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Abstract

Recent advances in the periodic orbit theory of stochastically perturbed systems have permitted a calculation of the escape
rate of a noisy chaotic map to order 64 in the noise strength. Comparison with the usual asymptotic expansions obtained
from integrals and with a previous calculation of the electrostatic potential of exactly selfsimilar fractal charge distributions,
suggests to a remarkably accurate form for the late terms in the expansion, with parameters determined independently from
the fractal repeller and the critical point of the map. Two methods give a precise meaning to the asymptotic expansion,
Borel summation and Shafer approximants. These can then be compared to the escape rate as computed by alternative
methods.
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1. Introduction

Fractal sets and measures appear naturally as in-
variant sets (respectively measures) of many nonlinear
dynamical systems. Periodic orbit theory[1] provides
an effective approach to computing useful properties
such as averages, Lyapunov exponents and dimen-
sions, particularly when the fractal corresponds to
a nonattracting set (“transient chaos”) so that direct
simulation methods are harder to implement. In the
case of Axiom A dynamics, the convergence of peri-
odic orbit (or “cycle”) expansions can be spectacular,
seeTable 1below.

Recent work has extended the theory to include
chaotic systems perturbed by external noise, moti-
vated by realism (all physical systems are coupled to
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unknown degrees of freedom) and smoothness (delta
functions are replaced by smooth distributions). While
several approaches have been attempted, including
Feynman diagrams[2] (by analogy with quantum
perturbation theory) and smooth conjugations[3]
(by analogy with classical perturbation theory), the
most computationally effective method[4] has been
to represent the stochastic evolution (Fokker–Planck)
operator by a matrix in a basis of polynomials
about each periodic orbit, truncated to finite size us-
ing the fact that relevant ratios of elements decay
exponentially, that is, the eigenfunctions are very
smooth.

The previous work[4] computed the escape rate
of a stochastically perturbed map to order 8 in the
noise strength. In this paper the same matrix method,
extended to high (60 digit) precision arithmetic, is
used to compute the escape rate to order 64 in the
noise strength. With this number of coefficients, it is
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meaningful to consider the asymptotic form of the
late terms, the subject of this paper.

We will discover that to unlock the secrets of the
noise expansion will require insights not only from
the classical theory of asymptotic expansions, but
also from more recent analytic calculations involving
fractals. The relatively small number of numerical
coefficients is compensated by their high precision,
allowing a reliable fit to a functional form involving
several parameters. Comparing two interpretations of
the series, Borel summation and Shafer (generalised
Padé) approximation to the “exact” function, we will
find that exponentially small corrections will need to
be considered by a future theory.

At this point we note a few other relevant works.
Contour integration methods[5] have obtained the
asymptotic form of noise coefficients for fixed pe-
riodic orbit length, however this does not directly
determine the noise expansion of the escape rate
since the latter requires successively longer orbits
for higher noise corrections. Direct integration[6]
has shown numerically that the cumulant expansion
on which the cycle expansions are based is valid for
strong as well as weak noise. Stochastically perturbed
dynamical systems constitute a vast field, applying
many methods other than periodic orbit theory.

Section 2outlines the previous theory and methods
needed to understand the results and their interpreta-
tion. For space reasons, readers interested in the full
details are referred to the original works.Section 3
gives the coefficients, the logic used to fit them to a
particular functional form, and the Borel summation
or Shafer approximation needed to assign a precise
meaning to the asymptotic expansion. Final discussion
is given inSection 4.

2. Preliminaries

2.1. Asymptotic series

This subsection gives the background for asymp-
totic series. A very readable review of this subject and
its applications is given by Boyd[7]. Singular per-
turbations of integrals or differential equations, such

as perturbative approaches to physical problems, fre-
quently have power series expansions of the form.

∑
m

(m + α)!

(
x

x0

)m

Mm (1)

whereα is often an integer or half integer, andx0 (or
rather its inverse) is called thesingulant, and is related
to the nearest critical point of an integrand.Mm is
called themodifying factor and tends to a constant as
m → ∞; it contains all the slower varying functional
behaviour.

Such series diverge for allx �= 0, and a number
of methods have been employed to make sense of
them. The simplest (albeit discontinuous) is to trun-
cate the sum at its smallest term. An alternative, which
Boyd states as usually the most computationally effi-
cient, is to replace the series by its Padé approximants,
more specifically the Shafer extension[8] in which
the function is written as the solution of a quadratic
equation with polynomial coefficients; the coefficients
of the polynomials are found by a set of (typically
ill-conditioned) linear equations.

While Padé methods give results on average as
good as any other method to this order, an alternative,
Borel summation, offers the possibility of systematic
exponentially accurate (“hyperasymptotic”) correc-
tions. These methods (for example Berry and Howls
[9]) start from the Borel summation method as for-
mulated by Dingle[10], which we follow. The latter
retains the decreasing terms, then performs Borel
summation on the divergent “tail”. Borel summation
is an approach in which the factorial is replaced by
its integral representation[11], and the sum and inte-
gral are interchanged. In the present context, where
the terms are all the same complex phase, this leads
to a pole in the path of integration (corresponding to
a “Stokes line”); the constraint that the result must
be real then indicates that the principal value of the
integral should be taken. Dingle also shows how to
write the Borel summed expression in terms of a
few standard functions (related to incomplete gamma
functions [11]) which he callsterminants; we use
his method based on the forward difference expan-
sion. More details can be found in Dingle’s book
[10].
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For the bulk of this paper, we will need onlyEq. (1),
in order to fit the parameters, and generalise it slightly.
Once the form for the coefficients has been estab-
lished, the Shafer and Dingle methods will be applied,
and compared with the “exact” numerical result; the
Shafer method gives marginally more accurate results.
Since the coefficients are fitted, not known exactly,
and our calculation does not attempt to identify ex-
ponentially small corrections (although this should be
possible in the future), we cannot apply the more de-
tailed hyperasymptotic methods of Berry and Howls
[9] and others (refer to Ref.[7] for extensive refer-
ences). Nevertheless, we succeed in computing a func-
tion accurate to remarkably high values of the noise
strength (perturbation parameter).

2.2. Exactly self-similar fractals

This subsection gives the background for analytic
expansions pertaining to exactly self-similar fractals,
giving additional clues to the value of the parameter
and inEq. (1)and generalisations of this equation that
we might expect for the noise expansion in later sec-
tions. The first paper to introduce asymptotic methods
applied to a fractal problem[12] discussed Julia sets,
but is more technically involved than the exactly self-
similar fractals in Refs.[13,14]. The discussion in this
section is based on Ref.[13].

The middle-third Cantor set consists of two copies
of itself scaled down by a factor of three, thus it has
dimensiond = ln 2/ln 3 according to many definitions.
The uniform measure on the set located betweenx =
±1/2 satisfies the relation∫

f(x)dµ(x)

= 1

2

∫ [
f

(
x − 1

3

)
+ f

(
x + 1

3

)]
dµ(x) (2)

for arbitrary smooth functionf(x), which together with
the definitions of the electrostatic potential

V(x) =
∫

dµ(x)

|x − x′| (3)

and the moments

Cn =
∫

xn dµ(x) (4)

lead after several steps[13] to the following expression
for the potential near the edge of the fractal,

V

(
1

2
+ ξ

)
= ξd−1

∞∑
p=0

ap cos

(
2πp

ln 3
ln ξ + φp

)

+
∞∑
p=0

bpξ
p (5)

whereap, bp andφp and are known series given in
terms of theCn, which are in term given as explicit
rational numbers with a well understood asymptotic
form. Theap have a large exponential decay rate for
examplea0 = 1.7685,a1 = 7.04977× 10−8 a2 =
6.7575× 10−17. The oscillatory terms come from the
p �= 0 solutions

d = ln 2

ln 3
+ 2πip

ln 3
(6)

of the equation 3d = 2 defining the dimension. Such
“complex dimensions” of fractals appear in a number
of physical applications[15].

Even though the context is different from that of
the noise corrections considered below inSection 3.3,
in particular the expansion for the potential has a fi-
nite radius of convergence while that of the noise is
divergent, we may conjecture that there are a number
of general principles applying to fractal expansions.
In particular, the leading order of the expansion is not
a single term but a sum of terms containing a variable
(here�) raised to powersα + ipβ for all integersp,
whereα and β are determined by properties of the
fractal:

1. The parameterα (hered − 1) is related to the di-
mension of the fractal.

2. The parameterβ (here 2�/ln 3) is determined by
the spatial scaling factor 3 of the fractal.

3. Due to the rapid decay of the oscillatory coeffi-
cients, accurate results may be obtained by consid-
ering only one or two of these terms, i.e.|p| ≤ 1.

Note that in the absence of the imaginaryβ terms
(perhaps a “nonfractal limit”), theα in this section cor-
responds to theα in Eq. (1)since the latter effectively
hasα in the exponent:(m + α)! ∼ m!mα asm → ∞.
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2.3. Periodic orbit theory of stochastically
perturbed maps

This subsection gives a background to the numeri-
cal coefficients discussed in the main part of the paper.
The periodic orbit theory[1] allows the computation
of long time properties such as averages, Lyapunov
exponents, and correlation functions from periodic
orbits. The required properties are related to the lead-
ing eigenvalue(s) of an evolution operator (defined
below), which, in the most rapidly convergent formu-
lation, are computed using determinants. The deter-
minant is expressed as an expansion in traces, and the
traces are expressed in terms of periodic orbits.

Consider the discrete time dynamics described by:

xn+1 = f(xn) + σξn (7)

whereσ is the noise strength andξn are instances of
an uncorrelated random variable. In the present case
x is a real number, but higher dimensional generalisa-
tions are straight-forward, at least in the deterministic
caseσ = 0. Continuous time dynamics can also be
considered; the stochastic version has been discussed
in Ref. [16]. The probability densityρ(x) evolves ac-
cording to

ρn+1(y) = (L ◦ ρn)(y)

=
∫

ρn(x)δσ(y − f(x))dx (8)

whereL as defined above is the (discrete time Fokker–
Planck) evolution operator. The noise distribution
δ�(z) is an arbitrary function of standard deviationσ;
it reduces to a Dirac delta in the deterministic case
σ = 0. We compute the trace

tr Ln =
∫

dx0 dx1 · · · dxn−1 δσ(x1 − f(x0))

× δσ(x2 − f(x1)) · · · δσ(x0 − f(xn−1)) (9)

which is ann-dimensional integral. In the determinis-
tic case, it reduces to a sum over periodic pointsx sat-
isfying fn(x) = x of the relevant Jacobian. The weak
noise theory is effectively a stationary phase approxi-
mation in which the leading order behaviour is given
by the deterministic limit, with corrections deter-
mined by higher derivatives of the mapf(x) evaluated

at the periodic points. Exponentially small corrections
are obtained by considering local extrema, which are
given by the “generalised periodic orbits” of[5], that
is, periodic orbits of the extended system(x, p) →
(f(x) + p/f ′(x), p/f ′(x)); these will be discussed
later.

The characteristic determinant is

0 = det(1 − zL) = exp tr ln(1 − zL)

= 1 − z tr L − 1
2z

2(tr L2 − (tr L)2 + · · · (10)

where we define the determinant in terms of its ex-
pansion in powers of the inverse eigenvaluez; this is
consistent with our desire for the largest eigenvalue
(smallestz). The eigenvalue itself can be obtained by
truncating the above equation at somezn, which re-
quires computing periodic orbits up to length n, and
solving numerically for the first zero. The leading
eigenvalueν = z−1 has a direct interpretation: the
quantityγ = −ln ν is the escape rate, that is, a uniform
distribution of initial conditions leads to a number pro-
portional to exp(−γn) remaining at long timesn �
1. Other useful quantities can be obtained by small
modifications of the method, for example weighting
the evolution operator using the function for which an
average is desired.

We note that because the eigenvalue is not directly
expressed as an integral, rather an expansion of inte-
grals or the infinite dimensional limit of an integral,
the Dingle theory discussed inSection 2.1does not
strictly apply. In principle (although not in practice)
an infinite number of critical points are required to
determine the eigenvalue.

There have been two analytical approaches to
evaluating the integral for the trace in the stochastic
case, in particular Feynman diagrams[2] and smooth
conjugations[3]. These give the trace explicitly in
terms of the derivatives off(x) at the periodic points,
but have been applied only up to orderσ4. A more
numerical approach was used in Ref.[4] to obtain co-
efficients up toσ8 and it is the latter approach which
is used in this paper.

The evolution operator is expressed in an explicit
polynomial basis (in contrast to the usual situation in
periodic orbit theory, where all calculations are kept
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independent of the basis), defined in the vicinity of
each periodic point. Truncating the representation to
a finite matrix is justified since the eigenfunction is
very smooth, leading to exponential decay of the ma-
trix elements. All quantities are expanded in powers
of the small parameterσ, and the full trace is obtained
as a sum over periodic points, to each order inσ.
Finally the leading eigenvalue is obtained as a formal
power series.

ν(σ) =
∞∑

m=0

ν2mσ2m (11)

where odd powers vanish by the symmetry of the
Gaussian noise distribution used. Further details of
the calculation are given in Ref.[4].

3. Results

3.1. Numerical details

In the previous paper[4] the results were limited
to σ8 since high precision is required (the cumulant
expansion (10) involves many cancellations), and
commercial high precision mathematical packages
required too much memory and time. The results of
this paper were achieved by code written in C, in-
volving 60 digits precision, a maximum matrix size
of 200 (the largest matrices are required for the short-
est orbits) and periodic points up ton = 10. The
matrix size for each orbit length and the maximum
length were determined adaptively; the precision was
estimated conservatively using the results of shorter
calculations. Here, as in previous calculations[2–4],
the noise is Gaussian, and the map appearing in (7) is

Table 1
The noise coefficients of the eigenvalue, as defined inEq. (11), calculated using periodic orbits up to lengthn

n ν0 ν1 ν4 ν64

1 0.307735902965 0.421227543767 2.15906608736 1.397115735× 1053

2 0.371401067274 1.421640613096 32.97365355137 5.001186917× 1075

3 0.371109569907 1.435552381965 36.32563272348 2.001067045× 1080

4 0.371110995255 1.435811262322 36.35837768356 2.651047356× 1080

5 0.371110995235 1.435811248197 36.35837123374 2.660918038× 1080

6 0.371110995235 1.435811248197 36.35837123384 2.660918375× 1080

Fig. 1. The map (12) appearing in (7).

the map appearing in (7) is (seeFig. 1)

f(x) = 20[ 1
16 − (1

2 − x)4] (12)

This map is Axiom A with complete binary symbolic
dynamics, so the rate of convergence of the cycle ex-
pansion with orbit length is super-exponential, both
for v0 (the deterministic case) and the noise correc-
tions. Examples of this convergence (noted in the
previous studies) are given inTable 1. The results for
orbit length n = 10, expressed as the logarithms of
the (always positive)ν2m given inTable 2.

3.2. Fitting ν2m to the form (1)

We immediately note that, while the coefficientsν2m

converge very rapidly with orbit lengthn, they diverge
with order m. This is not surprising since the noise
expansion of the eigenvalue is effectively a stationary
phase expansion of an integral, albeit with an infinite
number of critical points (seeSections 2.1 and 2.3). A
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Table 2
The natural logarithm of the noise coefficients of the eigenvalue,
as defined inEq. (11)

2m ln ν2m

0 −0.99125408258905
2 0.36173001922727
4 3.59342447275687
6 7.63842801043723
8 12.15107844830820

10 16.97610609587220
12 22.03308958456985
14 27.27470590323921
16 32.67034394383728
18 38.19872657460701
20 43.84418495656653
22 49.59463191979195
24 55.44039700516978
26 61.37352232130161
28 67.38731548909859
30 73.47605210071374
32 79.63476897706259
34 85.85911504876676
36 92.14524039569617
38 98.48971155485100
40 104.88944552922095
42 111.34165748821478
44 117.84381872333873
46 124.39362242853359
48 130.98895554172700
50 137.62787534158868
52 144.30858981612283
54 151.02944299196041
56 157.78889107050155
58 164.58550964455421
60 171.41796376702617
62 178.28500846576056
64 185.18547875658766

All ν2m are positive.

little curve fitting leads to the very approximate form.

ν(σ) =
∑

ν2mσ2m ≈
∑

m!32mσ2m (13)

that is,α = 0 andσ0 = 32−1/2 by comparison with
(1). We would like to know the form of the coefficients
more precisely than this, and in particular predict them
from other information about the dynamics.

From the general theory of asymptotic expansions
(Section 2.1) the singulantσ0 is somehow related to
the distance between the critical point we are expand-
ing around (periodic orbits on the fractal repeller) and
the nearest critical point. In the present situation, if
we consider the critical point of the original map (12)

at xc = 1/2, and ask for the probability for returning
to the repeller, of which the most accessible point is
xr = 1, to first approximation this is.

exp

[
− (xr − f(xc))

2

2σ2

]
= exp

[
− 1

32σ2

]
(14)

which indeed gives the 32. The reason that the sin-
gulant σ0 should be related to the coefficient of an
exponential is that this exponentially small quantity
(for small σ), is, up to slower varying factors, the
magnitude of the smallest term in the expansion,
and hence the order at which exponentially small
hyperasymptotic terms might contribute.

The above expression assumes that the transition
from the critical pointx = 1/2 to the repellerx = 1
takes place in a single step. Actually, for suffi-
ciently small noise, longer trajectories may be more
likely. The probability is of the form exp

[− ∑
(xn+1

− f(xn))
2/(σ2)

]
which can be maximised over all

trajectories starting at the critical pointx = 1/2 and
reaching the repeller in the infinite time limit. The
result isσ0 = 32.31850341240166−1/2 for the trajec-
tory {0.5, 1.00244613635157,−0.00024587488150,
−2.460023246 × 10−5, −2.46015082 × 10−6,
−2.4601636×10−7, −2.460165×10−8, . . . , 0}. The
approach to zero is geometric with ratiof ′(0)−1 =
1/10.

Another interpretation of this orbit is as the infinite
length limit of a sequence of generalised periodic
orbits (Section 2.3), responsible for exponentially
small corrections to the traces; see later discussion in
Section 3.4. For the rest of this paper, we assume that
the 32 inEq. (13) is replaced by the adjusted value
σ−2

0 = 32.3185· · · .
The only remaining parameter to be fitted then

seems to be theα appearing in (1). With this in mind,
we plot the quantity

Mm = ν2mσ2m
0

(m + α)!
(15)

normalised to the highest orderM32 for variousα in
Fig. 2.

As Fig. 2shows, theMm do not approach a constant
for any value ofα. Even for theα ≈ −1.3 at which
the curve is roughly horizontal for the largestm,
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Fig. 2. Attempt to fit theν2m to a single asymptotic series of the
canonical form. SeeEq. (15). For none of the do the coefficients
asymptote to a convincing horizontal line.

the curvature (as measured by the second derivative)
is still large. There appears to be some oscillatory
behaviour evident.

3.3. Oscillations from complex exponents

At this point we recall the discussion ofSection 2.2,
in particular the three observations relating to frac-
tal expansions at the end of that section. If we can
identify α in some way with the dimension of the
fractal (at least in the Cantor set example), the oscil-
lations noted at the end of the previous section appear
naturally from a sum (overp) of terms of the form
(m + α + ipβ)! for integer p. Since the real part of
α + ipβ is a constantα, all of these terms are of the
same order in the largem limit.

We return later to first observation inSection 2.2,
that is, the question of whetherα is related to one of
the fractal repeller’s many dimensions, and leave it as
a free parameter for the present. The second observa-
tion suggests that we look at the spatial scaling fac-
tor of the fractal repeller. The orbit discussed in the
previous section reaches the fractal repeller atx = 0;
at this point the repeller is selfsimilar with a scaling
factor off ′(0) = 10; the same scaling factor that ap-
pears in the critical orbit of the previous section. The
second observation ofSection 2.2then suggests,β =
2π/ln 10, which matches the oscillations well (see be-
low). The third observation suggests that only smallp
may lead to sizeable contributions, hence we will ig-

nore|p| ≥ 2 and only include the realα and a single
pair of complex conjugatesα + iβ.

We thus fit the data, as represented by theMm of
Eq. (15)to the function

c0 + c1
(m + α + 2πi/ln 10)!

(m + α)!

+ c∗
1

(m + α − 2πi/ln 10)!

(m + α)!
(16)

where the∗ indicates complex conjugation,c0 is a real
fit parameter andc1 is a complex fit parameter. Note
that dividing through by (m+α)! in Eq. (15)permits a
linear (hence more reliable) fit forc0 andc1. This fit is
made for a range of values ofα, and formmin < m <

32 with variousmmin. The error (in the least squares
sense)χ2 is given inFig. 3, which shows an improve-
ment limited by the precision of the results (14 deci-
mal places inTable 2). From the optimal fit, we have
α = −1.290, corresponding toc0 = 0.045514 and
c1 = 0.000958+0.000185i. This fit is shown inFig. 4.

We now return to the question of whetherα is re-
lated to a dimension of the fractal repeller. The Renyi
generalised dimensionsDq of the repeller are straight-
forward to compute using the usual periodic orbit the-
ory of deterministic systems[1]. The results are given
in Table 3, but do not seem to exactly match our fit-
ted valueα = −1.290. The closest isD∞ (or rather
−1−D∞), however this corresponds to the most stable
periodic orbit which is the fixed point atx ≈ 0.871,
not the (most unstable) pointx = 0 used in the above
calculation of the complex exponents.

Fig. 3. Effectiveness of the fit to theMm in Eq. (15) using the
function in Eq. (16). Note the dramatic spike atα = −1.290.
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Fig. 4. Optimal fit to theMm in Eq. (15) (dots) using the func-
tion in Eq. (16) (curve), with α = −1.290, c0 = 0.045514 and
c1 = 0.000958+ 0.000185i. For most of the range ofm the dif-
ference between the two is much smaller than the scale visible on
this plot.

3.4. Borel summation

To conclude the analysis of the results, we apply
the Shafer (generalised Padé) and Dingle (Borel sum-
mation) methods discussed briefly inSection 2.1and
compare the results with the exact eigenvalueν(σ)
computed using the discretized eigenfunction method
of Ref. [2] which is accurate to about six digits. Note
that the full power of the Borel summation applied to
the full computed series up to orderσ64 is not (cur-
rently) testable, since this is the smallest term when it
(and hence the expected errors) is of order(2e)−64/2 ≈
10−24. Instead, we will consider quite large values of
σ, where the smallest term is very close to the begin-
ning of the series.

The only slight extension of the Dingle approach
discussed inSection 2.1concerns the modifying factor
Mm. Since the asymptotic series now has three com-
ponents, withp = 0, ±1, it is not clear whether each
component should have a modifying factor. The point
of view taken here is that a single modifying factor
Mm is used for all three components. This choice is

Table 3
Renyi dimensions of the fractal repeller, computed using periodic
orbit theory

q

−∞ 0 1 2 ∞
Dq 0.5695 0.4007 0.3872 0.3757 0.2957

pragmatic; while it is probably more natural to modify
each series separately, there is no method of extracting
this information from the numerical data.

The results of the Borel summation are shown in
Fig. 5. The bunch of lower solid curves are the Borel
summed series, using five forward differences (see
Section 2.1) and from two to four terms of the series
before truncation. Note that the Borel summed func-
tion is consistent for relatively large, despite the obvi-
ous approximations made in approximating the series
by so few terms. The dashed line is the result of a
Shafer (quadratic Padé) approximation to the first 13
nonzero coefficients, as discussed inSection 2.1; the
exact number of coefficients fitted makes little differ-
ence. These two interpretations of the power series are
quite consistent. The dotted line is the true eigenvalue,
computed as in Ref.[2]. It is extremely close to the
Borel summed series forσ < 0.08, after which it is
significantly higher.

The difference may be modelled by a function
which is exponentially small forσ → 0. The most ob-
vious candidate (but one of many) isC exp(−σ2

0/σ
2),

which is roughly the magnitude of the smallest term,
and is also the first expected “hyperasymptotic” cor-
rection. The remaining solid curve inFig. 5gives one
of the Borel summed curves, plus this function with
C = 0.09. The dot-dashed curve gives the equivalent

Fig. 5. Borel summation of the series (lower solid curves) and
Shafer approximant (dashed curve) together with an independent
numerical calculation of the eigenvalue (dotted line). When an
exponentially small function 0.09 exp(−σ2

0/σ
2) is added to one of

the former, the result is the upper solid line, and the dot/dash line,
respectively. These are much closer fits for larger values of the
noise. Note that at the largest values of shown here, the asymptotic
series is very rapidly divergent, with the minimum term given by
1.44σ2 ≈ 0.09.
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result for the Shafer approximant. The result is a
fit valid for roughly σ < 0.16, indicating that the
exponential part of the correction has the right form.

It is reasonable to identify this exponentially small
correction as the contribution of the generalised peri-
odic orbit inSection 3.2. However, there is actually a
fractal set of such generalised periodic orbits, starting
from the critical point of the map and limiting to each
orbit on the repeller. The orbit given inSection 3.2
is the most probable case, but other orbits have expo-
nents which are arbitrarily close. The nontrivial task of
summing these contributions is left to a future paper.

Incidentally, there exist rigorous results pertaining
to Borel summation of asymptotic series[17]. The ob-
servation of hyperasymptotic corrections implies the
presence of singularities in the complex noise domain,
however it is difficult to understand what physical con-
sequences this might have.

4. Conclusion

Periodic orbit theory of stochastic systems as pre-
sented in Ref.[4] has been used to compute the
escape rate of a stochastically perturbed map to or-
der 64 in the noise strength with sufficient precision
to permit the theory of asymptotic expansions to be
applied. Similar to a previous calculation of an ex-
actly selfsimilar fractal, complex exponents appear,
and the parameters in the expansion were found by a
combination of analytic arguments and curve fitting.
Although connections between this and the previous
calculation were at a phenomenological level, the
precise fit gives strong numerical evidence that the
form of the expansion is correct to this order. Finally
the Shafer approximation and Borel summation were
performed on the series and compared with the known
escape rate function, giving evidence for hyperasymp-
totic corrections of the same order as predicted by the
theory of asymptotic expansions and independently
by nonleading stationary points of the action.

In the future, the analytic connections proposed be-
tween the singulant and the probability of returning to

the repeller from the critical point, and between the
imaginary exponent and the spatial scaling factor of
the repeller, should be verified by calculations on a
variety of different systems. The remaining tentative
connection, between the real exponentα and theD∞
dimension of the repeller would then either be verified
or contradicted. The latter possibility is the most in-
triguing, since in that caseα could define a new “noise
dimension”.
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