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Multifractal Energy Spectra and Their Dynamical Implications
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We present a method for constructing lattice tridiagonal Hamiltonians having a preassigned

multifractal measure as local spectrum. Using this construction we investigate how the fractal
structure of the spectrum affects the motion of wave packets. We find that the quantum evolution
is intermittent: The moments of particle s position on the lattice are characterized by a nontrivial
scaling function, even when the spectrum is a one-scale, balanced Cantor set. Numerical data show that
the minimum scaling exponent is always larger than the information dimension of the spectral measure,
and qualitatively follows the behavior of this quantity, as the spectral measure is varied.

PACS numbers: 05.45.+b, 02.30.-f, 71.30.+h, 71.55.Jv

Until recently, the traditional classification of energy
spectra in pure point and absolutely continuous has proven
quite sufficient to describe quantum evolution. The third
element exhausting this classification, singular continuous
energy spectra, has been usually considered by physicists
as a mathematical curiosity and overlooked. However,
this exotic kind of spectra is now attracting a growing
attention: In fact, it is generic (in a mathematical sense)
for one-body Schrodinger operators [1] and appears fairly
frequently in theoretical studies on quasiperiodic systems
[2,3], on incommensurate structures [4], and on the
electron dynamics of crystals in magnetic fields [5].
The success of fractals in various areas of physics

has also invested this field, and the techniques of the
thermodynamical formalism [6] have been applied to the
systems just mentioned [7—9], although more often in a
descriptive than in a predictive approach. Quite on the
contrary, these spectra lead to dynamical behaviors of
deep physical relevance; for instance, it has been found
[10,11] that, for a particle moving on a one-dimensional
lattice, the time-averaged probability of staying at the
starting site decays in time asymptotically as t ', D2
being the correlation dimension of the associated spectral
measure. This is just one of the relations between
dynamics and multifractal properties, which make the
subject of this Letter.
The analysis of the Harper system [7,8] first brought

into evidence a multifractal spectrum (with Hausdorff
dimension close to 2) associated with a pseudodiffusive
evolution of wave packets initially focused at the origin:
the expectation value of the square of the position of
such packets grows (approximately) linearly in time. On
the grounds of heuristic arguments [12,13] it has been
conjectured [13] that the exponent p2 ruling anomalous
diffusion (x2)(t) —t2P' (the bar meaning time average),
should coincide with the Hausdorff dimension DH of
the support of the spectral measure of the initial state.
Although numerical data consistent with this surmise have
been presented [9,13], quite recently some doubts on
its generality have been put forward on the strength of

other heuristic observations [14];in summary, no decisive
evidence in either sense has been provided so far.
A complete study of the scaling properties of wave-

packet propagation can be centered around the behavior
of the moments v (t):= (x )(t) for real a & 0. Under
suitable circumstances, these moments behave like t P,
thereby defining a scaling function P(n) [15]. An exact
analysis shows that P(u) must be larger than the infor-
mation dimension D& of the spectral measure for any u
[16,17]. The limit P(0) can be defined, and it represents
the lowest scaling exponent. In the general case, more
precise results seem difficult to derive; at the same time a
numerical investigation of the relations between the mo-
ment scaling function and the various fractal dimensions
has to cope with the difficulties present in the accurate de-
termination of both quantities.
For these reasons, in this Letter we take a different

approach: Instead of studying a given Hamiltonian, and
computing spectral properties and dynamics, we start from
a given spectral measure, p„, arbitrarily chosen in a wide
multifractal class, for which all fractal dimensions are ex-
plicitly computable. Then we show that a constructive
procedure can be set to compute all matrix elements
of a (tridiagonal) Hamiltonian H, which is the most
natural operator processing p, as spectral measure. The
related Schrodinger equation is then numerically solved
via reliable procedures and P(a) extracted. We investi-
gate various choices of the spectral measure and we find
that the conjecture p(2) = Dp is at best approximate; that
the wave-packet propagation exhibits multiscaling in time
(i.e., intermittency), in the sense that it is characterized
by a nontrivial range of exponents P(a); and that inter-
mittency is present even in the case of a homogeneous
fractal measure, that is, multiscaling does not require
multifractality.
The first step in our approach requires the solution of

an inverse problem of the sort "can we build a drum
with a given spectrum. " The "drum" is, in our case,
a tridiagonal Hamiltonian matrix H of the tight-binding
type widely used to model the dynamics of electrons in
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disordered solids:

H;; =A;, H;;, ] ——H+); = r+] ) 0,
i = 0, 1, . . . , (1)

where A and r are site energies and hopping elements.
We want to determine the real constants A; and r; (these
latter, positive nonzero) in such a way that the spectral
measure (also known to physicists as the local spectral
density) of the vector ~0) with respect to the Hamiltonian
H defined in Eq. (1) coincides with a preassigned multi-
fractal, normalized measure p. This can be done as fol-
lows (see also [18,19]).
We assume that the support of p, is included in a finite

interval [a, b] and consider the Hilbert space L'„([a,b-]) of
square-summable functions with respect to the measure
p. In this space we consider the infinite sequence of
orthogonal polynomials p„(x) associated with p, . Then,
let us define H in L2 as the multiplication by x: H P(x) =
xP(x). As is well known from the spectral theorem, the
spectral measure of the vector P(x) = 1 with respect to
H is none but p itself. Moreover, it is immediate from
the theory of orthogonal polynomials that (p„~H~p, „) 4 0
only if ~m —n~ ~ 1, that is, the matrix of the operator
H on the basis of the orthogonal polynomials has the
form (1).
Determining the real coefficients A„, r„ from the mea-

sure p is generally a difficult endeavor [20] that we were
able to accomplish for p, in the class of IFS (iterated func-
tion systems) [21,22]. IFS measures are invariant under a
weighted set of affine renormalization transformations: for
j = 1, 2, . . . , M, let w, (x) be affine contracting real maps
of the form w, (x) = B,x + p, , ~6, ~

( l. Associated with
each map there exist weights m; ) 0, g, m, = 1. Then,
p, is defined as the only positive measure such that the
equality

„(t):=(nl e""10)= J e "'p„txldp(x! .
The second equality shows that the coefficients of the evo-
lution are the Fourier transforms of the orthogonal poly-
nomials ivith respect to the spectral measure p. . This is
the basis of a numerical procedure we employed to com-
pute c„(r), a Gaussian integration enhanced by Eq. (2).
Other independent techniques we used for comparison are
matrix diagonalization over a finite basis and direct solu-
tion of Schrodinger equation by an implicit Runge-Kutta
method.
The asymptotic behavior of the coefficients can also be

derived from Eq. (3): for small r, ~c„(r)~'-—r '"; in -the
infinite time limit, we obtain that ~c„~-(r) —r

"-' for all
n, thereby generalizing the result of [13]. The position
moments can be expressed as v,„(t) = g„ ii ~c„(r)~'-. lt i»
clear that their long-time asymptotics is governed by the
nonuniformity in n of the behavior of each term in the
summation.
The time is now ripe for introducing the results of

our numerical experiments. Let us consider the IFS
generated by two maps, with parameters 6] = 6. = —,:,

]
P~ = 0, P. = —;, and ml = 7r. = —, , corresponding to a
"pure" Cantor set: D~ = Do = log2/log5 — log2 for all
q. The behavior of v (r) is power law, with superimposed
log-periodic oscillations due to lacunarity (Figs. 1 and 2).
Because of these oscillations„care must be exerted in

extracting the average exponent. Our data have been ob-
tained with two different fitting techniques and are con-
sistent within a few parts per thousand for values of
n larger than 1. Reliability is just a little lower for
n in between 0 and 1. The function p(n) (Fig. 3) is
necessarily nondecreasing. In this example„ it covers
the range [0.773, 0.789] for a in [0,2]. While the in-
equality p(0) & D~ is validated, the Hausdorff dimension

f(x) dp, (x) = g m; f(w) (x)) dp, (x) (2) 7.0

holds for any continuous function f, and is also called the
balanced measure of the IFS.
Measures in this class are rather general and versatile:

for instance, they can approximate arbitrarily well any
measure supported on a finite interval [23]. Of interest
to our present application is the fact that their multifrac-
tal properties are exactly computable: The spectrum of
generalized dimensions follows from the equation [24]

, 7r, 6J' = 1, whose unique solution defines T as a

function of q. One then obtains Dq = i.7(q)

It can be proved that the H-matrix elements for this
class of measures form bounded sequences. Numerical
evidence suggests a possible quasiperiodic behavior for
which we do not have a theoretical proof at the moment.
Having thus determined the matrix H, we can solve

Schrodinger's equation, i P' = H f numerically for a
wave packet initially concentrated at ~0). We find
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FIG. l. Particle's moments v versus time, in double logarith-
mic plot, for the IFS dynamics described in the text. The loga-
rithm of each moment is divided by the corresponding value of
n. The values of o. are 0.5, 1, 1.5, 2, and 2.5, from the lowest
curve to the highest.
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FIG. 2. Particle's moments v versus time, as in Fig. 1,
after subtraction of the behavior of the minimum scaling
exponent, P(0) logt, with P(0) = 0.773. The typical log-
periodic oscillations appear now clearly, as well as the
increasing slopes of the curves, which are still associated with
the values n = 0.5, 1, 1.5, 2, and 2.5, going from bottom
to top.

FIG. 4. Scaling exponents P(0) (open squares), P(1) (open
circles), P(2) (open diamonds), and P(4) (open triangles) versus
map weight m-1, for the IFS described in the text. Also plotted
are D~ (filled squares) and D2 (filled circles). The horizontal
line marks the value of Dp, which is here constant.

DH ——0.7565 (which coincides with Dp for our class of
fractals) is well below p(2).
By varying the weight m & (and consequently n2), while

keeping the other parameters fixed, we can study spectral
measures with the same support (hence, Dp) but different
thermodynamics. Three main observations can be drawn
from the data reported in Fig. 4: First, we notice that the
minimum scaling exponent p(0) is always strictly larger
than its rigorous lower bound D&, yet at the same time it
follows qualitatively the behavior of the latter. Second,
since Dp is constant in m~ while none of the p is such,
the conjecture in the beginning is disproved. Third, as m&

tends to I, all generalized dimensions (except Dp) tend to
zero, and the growth exponents do the same.

Alternatively, we elect to vary one of the contraction
rates, 8&, to study the general case of nonuniform,
nonhomogeneous fractals. The other parameters defining

2 3 3the investigated IFS are Bz = s, pi = 0, pz = s, n &
= s,

and m.2 ——s. The range of variation of the exponents p(0)
is larger here than in the previous example (Fig. 5). They
are still higher than their lower estimate D&, although they
show again the same trend.
We can therefore summarize our findings as fol-

lows: We have built and investigated a class of quan-
tum models whose spectral properties are exactly known.
We have found that the moment scaling function p(u) is
never constant, not even for fractals characterized by a
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FIG. 3. Scaling exponent P versus a, for the IFS of Figs. 1
and 2.

FIG. 5. Scaling exponents P(0) (open squares), and P(2)
(open diamonds) versus map parameter 6, , for the IFS
described in the text. Also plotted are Dp (filled diamonds),
D& (filled squares), and D2 (filled circles).
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single dimension, thus preventing the existence of simple
scaling relations for the dynamics; in this sense, quantum
evolution of systems with fractal spectra is intermittent.
Moment scaling exponents are somehow linked to the
spectrum of generalized dimensions, the closest ties link-
ing p(0) and D~, but no simple equality seems to hold. In
particular, P(2) —Do is to be considered occasional, and
typical (if validated) of a special model.
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