {~11-1-1-1-1-1...}.
In a rather narrow range 1.310 < A; < 1.355, the mobility edge moves between the
two large gaps. The situation is similar also in the other narrow regions (for example,
1.04 < Ay < 1.115), where we do not show the location of the mobility edge in the
figure. In most of the range /\(ld) <A < /\(lcz)’ however, the mobility edge stays in
the gap between {—10 —111111...}and {-100 -1-1-1-1—-1...} and
in the gap between {—1001111...}and {-101 -1 -1-1-1-1...}.

In Fig. 17 we show the phase diagram obtained from the analysis exemplified
above. When A; and A3 are sufficiently large, all the states are localized (region I).
When ); and )3 are small, all the states are extended (region II). In the intermediate
values of A; and A3, the spectrum is not pure, and mobility edges appear (region
II1). We find no critical state expect when (A1, Az) is (2,0) or (0,2).

In this phase diagram, several awkward behaviors are found. The boundary
between I and III for 1.5 < A; < 3.3 seems to be precisely A3 = 0.5. A small dip
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Fig. 16. The location of a mobility edge as a function of A\; for A3 = 0.25. When 1.115 <
A1 < 1.310, for example, the mobility edge is in the gap between {~10 —1 ~1 —1...} and
{-1 —1111...}. (I in the figure means —1 by the notation in the text).

Fig. 17. The phase diagram in the A\;—-A3 plain. In region I, all the states are localized, while in
region II, all the states are extended. In region III, two mobility edges appear in the spectrum.

appears in the boundary near (A1, A3) = (0,2). These behaviors are probably due
to the speciality that V(z) has only two Fourier components. In fact, the model
studied in Sec. 4.2 which contains all the higher Fourier components does not show
such awkward behaviors.
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4.2. Tanh model

The periodic function (1.7) (V(z) = tanh[p cos(2wz)]/tanhu) gives a model
interpolating between the Harper model and the Fibonacci-like model. When u
approaches 0, V(z) approaches cos(27nz), i.e., the model reduces to the Harper
model. For g # 0, it contains all the higher Fourier components. Thus it is a
smooth modification of the Harper model. When g goes to infinity,

V(z) — { -1 (m—1/4<z<m+1/4) (m : integer) . (4.2)
1 (m+1/d<c<m+3/4)
This function is similar to (1.5) in the sense that V(z) takes only two values.

We show here the result of the scaling analysis when w = o = (V5 — 1)/2
following Ref. 10. First we show an example of the bandwidth analysis for u = 3
and A = 1. Figure 18(a) is a plot of n versus F, B, for the states specified by
{0 -11C4C5CsC7...} (Cj = —1,00r 1). The states {0 —11 -1 —1 -1 —1...},
{0 —11 —1000...} and {0 —11 —1111...} are extended, whereas the state
{0-110-1-1-1-1...}islocalized. The same analysis applied to other states

& 0{0-110-1-1-1-1-1....}
100 r(a) O{o-11-111111....}
E o} A{0-11-100000....}
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Fig. 18. Plots of F, B, against n for o = 3 and A = 1. In (a), a mobility edge is located in
the gap between the two states {0 —110 —1 —~1 -1 —1 ~1...} and {0 —11 —11111...},
which are next to each other. In (b), another mobility edge is found in the gap between {—1 —11
~10-1-1-1-1...}and{-1-11—-1-~11111...}
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Fig. 18. (Continued)

show that all the states specified by {0 —11 —1C5 Cs C7. ..} are extended, and all
the states specified by {0 ~110C5 Cs C7 ...} are localized. Thus there is a mobility
edge located in the energy gap between the two states {0 —110-1-1-1-1...}
and {0 —11 —11111...}, which are next to each other. Figure 18(b) represents
the same analysis for the states specified by {—1 —11 -1 —1CsC7CsCy...}. It
is found that another mobility edge is localized in the energy gap between {—1 —
11-1-11-1-1-1-1...}and {-1-11-1~1011111...}. No other
mobility edge is found for £ < 0. Thus, for p = 3 and A = 1, there are two mobility
edges for E < 0 (i.e., four mobility edges on the whole spectrum); all the states from
{0000...}to{0-110~1—-1-~1-1-1...} are localized, and all the states from
{0-11-111111...}to{-1=-11-10-1—-1-1—-1~1...} are extended, and
all the states from {-1 -11-1-111111...}to{-1-1-1-1-1-1-1...}
are localized.

Next we show an example of the wavefunction analysis. Figures 19(a) and 19(b)
are plots of 1/n versus o™ and f('?) for the state {—~} —1 -1 -1 ~1...} at

min min

A =0.76 and A = 0.77 with g = 3. It is found that an;, = lim af:izl =1 and
f(amin) = lim f3) = 1 for A = 0.76, while amin = 0 and f(amin) = 0 for A = 0.77.

Thus it is concluded that the state {-1 —1 -1 —1~1...} is extended for A = 0.76
and localized for A = 0.77.

The spectra are shown in Fig. 20(a) for 4 = 1 and Fig. 20(b) for p = 3.
As in the generalized Harper model, the localized states and the extended states
are separated in the spectra by a finite number of mobility edges. In region I,
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Fig. 19. Plots of (a) ol™ and (b) f(n) as a function of 1/n at A = 0.76 and A = 0.77 with 4 = 3

min mn

for the state of the spectrum edge {-1 —~1 —1 -1 -1 —1...}.

the spectra are dense points (localized state), while in region II the spectra are
absolutely continuous (extended state). They are distinguished by the analyses
exemplified above.
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Fig. 20. Spectra of tanh model (1.6) with (a) 4 = 1 and (b) x4 = 3 for various values of A\. The

wavefunctions are localized in region I, and are extended in region II.
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One of the most remarkable feature is that the localization of the wavefunctions
does not always start from the edge of the spectrum. At small values of A, all the
states are extended for both 4 = 1 and g = 3. For u = 1, localization takes place
first at the center of the spectrum as A is increased. The boundary between the
localized and the extended states (mobility edge) moves from the center towards the
edge of the spectrum with increasing A and finally all the states become localized at a
value of A(= 2.526). For p = 3, a more complicated behavior is found. Localization
from the edge of the spectrum occurs in addition to that from the center, and two
mobility edges exist for E < 0 in a range of A (i.e., four mobility edges in the whole
spectrum). For larger A, however, the localized states near the edge of the spectrum
disappears. In contrast, the region of the localized states around the center gradu-
ally extends towards the edge, and finally all the states become localized at A = 7.28.

We have also perfomed a calculation for other values of . Figure 21 is the phase
diagram in the pu — A plain. In the area below the dashed line, the states near the
center of the spectrum is extended; above the dashed line the localized region around
the center appears; above the solid line all the states become localized. In the right

10

Fig. 21. The phase diagram in the g4 — X plain. Above the solid line all the states are localized.
The states at the center of the spectrum is localized (extended) above (below) the dashed line.
In the area to the right of the dashed-dotted line, localized states appear near the edges of the
spectrum.
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area of the dash-dot line, the localized region starting from the edge appears, and
there are two mobility edges for E < 0. It is an important fact that critical states
are not found except for 4 — oo or u — 0.

The localization starting from the center of the spectrum is in striking contrast
to the Anderson localization problem in three-dimensional random systems. A
probable explanation of this phenomenon is as follows. In the present model, the
probability to find a site with a potential energy near 0 is smaller than that in the
Harper model in which all the states localize at once. Conversely, the probability
to find a site with a potential energy near £ is larger than that in the Harper
model. Thus localization is encouraged around the center, while delocalization is
encouraged near the edges.

5. Effect of an Electron-Electron Interaction
(Mean-Field Approximation)

In this section, we study the effect of an electron-electron interaction within the
mean-field approximation.®* Even if a one-body potential V(z) is an ideal form such
as Fibonacci or Harper, the mean field potential may destroy the ideal form. Thus it
is reasonable to expect that the one-body spectrum and the one-body wavefunctions
in the mean-field approximation should have characters different from those of the
Harper model and the Fibonacci model without interactions. The critical states
may disappear. Mobility edges may appear.
We treat the Hubbard type on-site interaction:

Hint = UanTnjl s (51)
J

where n;, is a number operator of an electron with spin s at jth site. We neglect spin
polarization, i.e., (nj1) = (n;,) is assumed because our attention is paid to whether
the mean field destroys the pure spectrum and the singular continuous spectrum.
Thus the suffix s standing for the spin quantum number is omitted hereafter.

The one-body potential at jth site is written as

Ver(jw) = AWV (jw) + W(w) , (5.2)
where W(z) is a periodic function representing the mean field potential:
W(iw) = Uln;) . (5.3)

W (z) is determined self-consistently.

First we study the effect of U on the Fibonacci model. The numerical results
shown below are for the Fermi level situated in the first main gap in the spectrum
(the gap between {-111111...}and {0 —1 -1 -1 -1 ~1...}. In Fig. 22, a
plot of F, B, against 1/n for several states is displayed for A = 1 and U = 0.5. It is
clear from the figure that these states remain critical. For example, the value of o
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Fig. 22. Plot of F, By, as a function of n for the Fibonacci model with the interaction U = 0.5.
The scaling index o takes various values less than 1; thus the one-body wavefunctions are critical.

(Fp_y ~ BZ) for the state {—1 —1 —1 —1 —1 —1...} is about 0.431. However,
this figure shows only that some special states are critical. To investigate whether
all the one-body states are critical or not, we must go to a multifractal analysis of
the whole spectrum.

Figure 23 shows f(a) for A = 1 and U = 0.5. This curve is obtained by extrapo-
lating the numerical data, which are calculated by using the formalism in Sec. 2, up
to the system size N = Fyy = 10946. The scaling index o distributes continuously
between amin =~ 0.431 and omax & 0.74. This shows that the mean-field one-body
spectrum is a purely singular continuous, i.e., all the one-body wavefunctions are
critical.

We have also performed the same analysis for other values of U (including the
cases with U < 0) and other positions of the Fermi level. The results are as
follows. As long as |U| is not so large, the one-body spectrum remains purely
singular continuous. When |U]| is large, many locally stable solutions appear, and it
becomes difficult to obtain the true ground state. Thus we cannot offer any reliable
comments for the large |U| case. When the Fermi level is situated in a smaller gap,
the threshold value of |U] at which many locally stable solutions appear becomes
smaller.

Next we study the effect of U on the Harper model. The location of the Fermi
level in the following numerical results is the same as that above (in the first main
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Fig. 23. f(a) of the one-body spectrum for the Fibonacci model with I/ = 0.5. It turns out that
the spectrum is purely singular continuous.

gap in the spectrum). The most interesting question is whether the critical states
at A = 2 are stable against U as in the Fibonacci model or not. Thus, we only show
the results for A = 2. In Fig. 24, plots of n vs. F, B, for several states are shown
for (a) U = 0.5 and for (b) U = —0.5. When U = 0.5, we can conclude that the
spectrum is purely absolutely continuous, i.e., all the states are extended. When
U = —0.5, on the other hand, we can show that the spectrum is a purely dense
point, i.e., that all the states are localized.

We have systematically investigated the spectrum for various values of U. The
result is that the singular continuous spectrum disappears as soon as the electron-
electron interaction is added, no matter how small |U| is.. However, the purity of the
spectrum is not broken for small [U|. For U > 0, the spectrum is purely absolutely
continuous. For U < 0, the spectrum is purely dense point.

The phenomenon that the critical states disappear in the Harper model with
non-zero U is cosistent with the results of Sec. 4 in which we have studied the
one-body problem in various forms of quasiperiodic potentials.

Further, the fact that the states in the Harper model become extended for U > 0
and localized for U < 0 can be explained as follows. The mean field W(z) defined
by (5.3) is expanded as

W(z) = Z W, cos(2mpz) . (5.4)

p=1
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Fig. 24. Plot of F;, Bn as a function of n for the Harper model with (a) U = 0.5 and (b) U = —0.5
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When U > 0, the interaction should have the effect of screening of the one-body
potential. Thus the first Fourier component W; is expected to be negative. If U
is small, the higher Fourier components W, (p > 2) are small. Thus the mean-
field one-body Hamiltonian turns out to be very close to the Harper model with
A =2+ W; < 2. This is the reason why all the states are extended when U is
positive. The localization for U < 0 can be explained in the same manner. When
U is not small, the higher Fourier components become important, and the non-pure
spectrum can appear.

On the other hand, a great surprise is that the states in the Fibonacci model with
non-zero U remain critical. Figure 25 is a plot of W(z) calculated self-consistently
for A =1 and U = 0.5 with the system size N = Fy. From this figure, it is found
that W(z) has steps at z = no (mod 1), where n is an integer and o = (V5 —1)/2.
As n is increased, the step width of W(z) decreases rapidly; in practice, W(z) seems
to be constant except for the steps at several numbers of points z = ne (mod 1).
Recently, Kohmoto33 generalized the simple one-body Fibonacci model to the case
of V(z) with a finite number of steps at 2 = no (mod 1), and showed that the
same dynamical map as that of the Fibonacci model exists. This explains that all
the one-body wavefunctions are critical for W(z) in Fig. 25. However, it is an open
question why W(z) (the self-consistent mean field) takes such a special form.

0.5
Fibonacci
(A=1, U=0.5)
W (x) §
0 o Libi i |
6 ~5 4 3 2
0000 (e} [0} [0} 1

X

Fig. 25. The mean field W(z) defined by (5.3) in the text. W (z) seems to be constant except for
steps at the points £ = no (mod 1), where n stands for arbitrary integers and o is the inverse of
the golden mean.
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6. Conclusion

The one-dimensional QP finite-difference Schrodinger equation (tight-binding
model) (1.1) can have absolutely continuous, singular continuous, or dense point
spectrum depending on the potential strength A and its form V. The corresponding
wavefunctions are extended, critical, and localized, respectively. We have investi-
gated the spectral and wavefunction properties of several models using the scaling
and multifractal analyses outlined in Sec. 2.

The Fibonacci model discussed in Sec. 3.2 has a purely singular continuous
spectrum, hence critical wavefunctions irrespective of the potential strength A. For
this model the function V takes only two values, i.e., it is constant except for
discontinuities.

The Fibonacci sequence is obtained by the generation rule A — AB, B — A.
The generalized Fibonacci sequence is obtained by modifying the generation rule,
for example, as A — A"B, B — A. In the generalized Fibonacci models36-4% V
also takes only two values A and B and it seems to have purely singular contin-
uous spectrum. The models where V' takes more than two values have also been
considered.3%434* We conjecture that if V takes only a finite number of values, then
the spectrum is purely singular continuous. In particular, when w is the inverse of
the golden mean o and V is constant except for steps at * = —no (mod 1) (n:
integer), it is proved that this is the case.3®

When V is smooth, the situation is quite different. We have investigated the
Harper model (1.2), the generalized Harper model (1.6), and the tanh model (1.7)
which are in this category. The Harper model is special since it has a duality which
maps between the sub-critical region (A < 2) and super-critical region (A > 2).
In the sub-critical region the spectrum is purely absolutely continuous, while it is
purely dense point in the super-critical region. At the critical point (self-dual point
A = 2), the spectrum is purely singular continuous.

In both the generalized Harper model and the tanh model, the spectrum is
purely aboslutely continuous for A small and is purely dense point for A large. In
fact, there are several rigorous theorems for V smooth which support the results for
A small**~*8 and for A large.?®~%3 For an intermediate value of ), the spectrum is
a mixture of absolutely continuous and dense point pieces which are separated by
a finite number of mobility edges. They tend to lie in a large energy gap. For the
absolutely continuous parts, the band scaling index « defined in Sec. 2.1 is one. The
exception, however, exist at band edges where we have a = 1/2. The corresponding
wavefunction is found to be extended rather than critical. Therefore this singularity
can be regarded as a remnant of Van Hove singularity which has o = 1/2 in one
dimension. The localization seems to start not only from the spectrum edges but
also from a portion of the spectrum where the density of state is small. We did not
find any singular continuous parts.

We believe that the generalized Harper model and the tanh model represent
the general behaviors for V smooth. Namely, the spectrum is purely absolutely
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continuous (extended states) for A small and it is purely dense point (localized

st

ates) for A large. For an intermediate A, the spectrum is a mixture of absolutely

continuous parts and dense point parts which are separated by a finite number of

mobility edges. There is no singular continuous part. The exception is the Harper

model where it has a singular continuous spectrum (critical states) at the critical
point A = 2. This is due to the special duality of this model. Hence a singular
continuous spectrum rarely appears for V smooth.5*
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