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Abstract

We study spectral operators for the Kigami Laplacian on the Sier-
pinski gasket (SG). These operators may be expressed as functions of the
Laplacian (Dirichlet or Neumann), or as Fourier multipliers for the associ-
ated eigenfunction expansions. They include the heat operator, the wave
propagator, and spectral projections onto various families of eigenspaces.
Our approach is both theoretical and computational. Our main result
is a technical lemma, extending the method of spectral decimation of
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Fukushima and Shima to certain eigenfunctions corresponding to “forbid-
den” eigenvalues. This enables us to compute the kernel of a spectral
operator (Neumann) when one of the variables is a boundary point. We
present the results of these computations in various cases, and formulate
conjectures based on this experimental evidence. We also prove a new
result about the trace of the heat kernel as t → 0: not only does it blow
up as a power of t (known from the standard on–diagonal heat kernel
estimates), but after division by this power of t it exhibits an oscillating
behavior that is asymptotically periodic in log t. Our experimental evi-
dence suggests that the same oscillating behavior holds for the heat kernel
on the diagonal.

1 Introduction

Let ∆ denote the standard Kigami Laplacian on the Sierpinski gasket (SG),
regarded as a self–adjoint operator, with either Dirichlet or Neumann boundary
conditions, on L2(µ) where µ is the standard measure on SG. Let {uj} denote
an orthonormal basis of eigenfunctions,

−∆uj = λjujwith λ1 ≤ λ2 ≤ · · · → ∞. (1.1)

Then for any function f we can define the spectral operator f(−∆) by

f(−∆)u =
∞∑

j=1

f(λj)〈u, uj〉uj . (1.2)

This class of operators includes the heat kernel (f(x) = e−tx) and solution
operators for other space–time equations, and spectral projection operators onto
various families of eigenspaces. Spectral operators play a vital role in smooth
analysis, where ∆ is a classical Laplacian. So a better understanding of spectral
operators on SG and other fractals is a major goal in the developmenet of
analysis on fractals.

There are reasons to hope that SG is a good model space to work out a de-
tailed understanding of spectral operators. The method of spectral decimation
described by Fukushima and Shima ([Sh1], [FS]) gives a complete description of
all eigenvalues and eigenfunctions. This method has been elaborated in many
subsequent papers, including [DSV], [GRS], [OSS], [Sh2], [S2], [T]. In particu-
lar, a method of computing inner products of eigenfunctions is given in [OSS].
However, there is an obstacle in using spectral decimation: there are many
eigenvalues with high multiplicity, and within the associated eigenspaces there
appears to be no natural orthonormal bases. Since there exist natural bases,
it is possible to use ad hoc procedures such as Gram–Schmidt to produce or-
thonormal bases for moderate size multiplicities, and this procedure was used
in [OSS] for some numerical examples. Other numerical methods were used in
[DSV], [GRS], [CDS] and [BS] to study spectral operators related to differential
equations. Also, probabilistic methods have been very effective in obtaining
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heat kernel estimates [Ba], but we will see that these estimates, despite being
sharp, do not tell the entire story.

Because of the high multiplicities, it makes sense to lump together the terms
in (1.2) corresponding to the same eigenvalue, and write

f(−∆)u(x) =
∑

λ

f(λ)
∫
Pλ(x, y)u(y)dµ(y) (1.3)

where the sum is over all distinct eigenvalues, and

Pλ(x, y) =
∑

j

ϕj(x)ϕj(y) (1.4)

where {ϕj} is an orthonormal basis of the λ–eigenspace Eλ. Our main idea
is to choose the orthonormal basis in such a way as to simplify the sum (1.4).
Fix a point x, and let Ex

λ denote the subspace of Eλ of functions vanishing at
x. Typically this subspace has codimension one in Eλ (there are some cases
when Ex

λ = Eλ). Let (Ex
λ)⊥ denote the orthogonal complement in Eλ. If we

choose the orthonormal basis so that the first element ϕ1 is in (Ex
λ)⊥ and the

rest belong to Ex
λ , then (1.4) reduces to a single term,

Pλ(x, y) = ϕ1(x)ϕ1(y). (1.5)

In Section 3 we study the case of Neumann boundary conditions when x is
a point on the boundary. We show that it is quite feasible to compute (1.5)
in this case. It turns out that the orthogonality condition u1 ∈ (Ex

λ)⊥ may be
interpreted as a discrete eigenvalue equation, and so the function ϕ1 satisfies an
extended version of spectral decimation that is not valid for all functions in Eλ.
(This result is also implicit in Theorem 3.6 of [T].) Moreover, we are able to
identify ϕ1 as a constant multiple of the “level eigenfunction” first descrbed in
[BSSY]. Identifying the constant in order to achieve the required normalization
is a bit complicated, but is not computationally difficult. Thus we have all the
numerical tools to approximate the kernel of any spectral operator when one
of the variables lies on the boundary. In part II [PRRS] different methods will
be used to approximate the full kernel. In Sections 4 we use the methods from
Section 3 to compute approximations to the kernels of various spectral operators
which solve space-time differential equations, including the heat equation, the
wave equation, and the Laplace equation.

In our numerical approximations we will truncate the infinite sum (1.3)
after a finite number of terms. In the case of ordinary Fourier expansions this
procedure is unreliable due to well-known convergence problems. But on SG it
was shown in [S4] that, as long as we take natural truncation points sm that
sum up to a gap in the spectrum, that the partial sums∑

λ≤sm

∫
Pλ(x, y)u(y)dµ(y) (1.6)
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converge uniformly to u if u is continuous. It follows that doing a similar
truncation to (1.3) should yield a good approximation of the spectral operator.

The known estimates for the heat kernel imply that on the diagonal it is
bounded above and below by t−α for α = log 3/ log 5 as t → 0. However,
the numerical evidence presented in Section 4 is that tαht(x, x) for x a point
on the boundary behaves asymptotically like a periodic function of log t with
period log 5. Similar evidence, but this time for the normal derivatives of the
heat kernel, was noted in [BSSY]. In Section 2 we actually prove the analogous
statement for the traces of the heat kernel∫

ht(x, x)dµ(x). (1.7)

Note that this is expressible entirely in terms of the eigenvalues, namely
∞∑

j=1

e−tλj ({λj} as in (1.1)). (1.8)

It is not hard to relate this to the eigenvalue counting function

N(s) = #{j : λj ≤ s}, (1.9)

and the proof is based on the known asymptotics of N(s). In particular, we are
able to show that the periodic function in question is nonconstant and is close
to, but not exactly equal to a pure sine function.

We now present a brief summary of the pertinent facts about the Laplacian
on SG and its spectrum. For more details the reader may consult the books
[Ba], [Ki] and [S5], or the expository paper [S1]. We realize SG as the limit of
graphs Γm with vertices Vm and edge relation x ∼

m
y. Γ0 is simply the complete

graph on three vertices V0 = {q0, q1, q2} which we identify with the vertices of
an equilateral traingle in the plane. Let Fi denote the plane homothety with
contraction ratio 1/2 and fixed–point qi. Then we define inductively Vm =⋃
i

FiVm−1. Let w = (w1, . . . , wm) denote a word of length |w| = m with each

wj taking on the values 0, 1, 2, and define Fw = Fw1 ◦ Fw2 ◦ · · · ◦ Fwm . Then

Vm =
⋃

|w|=m

FwV0. (1.10)

The points in V0 will be regarded as boundary points in each of the graphs Γm

and SG. Every nonboundary point x ∈ Vm \ V0 can be written in two distinct
ways x = Fwqi = Fw′qi′ in (1.10), and will be called a junction point. It is
easy to see that V0 ⊆ V1 ⊆ V2 ⊆ · · · . We define V∗ =

⋃
m

Vm. Then SG is the

closure of V∗ in the plane. This agrees with the usual definition as the unique
nonempty compact set satisfying

K =
2⋃

i=0

FiK.
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Since all the functions with which we are concerned are continuous, it suffices
to understand their restriction to V∗.

We call FwK an m–cell (m = |w|) and regard FwV0 as its boundary. Note
that each point x ∈ Vm \ V0 has exactly four neighbors in Γm, two in each of
the m–cells that contain x as a boundary point. (Of course x also belongs to
Vm′ \V0 for any m′ ≥ m, but its neighbors in Γm′ will vary with m′.) We define
the Laplacian by

∆u(x) = lim
m→∞

3
2
5m

∑
y∼

m
x

(u(y)− u(x)) (1.11)

for x ∈ V∗ \ V0. Note that this very closely resembles the definition of the sec-
ond derivative on the line as a limit of difference quotients. Also the summation
on the right side of (1.11) is exactly the graph Laplacian on Γm. The precise
definition is that u ∈ dom ∆ and ∆u = f provided u and f are continuous
and f is given by the right side of (1.11), with a uniform limit. This Laplacian
has a self–adjoint closure on L2(µ), here µ is the symmetric self–similar prob-
ability measure on SG, with either Dirichlet or Neumann boundary conditions.
Dirichlet conditions require the vanishing of u on the boundary, while Neumann
conditions require the vanishing of the normal derivative ∂nu on the boundary,
defined by

∂nu(qi) = lim
m→∞

(5
3

)m ∑
y∼

m
qi

(u(qi)− u(y)) (1.12)

(there are two terms in the sum). The normal derivatives exist for every u ∈
dom ∆. Perhaps the best way to think about these boundary conditions is in
terms of the double S̃G, obtained by gluing together two copies of SG at the
three corresponding boundary points. (This is a special case of the fractafold
construction in [S2], and is analogous to constructing a circle by gluing together
two intervals.) The double S̃G has no boundary, and we can define a Laplacian
∆̃ on it exactly as before. Then Dirichlet boundary conditions correspond to
functions that have odd extensions to S̃G in dom ∆̃, and Neumann boundary
conditions correspond to functions that have even extensions to S̃G in dom ∆̃.

Since both Dirichlet and Neumann Laplacians have compact resolvants, there
is a discrete orthonormal basis {uj} of eigenfunctions

−∆uj = λju, 0 ≤ λ1 ≤ λ2 ≤ · · · → +∞. (1.13)

Moreover, there is an exact decription of the eigenfunctions and eigenvalues
via the method of spectral decimation [Sh1], [FS]. Consider any eigenfunction,
−∆u = λu, without imposing any boundary condition. Then there exists a
generation of birth m0 ≥ 0, such that u|Vm is an eigenfunction of the graph
Laplacians,

∆mu(x) =
∑
y∼

m
x

(u(y)− u(x)) = −λmu(x) (1.14)
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for x ∈ Vm \V0, for all m ≥ m0 (when m0 = 0 we only require m ≥ 1 in (1.14)),
where the sequence {λm} of discrete eigenvalues (not related to the eigenvalues
in (1.13)) is determined by

λ = lim
m→∞

3
2
5mλm (1.15)

λm−1 = λm(5− λm) for m > m0. (1.16)

Conversely, given any functon u on Vm0 satisfying the λm0–eigenvalue equation,
it is possible to extend u to all V∗ to satisfy the λm–eigenvalue equation on Γm

for all m ≥ m0, and hence the λ–eigenvalue equation on SG, provided (1.15) and
(1.16) hold, and provided λm does not equal one of the “forbidden” eigenvalues
2, 5 or 6 for m > m0. Note that we do not exclude λm0 = 2, 5 or 6, but if
λm0 = 6 then we do exclude λm0+1 = 2 (this does satisfy (1.16)), but allow
λm0+1 = 3. In general we can find two solutions of (1.16), namely

λm =
5 + εm

√
25− 4λm−1

2
for εm = ±1, (1.17)

and if we start with any value of λm0 we may use (1.17) to define subsequent
values of λm, provided that we make all but a finite number of choices εm = −1
to make the limit (1.15) exist.

The extension of u from Vm−1 to Vm is given by the following explicit local
algorithm. Let |w| = m − 1, and consider the (m − 1)–cell FwK. We assume
that the values u(Fwqi) are known, since Fwqi ∈ Vm−1. Consider a point in
Vm ∩ FwK, say FwF0q1 to be specific. Then

u(FwF0q1) = 4−λm

(2−λm)(5−λm) (u(Fwq0) + u(Fwq1))

+ 2
(2−λm)(5−λm)u(Fwq2). (1.18)

(By the way, it is clear from (1.18) why λm = 2 or 5 are forbidden; that 6 is
also forbidden has a subtler explanation.)

The above description is valid for all eigenfunctions, but if we impose Dirich-
let or Neumann boundary conditions we can say more. (In the Neumann case
we exclude the constant function with eigenvalue zero in what follows.) Namely
λm0 must be a forbidden eigenvalue. We then refer to the eigenvalues as be-
longing to the 2–series, 5–series or 6–series. The value 2 occurs only in the
Dirichlet case and m0 = 1, with multiplicity one. Otherwise λm0 = 5 or 6
(in the Neumann case λm0 = 5 requires m0 ≥ 2, while in the Dirichlet case
λm0 = 5 requires m0 ≥ 1 and λm0 = 6 requires m0 ≥ 2) and the multiplicity
grows exponentially with m0. For example, in the Neumann case the multiplic-
ity for λm0 = 6 is #(Vm0−1) = 3m0+3

2 , and we can take essentially any values
for u|Vm0−1 to determine an eigenfunction (using (1.18) to extend u to Vm0).
This is the case that we will examine in detail in Section 3.
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2 Trace of the heat kernel

We begin with a rather generic observation relating the trace of the heat kernel
and the eigenvalue counting function. Consider any “Laplacian” with eigenval-
ues

0 ≤ λ1 ≤ λ2 ≤ · · · → +∞ (2.1)

repeated according to multiplicities. The eigenvalue counting function is

N(s) = #{j : λj ≤ s} for s > 0 (2.2)

and the trace of the heat kernel is

h(t) =
∞∑

j=1

e−tλj , for t > 0. (2.3)

Then clearly

h(t) =
∫ ∞

0

te−tsN(s)ds. (2.4)

We are interested in the consequences for the trace of heat kernel of estimates
of the form

N(s) = sβψ(s) + o(sβ) as s→∞ (2.5)

for some β > 0, where ψ is bounded away from zero, bounded, and multiplici-
tively periodic,

ψ(τs) = ψ(s) for some τ > 1. (2.6)

Note that we do not want to assume that ψ is continuous, but we certainly
should assume that it is measurable.

Theorem 2.1. Assume (2.5) holds as above. Then h(t) satisfies

h(t) = t−βg(t) + o(t−β) as t→ 0+ (2.7)

where g(t) is bounded away from zero, bounded, and multiplicatively periodic as
in (2.6) for the same period τ . Moreover g is continuous on (0,∞) and is given
by

g(t) =
∫ ∞

0

e−ssβψ(s/t)ds. (2.8)

Proof. Substituting (2.5) in (2.4) we obtain

h(t) =
∫ ∞

0

te−tssβψ(s)ds+R(t) (2.9)

for
R(t) =

∫ ∞

0

te−tso(sβ)ds. (2.10)

It is clear by a change of variable that the first term on the right side of (2.9) is
equal to t−βg(t). Also by a change of variable, g(t) satisfies the multiplicative
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periodicity condition. Clearly g(t) is positive, and the continuity follows by
standard convolution–type arguments. So it suffices to show that R(t) = o(t−β).
Given ε > 0, choose T so that o(sβ) ≤ εsβ for s ≥ T . Then, since β > 0 (so
o(sβ) is bounded above),

R(t) ≤ c

∫ T

0

te−tsds+ ε

∫ ∞

T

te−tssβds

hence
tβR(t) ≤ cT tβ+1 + ε

∫ ∞

Tt

e−ssβds,

and this can be made less than a fixed multiple of ε by taking t small enough.

Theorem 2.2. If ψ is nonconstant then g is nonconstant.

Proof. Let Ψ(x) = ψ(ex) and G(x) = g(ex). It suffices to show that if Ψ is
nonconstant then so is G. But Ψ is a periodic function of period log τ , so it can
be expanded in a Fourier series

Ψ(x) =
∞∑
−∞

cne
2πinx/ log τ . (2.11)

To say that Ψ is nonconstant is to say that some cn 6= 0 for n 6= 0. By
substituting (2.11) in (2.8) we can compute the Fourier series expansion of G,

G(x) =
∫ ∞

0

e−ssβΨ(log s− x)ds

=
∞∑
−∞

cn

( ∫ ∞

0

e−ss(β+ 2πin
log τ )ds

)
e−2πinx/ log τ

=
∞∑
−∞

cnΓ
(
1 + β +

2πin
log τ

)
e−2πinx/ log τ .

(2.12)

Since the Γ-function never vanishes, it follows that G is nonconstant. (We’ve
subtly exchanged a sum and an integral above, using convergence assumptions
justified elsewhere.)

For the standard Laplacian on SG (with Dirichlet or Neumann boundary
conditions), the estimate (2.5) holds for β = log 3/ log 5 and τ = 5 [KL]. The
function ψ (it is the same for either boundary condition) is known to be dis-
continuous, so it is certainly not constant. So the estimate (2.7) holds with
nonconstant function g. Since the heat kernel is multiplicative for products
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[S3], it follows that for SGk (the k–fold product) the trace of the heat kernel
satisfies

hk(t) = t−k log 3/ log 5gk(t) + o(t−k log 3/ log 5) as t→ 0+ (2.13)

for gk(t) = (g1(t))k.
We conjecture that the spectral counting function for SGk satisfies

Nk(s) = sk log 3/ log 5ψ(s) + o(sk log 3/ log 5) as s→∞. (2.14)

It is not clear how to run the argument of Theorem 1 backward to deduce (2.14)
from (2.13). Another approach might be to try to deduce (2.14) from the k = 1
case. In the meantime we present experimental evidence.

Figures 1, 2, and 3 show the graph of s−k log 3/ log 5Nk(s) on a logarithmic
scale (x = es) for k = 1, 2, 3. We see clearly a rapid convergence to the periodic
function Ψk(x). We see an improvement in the behavior of this function, both
in the relative range of values and the “smoothness” of the graph (although the
functions are all discontinuous) as k increases. In Figure 4 we show the graph
of tlog 3/ log 5h1(t) on a logarithmic scale. Note the strong resemblence to a sine
curve. In Figure 5 we show the remainder after subtracting off the best fitting
function of the form a sin(bx+ c) + d. The values we found are

a = 0.00063199
b = 8.98969426
c = 1.55780347
d = 0.13356482.

Note that the predicted period is log10 5 which yields the value b = 2π/ log10 5 =
8.9892059, rather close to the fitted value. The relative amplitude of the remain-
der to the value of a (the amplitude of the sine curve) is about 1/60. This is easy
to understand using the Fourier series (2.12). While we don’t have much infor-
mation about the coefficients cn, the gamma factors decay exponentially with
n. So only the terms corresponding to small values of n contribute significantly
to the sum. In fact ∣∣∣Γ(

1 + β +
2πi
log τ

)∣∣∣ = 0.02765160

and ∣∣∣Γ(
1 + β +

4πi
log τ

)∣∣∣ = 0.00013481,

so on this basis we would expect the remainder to have a relative amplitude of
about 1/200.

3 Spectral decimation

One of the big technical obstacles to computing kernels of spectral operators is
the existence of eigenspaces of high multiplicity with no obvious orthonormal
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Figure 1:

1

Figure 1: Weyl’s Ratio for SG1

Figure 1:

1

Figure 2: Weyl’s Ratio for SG2

Figure 1:

1

Figure 3: Weyl’s Ratio for SG3 (vertical scale in 1000’s)

10



Figure 4: tlog 3/ log 5h1(t)

Figure 5: Difference from pure sine curve
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basis. To make matters worse, these eigenspaces correspond to the discrete
eigenvalues 5 and 6 which are among the “forbidden” values for the method
of spectral decimation. In this section we present a “magic cure” for both
problems in the special case that we fix one of the variables to be a boundary
point. We believe that a similar, but more complicated, method might work for
other junction points.

Let Eλ denote an eigenspace of dimension N , and let ϕ1, . . . , ϕN be any
real–valued orthonormal basis. Then the kernel of the projection onto Eλ is

Pλ(x, y) =
N∑

j=1

ϕj(x)ϕj(y), (3.1)

independent of the orthonormal basis. If we fix a value of x, we might try to
choose the orthonormal basis to simplify the computation of (3.1). In particular,
let Ex

λ denote the subspace of Eλ of functions vanishing at x. Typically this has
codimension one. Then if we choose ϕ2, . . . , ϕN to be an orthonormal basis of
Ex

λ , we have
Pλ(x, y) = ϕ1(x)ϕ1(y) (3.2)

where ϕ1 is a normalized function in (Ex
λ)⊥. This is a drastic simplification,

especially if we have some method to compute a function in (Ex
λ)⊥.

Now we specialize to the case x = q0 and Neumann boundary conditions.
We note that all eigenfunctions for λ in the 5–series vanish on the boundary,
so the only nonzero Pλ(q0, y) functions correspond to the 6–series. That means
there is a generation of birth m0 (m0 ≥ 0), with λm0 = 6, λm0+1 = 3, and
inductively

λk+1 =
5 + εk

√
25− 4λk

2
for k ≥ m0 + 1, (3.3)

for εk = ±1, with all but a finite number = −1. The eigenvalue λ is given by

λ =
3
2

lim
k→∞

5kλk, (3.4)

and we can solve (3.3) to obtain

λk = λk+1(5− λk+1). (3.5)

(This is the process described in equations 1.16 and 1.17 in reverse.) The space
of eigenfunctions has dimension #(Vm0−1), and may be described as follows:
choose arbitrary values on Vm0−1, and then extend to Vk for k ≥ m0 inductively
by spectral decimation. (The case m0 = 0 will be treated separately.) This
space has an obvious basis, namely {ux} for x ∈ Vm0−1 defined by

ux(y) = δxy for y ∈ Vm0−1, (3.6)

but these functions are not orthogonal. However, it is clear that Eq0
λ is spanned

by {ux} as x varies over Vm0−1 \ {q0}. So (Eq0
λ )⊥ is defined by orthogonality
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to ux for all x ∈ Vm0−1 \ {q0}, and it is not difficult to understand what this
means.

Note that (3.5) enables us to define λk for all values of k. In particular
λm0−1 = −6. Ordinarily this is meaningless. The restriction to Vm0−1 of a
function in Eλ is arbitrary, so it will not in general satisfy a λm0−1–eigenvalue
equation, and neither will the restriction to Vk for any k < m0 satisfy a λk–
eigenvalue equation. (This is symptomatic of the fact that 6 is a forbidden eigen-
value for the spectral decimation method.) Miraculously, functions in (Eq0

λ )⊥

will have these properties on restrictions to coarser graphs. In fact we will
show that the orthogonality condition to ux for x ∈ Vm0−1 \ V0 is exactly the
(−6)–eigenvalue equation at x (for x = q1 or q2 it is a Neumann type boundary
condition). Once we know this, then the spectral decimation method applied
in reverse gives the analogous statements on Vk for k < m0 − 1, since we never
encounter a forbidden eigenvalue again.

The key to this approach is the following computational lemma:

Lemma 3.1. For any 6-series eigenvalue with m0 = 1,

〈uq0 , uq1〉 = −1
5
〈uq0 , uq0〉. (3.7)

Proof. Using spectral decimation, we compute the values of 2uq0 and 2uq1 on
V1 in Figure 3.1 (the factor 2 makes all values integers). By Corollary 2.4 of
[OSS], the inner products are proportional to the discrete inner product

〈f, g〉1 =
∑
x∈V0

f(x)g(x) + 2
∑

x∈V1\V0

f(x)g(x). (3.8)

We compute 〈uq0 , uq0〉1 = 10 and 〈uq0 , uq1〉 = −2, so (3.7) follows.

2 0

0 -11

1

20 0

-1 -1-1

2uq0
2uq1

Figure 6: 6-series characteristic eigenfunctions with m0 = 1

Theorem 3.2. (cf. [T], Theorem 3.6) Consider any 6–series eigenvalue with
m0 ≥ 1.

(a) For any x ∈ Vm0−1 \ V0, the condition 〈u, ux〉 = 0 is equivalent to

10u(x) =
∑

y ∼
(m0−1)

x

u(y), (3.9)
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the (-6)–eigenvalue equation on level m0 − 1 at x.
(b) For x = q1 or q2, the condition 〈u, ux〉 = 0 is equivalent to

5u(x) =
∑

y ∼
(m0−1)

x

u(y), (3.10)

the Neumann boundary condition at x (for a (-6)–eigenfunction on level m0−1).
(c) If u ∈ (Eq0

λ )⊥, then the restriction of u to Vm0−1 is a (-6)–eigenfunction
satisfying Neumann boundary conditions at q1 and q2.

Proof. We can write
u =

∑
Vm0−1

u(y)uy, (3.11)

so
〈u, ux〉 =

∑
Vm0−1

u(y)〈uy, ux〉. (3.12)

If x and y are not neighbors in Vm0−1, then ux and uy have disjoint support
so 〈ux, uy〉 = 0. If x 6= y are neighbors in Vm0−1 then the supports of ux

and uy overlap in exactly one (m0 − 1)-cell, namely the one containing x and
y, and 〈ux, uy〉 = −c independent of the pair (x, y). If x = y = q1 or q2 then
〈uqi

, uqi
〉 = 5c by Lemma 3.1. On the other hand, if x = y ∈ Vm0−1\V0 then the

support of ux is contained in two (m0−1)–cells, so 〈ux, ux〉 = 10c by Lemma 3.1.
Thus the equation (3.12) equals zero becomes (3.9) or (3.10) in the two cases.
Since 10 = 4 − (−6), (3.9) is the (-6)-eigenvalue equation. At the boundary
we need to extend the function by even reflection and impose the eigenvalue
equation to check the Neumann boundary condition, and so (3.10) verifies this.
Then (c) follows by applying (a) and (b) at all points x ∈ Vm0−1 \ {q0}.

The case m0 = 0 is slightly different. Here the space Eλ has dimension 2,
and is obtained by assigning values on V0 satisfying u(q0) + u(q1) + u(q2) = 0,
and extending to V1 with λ1 = 3, etc. There is an obvious basis consisting
of an even function (u(q0) = 2, u(q1) = u(q2) = −1) and an odd function
(u(q0) = 0, u(q1) = −u(q2) = 1) and these are orthogonal. Thus the even
function generates (Eq0

λ )⊥. Figure 3.2 shows its values on V1. The fact that this
function takes the same value at the point F1q2 = F2q1 as it does at q1 and q2
is no coincidence. In fact it is constant along the whole line segment joining q1
and q2, as can be shown by symmetry consideration. In fact the same is true
for all the functions in (Eq0

λ )⊥, and this enables us to identify them, up to a
constant, with the level eigenfunctions described in Section 7 of [BSSY].

We will denote this function Lλ (slightly different notation was used in
[BSSY]). It is described by setting

Lλ(q1) = Lλ(q2) = 1, Lλ(q0) = 1− λ0

2
(3.13)
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Figure 7: (Eq0
λ )⊥

(we are using (3.5) to define λj) and applying spectral decimation. In particular

Lλ(Fwq0) = 1− λm

2
for all w with |w| = m and all wi = 1 or 2 (3.14)

and by continuity

Lλ(y) = 1 for y on the line segment between q1 and q2. (3.15)

Figure 8 shows the values of Lλ on V1 and V2 for m0 = 1 and m0 = 2. It is
easy to see that ∂nLλ(qj) = 0 for j = 1, 2 because this equation is identical to
the level m eigenfunction equation at any nonboundary vertex along the line
segment. It follows by Theorem 3.2 (c) that Lλ belongs to (Eq0

λ )⊥, and hence
generates the space because it is 1–dimensional.

4

1

-2-2

1 1 11 11 1

4

-17

-2 -2-2-2

4
13

-17

34

m0=1 m0=2

Figure 8: Lλ on V1 and V2 for m0 = 1 and m0 = 2

Next we consider the normalization factor. We need to compute

〈Lλ,Lλ〉, (3.16)

for then we should take ϕ1 = 〈Lλ,Lλ〉−1/2Lλ in (3.2), so

Pλ(x, y) = 〈Lλ,Lλ〉−1Lλ(x)Lλ(y). (3.17)

We can express (3.16) as a product of two factors, one which depends only
on m0, and one which depends on the sequence {εj}j≥m0+1. We denote this

15



sequence by ε, and let uq0 be the function in Lemma 3.1 with m0 = 1 and this
choice of ε (so this determines λ). Write

c(ε) = 〈uq0 , uq0〉. (3.18)

Then Lemma 3.1 implies

〈u, u〉 =
1

3m0−1

(
5

∑
x∈V0

u(x)2 + 10
∑

x∈Vm−1\V0

u(x)2

− 2
∑

x,y∈Vm−1;x6=y

u(x)u(y))
)
c(ε)

=
1

3m0−1

∑
|w|=m0−1

(
5

∑
i

u(Fwqi)2 − 2
∑

u(Fwqi)u(Fwqi+1)
)
c(ε)

(3.19)

for any u ∈ Eλ.
Now the computation of c(ε) has been done in Corollary 2.4 of [OSS], namely

c(ε) =
2
9

∞∏
j=m0+1

b(λj) (3.20)

for

b(t) =

(
1− 1

6 t
)(

1− 2
5 t

)(
1− 1

5 t
)(

1− 1
2 t

) (3.21)

(the proof given in [OSS] assumed Dirichlet boundary conditions, but it can
easily be modified for all eigenfunctions).

Table 3 displays the values of c(ε) for different choices of ε. Thus it remains
to compute the other factor in (3.19) for u = Lλ. To do this we introduce the
notation

QA,B(f) = A
( ∑

i

f(qi)2
)
−B

( ∑
i

f(qi)f(qi+1)
)

(3.22)

for f a function on V0, where A and B are positive parameters. Then (3.19)
can be expressed as

〈u, u〉 =
1

3m0−1

∑
|w|=m0−1

Q5,2(u ◦ Fw)c(ε). (3.23)

We would like to recursively determine values of Ak, Bk for k ≤ m0 − 1 such
that

Km0 =
∑
|w|=k

QAk,Bk
(u ◦ Fw) (3.24)

is independent of k, with Am0−1 = 5, Bm0−1 = 2. If we can do this, then for
u = Lλ we have

Km0 = A0

((
1− λ0

2

)2

+ 2
)
−B0

(
1 + 2

(
1− λ0

2

))
(3.25)
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ε λ (105) c(ε) ε λ (105) c(ε)
−−−−−− 0.000271 2.7784 −−−−++ 5.38742 0.12786
+−−−−− 0.002197 2.2811 +−−−++ 5.39469 0.29747
+ +−−−− 0.009528 2.4335 + +−−++ 5.42217 0.64963
−+−−−− 0.013290 1.0803 −+−−++ 5.43615 0.33772
−+ +−−− 0.044090 1.3275 −+ +−++ 5.54747 0.70901
+ + +−−− 0.050039 2.3823 + + +−++ 5.56838 1.3403
+−+−−− 0.064462 1.1126 +−+−++ 5.61833 0.69226
−−+−−− 0.069155 0.49415 −−+−++ 5.63437 0.31588
−−+ +−− 0.216476 0.62958 −−+ + ++ 6.09296 0.59942
+−+ +−− 0.223418 1.3326 +−+ + ++ 6.11277 1.2832
+ + + +−− 0.246180 2.3993 + + + + ++ 6.17677 2.3955
−+ + +−− 0.256271 1.2452 −+ + + ++ 6.20469 1.2631
−+−+−− 0.317041 0.57545 −+−+ ++ 6.36740 0.64503
+ +−+−− 0.325709 1.1108 + +−+ ++ 6.38989 1.2647
+−−+−− 0.343623 0.51455 +−−+ ++ 6.43584 0.60632
−−−+−− 0.348858 0.22210 −−−+ ++ 6.44843 0.26436
−−−+ +− 1.07830 0.28517 −−−+−+ 7.88927 0.12095
+−−+ +− 1.08552 0.65173 +−−+−+ 7.90041 0.27836
+ +−+ +− 1.11200 1.3419 + +−+−+ 7.94086 0.58626
−+−+ +− 1.12503 0.68919 −+−+−+ 7.96054 0.29997
−+ + + +− 1.22086 1.2721 −+ + +−+ 8.10044 0.58808
+ + + + +− 1.23758 2.3936 + + + +−+ 8.12401 1.1121
+−+ + +− 1.27622 1.2590 +−+ +−+ 8.17754 0.59028
−−+ + +− 1.28826 0.58481 −−+ +−+ 8.19397 0.27478
−−+−+− 1.57911 0.26809 −−+−−+ 8.55450 0.12475
+−+−+− 1.58971 0.58442 +−+−−+ 8.56638 0.27142
+ + +−+− 1.62292 1.1126 + + +−−+ 8.60304 0.51332
−+ +−+− 1.63691 0.58435 −+ +−−+ 8.61823 0.26878
−+−−+− 1.71227 0.26748 −+−−−+ 8.69757 0.12077
+ +−−+− 1.72183 0.51186 + +−−−+ 8.70734 0.23051
+−−−+− 1.74071 0.23196 +−−−−+ 8.72643 0.10391
−−−−+− 1.74572 0.09943 −−−−−+ 8.73145 0.44475

Table 1: c(ε) and associated eigenvalues
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and finally

〈Lλ,Lλ〉 =
1

3m0−1
Km0c(ε). (3.26)

To determine the recursion relation we want the identity

QAk−1,Bk−1(u ◦ Fw) =
∑

j

QAk,Bk
(u ◦ Fw ◦ Fj) (3.27)

to hold for all |w| = k − 1. This is clearly independent of w, and involves the
λk–eigenfunction extension algorithm. If we denote x0, x1, x2 the values of u on
the boundary of the (k − 1)–cell FwK, then

QAk−1,Bk−1(u ◦Fw) = Ak−1(x2
0 + x2

1 + x2
2)−Bk−1(x0x1 + x1x2 + x2x0). (3.28)

The values of u on the points of (Vk \ Vk−1) ∩ FwK are given by

(4− λk)(x1 + x2) + 2x0

(2− λk)(5− λk)
, etc. (3.29)

We use these on the right side of (3.27), expand out, and equate the coefficients
of x2

0 + x2
1 + x2

2 and x0x1 + x1x1 + x2x0 on both sides to obtainAk−1 =
(
1 + 4(4−λk)2+8

(2−λk)2(5−λk)2

)
Ak −

(
2(4−λk)

(2−λk)(5−λk) + (4−λk)(8−λk)
(2−λk)2(5−λk)2

)
Bk

Bk−1 = −
(

4(4−λk)(6−λk)
(2−λk)2(5−λk)2

)
Ak +

(
2(6−λk)

(2−λk)(5−λk) + 3(4−λk)2+4(5−λk)
(2−λk)2(5−λk)2

)
Bk.

(3.30)
In Table 2 we display the values ofKm0 . In Figure 9 we show graphs of Lλ(x)

for various choices of m0 and ε. Figure 10 shows the restrictions of several such
graphs to the line segment joining q0 to q1.

m0 Km0 m0 Km0 m0 Km0

1 2.5× 10−1 5 3.9× 10−8 9 2.9× 10−118

2 9.6× 10−2 6 1.8× 10−15 10 9.6× 10−236

3 1.2× 10−2 7 3.6× 10−30

4 1.8× 10−4 8 1.6× 10−59

Table 2: Km0

4 Space-time equations

The heat equation

∂u(x, t)
∂t

= ∆xu(x, t) for x ∈ SG, t > 0, (4.1)
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Figure 9: m0 = 0, 1, 2, 3, 4
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Figure 10: Restrictions of some graphs from figure 9 to a line segment
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subject to the initial conditions

u(x, 0) = f(x) (4.2)

and either Dirichlet or Neumann boundary condtions, is solved by the spectral
operator

u(x, t) =
∑

λ

e−λt

∫
Pλ(x, y)f(y)dµ(y) (4.3)

whose kernel is the heat kernel

ht(x, y) =
∑

λ

e−λtPλ(x, y). (4.4)

Choosing Neumann boundary conditions and x = q0, we may use the methods
of Section 3 to compute good approximations to ht(q0, y). Clearly, the closer t
is to zero, the more terms we need to take in the sum. When y = q0 we are on
the diagonal. If we plot tαht(q0, q0) on a logarithmic scale and the remainder
after subtracting the best fitting sine curve, the results are nearly identical to
the corresponding graphs for the trace of the heat kernel presented in Section 2
(figures 4 and 5). Figure 11 gives a plot of tαht(q0, q0) on a logarithmic scale.
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Figure 11: tlog 3/ log 5ht(q0, q0)

Another important space–time equation is the wave equation

∂2u(x, t)
∂t2

= ∆xu(x, t) (4.5)

with initial conditions {
u(x, 0) = f0(x)
∂u
∂t (x, 0) = f1(x)

(4.6)
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and either Dirichlet or Neumann boundary conditions. It is conventional to
define the wave propagator by setting f0 = 0 and considering the map Wt :
f1 → u(·, t). This is a spectral operator given by

u(x, t) =
∑

λ

sin t
√
λ√

λ

∫
Pλ(x, y)f1(y)dµ(y) (4.7)

with kernel

Wt(x, y) =
∑

λ

sin t
√
λ√

λ
Pλ(x, y). (4.8)

(The general solution is easily obtained from Wt, and even the solution to an
inhomogeneous version of (4.5) may be expressed using a Duhamel type inte-
gral.) Previous attempts to compute Wt ([DSV] and [CDS]) have been rather
frustrating because it appears to be highly oscillatory, and we were no more
successful using the method of Section 3. However, we found it was possible to
compute the time integral ∫ t

0

Ws(x, y)ds (4.9)

of the wave propagator, also a spectral operator with kernel

∑
λ

(1− cos t
√
λ

λ

)
Pλ(x, y), (4.10)

as this is now an absolutely convergent sum. This is still a highly oscillatory
function, but the partial sums appear to be converging. The wave propagator
itself is the derivataive of this function. Figure 12 shows the trace, which is just

∞∑
j=1

1− cos t
√
λj

λj
. (4.11)

The last space–time equation we consider is the Laplace equation

∂2u(x, t)
∂t2

+ ∆λu(x, t) = 0 in t > 0 (4.12)

subject to the same initial and boundary conditions as the heat equation, as
well as the condition that u is bounded as t → ∞. This leads to a spectral
operator whose kernel is the Poisson kernel

pt(x, y) =
∑

λ

e−t
√

λPλ(x, y). (4.13)

The well-known Bochner formula

Pt(x, y) =
1√
π

∫ ∞

0

e−u

√
u
ht2/4u(x, y)du (4.14)
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Figure 12: Trace of the integral of the wave propagator

relates the heat and Poisson kernels, and allows us to transfer asymptotic state-
ments, such as those discussed in section 2. For example, we can substitute
equation 2.7 into 4.14. If we write the Fourier series expansion

g(t) =
∞∑
−∞

bne
−2πin log t/ log τ (4.15)

then the trace p(t) =
∫
pt(x, x)dµ(x) satisfies

p(t) = t−2β
∞∑
−∞

cnbne
−2πin log t/ log τ +R(t) (4.16)

for
cn =

1
π

∫ ∞

0

e−uuβ− 1
2 e2πin log(tu)/ log τdu, (4.17)

with remainder

R(t) =
1√
π

∫ ∞

0

e−u

√
u
o

(
4u
t2

)β

du = o(t−2β) (4.18)

Figure 13 shows the graph of t2βp(t). We can also evaluate the Poisson kernel
at any junction point, and 14 shows the kernel at (q0, q0).
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