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Preface

On May 20—24, 1968, a Conference on Functional Analysis and
Related Fields was held at the Center for Continuing Education of the
University of Chicago in honor of Professor MARSHALL HARVEY STONE
on the occasion of his retirement from active service at the University.
The Conference received support from the Air Force Office of Scientific
Research under the Grant AFOSR 68-1497. The Organizing committee
for this Conference consisted of ALBERTO P. CALDERON, SAUNDERS
MacLANE, ROBERT G. POHRER, and FELIX E. BROWDER (Chairman).

The present volume contains some of the papers presented at the
Conference. Other talks which were presented at the Conference for
which papers are not.included here are:

K. CHANDRASEKHARAN, ““Zeta functions of quadratic fields”;

J. L. Doos, “An application of probability theory to the Choquet

boundary’’;

P. Harmos, “Irreducible operators’;

R. Kap1soN, ““ Strong continuity of operator functions’’;

L. NIRENBERG, “‘ Intrinsic norms on complex manifolds”;

D. Scorr, ““ Some problems and recent results in Boolean algebras’’;

I. M. SINGER, “A conjecture relating the Reidemeister torsion and

the zeta function of the Laplacian”.

A banquet in honor of Professor STONE was held during the Con-
ference, with brief talks by S.S. CHERN, A. A. ALBERT, S. MACLANE,
E. Hewirt, K. CHANDRASEKHARAN, and F.E.Browbper (as Toast-
master), as well as a response by Professor STONE.

F. E. BROWDER
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Nonlinear Eigenvalue Problems
and Group Invariance

By Ferix E. BROWDER

Department of Mathematics, The University of Chicago

Introduction

In the transition from linear to nonlinear functional analysis, a very
special position is occupied by the spectral theory of self-adjoint operators
in Hilbert space. Its most important nonlinear generalization occurs in
the framework of the topological theory of variational problems, the
Morse theory and the theory of LUSTERNIK-SCHNIRELMANN, two of the
many topics that have been gathered together in recent literature
under the general title of global amalysis or analysis on manifolds.
Although the Morse theory has played an exceptionally important role
in the development of topology and geometry in the past two decades,
from the point of view of analytical problems and particularly problems
on the existence of solutions of nonlinear partial differential equations,
it seems clear that the Lusternik-Schnirelmann theory must play a more
important role. The decisive reason for this is that the Lusternik-
Schnirelmann theory yields existence results for critical points of given
variational problems while in most analytic contexts, the Morse theory
yields such results only for generic problems; and while in the context of
differential topology, the usual problem is one of a class of essentially
equivalent ones, for the proof of existence of eigenfunctions of a given
partial differential operator it is not satisfactory to obtain results for
similar or nearby problems.

It is our purpose in the present discussion to present a complete
development of the Lusternik-Schnirelmann theory and of its application
to nonlinear eigenvalue problems in a form which yields a generalized
Sturm-Liouville theory for eigenfunctions of nonlinear elliptic boundary
value problems of the form

2 (=)D A, (x, u, ..., D"u) =2 3, (—1)PIDEBy(x, u, ..., D*u)
|| Zm |Bl=% J
1 Functional Analysis
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where % <<, and the two operators are Euler-Lagrange operators of two
multiple integral functionals:

oG i
AaZT@,g(%FfG(x,u,...,D u) dz,

o0Kp
By=5e b(¥) = [E(x, u,..., D u) da.

Our discussion differs in a number of respects from earlier treatments
both of the abstract Lusternik-Schnirelmann theory and of its application
to eigenvalue problems. The first and most important respect is our
emphasis in the applications upon the role of group invariance of the
given problems as the feature which makes non-trivial results possible
from the theory. The conventional applications in the past have been
to even functionals and the writer has been aware for several years that
the use of this hypothesis was only a special case of the application of
the invariance of the problem under a group of transformations s having
at least one element of finite order. We develop the theory in detail from
this point of view, both because it makes the theory in its usual form
more transparent and because of its significance as part of a general
program of relating significant results in nonlinear functional analysis
to hypotheses of group invariance (whose importance was emphasized
to the writer by V. BARGMANN).

In the second place, we place a great emphasis in the general theory
upon obtaining results under the weakest possible regularity assumptions
upon the functionals and manifolds involved. There is a very strong
motive behind this emphasis, namely the character of the applications.
In the nonlinear elliptic eigenvalue problems of the form A (u) =AB (u)
of the form which we have written above, hypotheses of differentiability
upon the functionals involved beyond the C? framework involve burden-
some hypotheses in terms of differentiability and growth conditions on
the derivatives of the functions 4, and B,. Ideally, however, the gen-
eralized eigenfunction theory for the nonlinear case ought to be valid
under hypotheses of the same type as the existence theory of solutions
under elliptic boundary conditions of the equation A (#) =f. That is in
fact possible as shown below (and was shown earlier in the writer’s
previous papers[3],[4]) on the basis of two somewhat different techniques,
transplantation and Galerkin approximations. The results of the first
technique in its most general form is embodied in Theorem 9 of Section 6,
while the study of the convergence of finite-dimensional Galerkin or
Rayleigh-Ritz approximations to the higher order eigenfunctions for
the nonlinear case is carried through in detail in Section 8.

In presenting the proof of the abstract Lusternik-Schnirelmann
theorems for a C* function » on a C?- Finsler manifold X (or on a C?
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Finsler manifold X which has a C* diffeomorphism with a C2~ manifold),
we have followed a variant of the previous arguments whose purpose
should be made clear. There are three basic elements to the construction
of a LUSTERNIK-SCHNIRELMANN theory. The first of these elements
is of a strictly topological character, relating the structure of a topo-
logical space X with a given continuous function 4 from X to the reals,
a given set K of points playing the role of generalized ‘“‘critical points”
of the function %, and a deformation F of the space X over itself which
eventually lowers the value of % except in neighborhoods of K. The
results of the theory on this level (developed in detail in Sections 1 and 2
below) consist of the Lusternik generalized minimax principle for deforma-
tion invariant families S of subsets of X, i.e. the existence of a point x,
such that x, lies in K, and
k(%) =1nf sup A (),

as well as of properties of K and of KA (r) in terms of the category
of X and minimax values of % over the families S, of subsets of X having
Lusternik-Schnirelmann category =2% in X. The theory on this level
is of an elementary topological character.

In the second step of the Lusternik-Schnirelmann argument, one
specializes X to be a manifold of class C* and % to be a C* function on X
with K being the set of actual critical points of % on X (i.e. points x in X
such that 44,=0). The problem at this level of the argument is to
construct the appropriate deformations F to which the topological
theory can be applied. The problem has two principal facets: First, to
obtain a group of transformations T; of X into itself for £=0 obtained
from a flow in X along the trajectories of a vector field related to the
gradient field 44, and second to apply a condition which guarantees that
the transformation semigroup {7;: # =0} moves X in a such a way as to
make sure that % decreases substantially except near the critical points
of 4. In the treatment of the abstract Lusternik-Schnirelmann theory
on (2" manifolds (and originally for smoother manifolds) Palais [12]
constructed a pseudo-gradient vector field for 4 on X, i.e. a locally Lip-
schitzian vector field P such that for each x in X — K,

|Bl.<2|dn,],, ar,(P) < —|dn,L;,

in terms of a given Finsler structure on the tangent bundle of X. The
vector field P can be integrated in the neighborhood of each point x,
of X —K, and the study of flows on vector fields of this forms was
combined with the assumption of the condition (C) of PALAIS and SMALE
[16] which essentially asserts that K A7 ([a, b]) is compact for each
finite interval [a, b] and that |44, is bounded from below on 47([a, b])

1%
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on the complement of each neighborhood of K. Such a construction is
only possible on C2?~ manifolds for which an invariant concept of a
locally Lipschitz vector field is possible, and its does not yield a global
deformation even on X —K since the trajectories are only defined up
to the point that they enter K. In addition, the flows generated in this
fashion are not continuous, in general, at the points of K.

To simplify this treatment (and thereby to make it possible to use
the simple formulation of the topological part of the Lusternik-Schnirel-
mann theory), we have constructed global deformations by constructing
a quasi-gradient vector field for 4, i.e. a locally integrable vector field P
on X — K such that

ldB|=2q (%) dh,].; ah,(B)=—q(x)|ah,[?,
where

2(9) =inf {d(x, 2) + | (x) B ()]}

Such fields always generate a continuous one-parameter semigroup of
mappings 7, of X into X, a fact which is proved in Section 4, and the
resulting deformation is of the appropriate type for the topological
results if the functional % satisfies condition (C). The derivation of the
abstract Lusternik-Schnirelmann theorems on FINSLER manifolds is
given in Section 5 for C! functions % satisfying condition (C) on C*-
manifolds X, and then extended to manifolds X which are C* but dif-
feomorphic in the C? sense to C?~ manifolds. We remark that the con-
dition (C) essentially pertains to the case of infinite dimensional mani-
folds and is trivially satisfied if the manifold X is compact.

To apply the abstract thery to the proof of existence of solutions of
eigenvalue problems, we apply the method of Lagrange multipliers to
the pair of C! functions %4 and g on the infinite dimensional Banach
space B. The critical points of the restriction 4, of 4 to the level surface
M, of g on which g(x)=c yield solutions of the eigenvalue problem
W (u) =&g'(u) with real & The existence of such eigenfunctions in in-
finite number is established in Section 6 under appropriate hypotheses
on the functionals # and g under the crucial hypotheses that there exists
a diffeomorphism ¢ of the level surface M, on itself such that ¢ is
periodic of prime period ¢ and ¢/ for all j with 1=<7 < ¢ —1 is fixed-point
free on M,, while h(¢p(x)) =h(x). Such a transformation ¢ exists,
obviously, whenever there exists a group of transformations 7 acting
without fixed points (except for the identity) on M, such that z includes
an element of finite order and 4 is invariant under z. The crucial topo-
logical fact in this proof is based upon the results given in Section 3
that for an infinite dimensional Banach space B, S;(B)/Z, has infinite
Lusternik-Schnirelmann category.
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In Section 7, these results are applied to the case of the nonlinear
elliptic eigenvalue problem A (%) =AB (u) in the variational sense under
appropriate hypotheses on the coefficient functions 4, and B;. The
hypotheses applied are generalizations of the following: There exists a
real number p with 2 =< p <<co such that for all « and §

|4q (%, £)] S (1 +]EPY), (1)
|Bg (%, )] =c(1 +[EfP7), (2)
T[4 8) — A 0 )] € 8) >0 o)
for each % of lower order and { #={’.
2 Aa(%, &) E,Z6o|E|P —cy, (6> 0). (4)

|| =m
A consequence of these conditions, or the much more general conditions
assumed in Section 7, is that for the corresponding functional g(u)
written above, the derivative g’: V—V*, (where V is the closed sub-
space of W™?(£) on which the variational problem is taken), satisfies
the following basic condition (S) of which the condition (C) of the problem
is a consequence:

(S) If v; converges weakly to vin V and if
(g'(v;) —&'(v), v,~—v) -0
then v; converges strongly to v in V.

Finally in Section 8, condition (S) for g’ together with a direct
argument using Galerkin approximations by finite dimensional problems
yields an existence theorem for nonlinear eigenvalue problems independ-
ent of the abstract Lusternik-Schnirelmann theorem on infinite dimen-
sional manifolds for problems invariant under a periodic linear mapping
@ of prime period. In particular, this applies to the nonlinear elliptic
problems with 1<<p < 2.

The basic results of LUSTERNIK-SCHNIRELMANN were first published
in an extended way in their monograph [11] in 1934, and subsequent
results of various members of the Russian school are described in the
books of LUSTERNIK [12], KRASNOSELSKI [10], and VAINBERG [19]. An
abstract Lusternik-Schnirelmann theorem on Hilbert manifolds for
smooth functions satisfying condition (C) was first proved by J.T.
ScawaRrTz [17] along lines which were influenced by the earlier work
of Parars and SMALE on the corresponding generalization of the Morse
theory [16]. This theorem was extended to smooth functions on relatively
smooth Finsler manifolds by Parais [13] who introduced the important
concept of the pseudo-gradient field. The Lusternik-Schnirelmann theory
was first applied to nonlinear elliptic eigenvalue problems in BROWDER
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[2]. More recent improvements of the abstract theory on Finsler mani-
folds have been given by Parais in [14] and BROWDER in [4]. The ap-
plication of Galerkin approximations to the Lusternik-Schnirelmann
theory of eigenvalue problems was first treated in Browder [3], (see also
[4]). The study of nonlinear operators from a Banach space V to V'*
which satisfy condition (S) is given in Chapter 17 of BROWDER [5]. The
proof that nonlinear elliptic operators under our general assumptions
have realizations in the appropriate sense which satisfy condition (S)
is given in the Appendix to Chapter 1 of [4].

There is an extensive literature on the relation of the Lusternik-
Schnirelmann category to various homological and homotopy properties,
the most extensive surveys of which were given in the Theses of R. H.
Fox [8] and of GANEA [9]. (See also BERSTEIN-GANEA [1], and EILEN-
BERG-GANEA [7]).

An interesting discussion of Lusternik-Schnirelmann theory on C?!
manifolds under minimal hypotheses is given in the Ph. D. Dissertation
of STANLEY WEIss [20] at the University of Chicago in 1969, and in
particular, an application of the Galerkin approximation argument under
somewhat variant hypotheses. The discussion of [20] also contains a
perturbation theorem on critical points of non-even functionals dif-
fering by small amounts from even functionals, extending the results
along these lines of the final Chapter in KRASNOSELSKI [10].

A technically inadequate treatment of nonlinear eigenvalue problems
by Lusternik-Schnirelmann theory was published by M. S. BERGER in
Ann. Scuola Norm. Sup. Pisa, 20 (1966), 545-—582, which contains
basic errors both in the abstract theory and in the application to elliptic
problems. (The corrections published in 1967 do not suffice, although
they abandon the major point of the abstract theory.)

1. The topological foundation of the minimax principle

It is our purpose in the present Section to display the topological
basis of the generalized minimax principle of LUSTERNIK and SCHNIREL-
MANN under minimal hypotheses.

Let X be a topological space, with X always assumed to be a Haus-
dorff space. The basic data for the minimax principle consists of three
parts:

(1) A continuous real-valued function % on X;

(2) A closed subset K of X;

(3) A family S of subsets of X.

(In the fundamental application of the principle, X is a differentiable
manifold, % is a differentiable function on X, and K is the set of critical
point of 2 on X, i.e. the set of x in X at which dA,=0.)
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In terms of the above data, the minimax of % over S is defined by

wm(h, S) =114r61‘x; ilég h(x).
The minimax principle in its most general form asserts that under
appropriate hypotheses, there exists a point %, in K such that

h(xy) =m(h, S).

To obtain hypotheses of this type, we consider hypotheses on the
class S of subsets of X and postulate in addition the existence of a suitable
deformation of X over itself.

Definition (1.1). The family S of subsets of X is said to be deformation
tnvariant if for each A in S and each homotopy F: X X [0, 1]—X where
F(x,0) =x, f,(x) =F(x, 1) for all x in X, it follows that f,(A) also lies in
the class S.

Definition (1.2). If % is a real-valued continuous function on X, K a
closed subset of X (R*={t|tc R, t=}), and if F is a continuwous mapping
of X X R* into X with F(x,0)=x for all x in X, then F is said to be a
deformation of X satisfying the condition c,, if the following holds:

(c1x): If [a, b] is a closed finite interval of the veals, (a <), such that
h([a, b]) contains no pownts of K, then there exists t>0 such that if
fi(x) =F(x,t) for each x in X, then

h(f,(x)) <a, whenever h(x)=b.

The condition ¢, x can be relativized to the class S by replacing it by
the apparently weaker condition:

(cnx.s) If [a, b] is a closed finite interval, a <<b, such that h™([a, b])
contains no points of K, and if A is a set in the class S, then there exists
t=t(A) >0 such that if x lies in A and h(x) <b, then h(f,(x)) Za.

Theorem 1. Let X be a topological space, h a continuous real-valued
function on X, K a closed subset of X such that h(K) s closed in the veals.
Let S be a deformation invariant class of subsets of X, and suppose that

wm (h, S) :ilélg sup % (x)

x€d

s finite. Suppose that theve exists a deformation F of X through itself
satisfying the condition (¢, ) of Definition (1.2), (or more generally, the
condition (¢, x s) given above).

Then there exists at least one element x, in K such that

R(%g) =m(h, S).
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Remark. We note for later reference that the condition that %4 (K) be
closed in the reals will hold if we assume for each finite @ and & that
Knh*([a, b]) is compact.

Proof of Theorem 1. We suppose that the conclusion of Theorem 1
is false and deduce a contradiction. If there exists no point x, in K such
that &(xy) =m(h, S), then m (%, S) lies in the complement in the reals
of the set % (K), which is closed by hypothesis. Hence we may find two
real numbers a and b with a <<m (%, S) << b such that 27([a, b]) does not
intersect K. Moreover, since (%, S) is the infinum of the set of numbers
my, 4 =sup h(x), there exists a set 4 in the class S such that

x€4

m(h, S) <sup h(x) =b.
%€4

We now apply the hypothesis that we have a deformation F of X
through itself which satisfies the condition (c¢; g s) or the stronger
condition (¢, g). By this condition, there exists ¢=¢(4), depending on
the set 4 from the family S constructed above, such that f, maps
Ak ((—oo,b]) into a subset of {x|A(x) <a}. For this value of #, let
A,=f,(4). Since S is deformation invariant, it follows that A, also
belongs to the class S. On the other hand,

sup h(x) <a<m(h,S)

x€4,
contradicting the definition of m (%, S) as iléf sup % (x). This contra-
diction proves the Theorem. q.e.d. S <8

Remark. The hypothesis that the family S is deformation invariant
(or in a slightly more formal terminology, ambient homotopy invariant)
seems much more natural to the present writer than the weaker hypo-
thesis that S is ambient isotopy tnvariant introduced by PALAIS in [14].
Aside from the most important examples of such classes, those defined
by the Lusternik-Schnirelmann category (which we treat in the fol-
lowing Sections), we note the following examples of such classes which
are essentially the same as examples cited in [14]:

(a) S consists of the single set X. Then m (4, S) =sup 4 (x).

x€X
(b) S consists of all one point subsets of X. Then

m(h, S) = int h(x).

(c) Let Z be any topological space and let [Z, X] denote the set of
homotopy classes of maps of Z into X. Given &in [Z, X],let S=S(§) =
{A4| A =g(Z) for some g in the homotopy class &}. In particular, if Z = S*,
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the k-dimensional sphere, this process associates a deformation invariant
class S(£) to each element & of the k-dimensional homotopy group
7, (X).

(d) Let H, denote the k-dimensional homology functor (with arbitrary
coefficients and with respect to some given homology theory over the
appropriate class of spaces). Given { in H,(X) with =0, let S=5()
be the class of subsets 4 of X such that { lies in the image of the in-
jection homomorphism H, (i4): H,(4)—H,(X).

(e) Let H* denote a k-dimensional cohomology functor, ¢ a non-zero
element of H*(X), and let S=S(y) ={d4|y is not annihilated by the
restriction map H*(i,): H*(X)—H*(4)}.

2. The Lusternik-Schnirelmann category

By specializing and strengthening the results of Section 1 in terms
of the LUSTERNIK-SCHNIRELMANN category, we now derive an analogue
of the principle of Lusternik-Schnirelmann giving the lower bound for
the number of critical points of a function on a manifold in terms of the
category of the manifold.

As before, X is a topological space. If 4 is a subset of X, 4 is said
to have Lusternik-Schnirelmann category <k in X (which we write in
the form cat(4; X) <k) if 4 can be covered by % closed subsets of X,
each of which is contractible to a point in X. The category of 4 in X
is defined to be the least % such that cat (4 ; X) <&, if any such % exist.
Otherwise, we set cat (4 ; X) = + oo. We also set cat (M) =cat (M ; M).

Lemma (2.1). (a) cat(4; X) =1 if and only if A is contractible to a
point in X.

(b) If A = B, then cat(4; X) <cat(B; X). If B=cl(4), the closure
of A in X, then cat(4; X) =cat(B; X).

(c) cat(AuB; X) <cat(4; X) +cat(B; X).

(d) It F: X x[0, 1]—>X is a homotopy of the identity mapping F(
for all x in X, and if we set f,(x) =F(x, 1), (xcX), then cat(f, (4
cat(4; X) for each subset A of X.

The proof of Lemma (2.1) is elementary and left to the reader.

=X

%,0)
), X) =

From property (d) of Lemma (2.1), it follows that if for an integer
k=1, we set
Sp={A|cat(4; X) =k},

then each S, is a deformation invariant class of subsets of X in the sense
of Definition (1.1).
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The %-th LUSTERNIK-SCHNIRELMANN minimax value of % is defined in
terms of the class S, by

my () =m(h, S;).
We now consider the following sharpening of the condition (¢, x):

Definition (2.1). Lef X be a Hausdorff space, K a closed subset of X, h a
continuous real-valued function on X. If F is a continuous mapping of
XX R* into X with F(x,0) =x for all x in X, then F is said to be a de-
formation of X satisfying condition (c;, g) if the following is true:

(ch,x) (1) For any closed finite subinterval [a, b] of the real numbers
for which h™*([a, b]) " K =@, there exists a constant T >0 such that for
any t =T and any x in X with h(x) <b, we have

h(ft(x)) é“:

(where f,(x) =F(x, t) for each x in X and £ =0).

(2) Let 7 be a real number, V a neighborhood of K nh=(r) in X. Then
there exists an interval [a, b] of the reals and a real number £ >0 such that
a<<b<<r, and for any x in X with h(x) <0,

f.(%) e VUb™([—o0,a]).

Since condition (cj x) holds when both parts (1) and (2) hold and
since part (1) of (c; ) is a uniform version of (¢ x) for all £ =T rather
than a single value of ¢, condition (c;, x) implies condition (¢, k).

Theorem 2. Let X be a paracompact Hausdorff space with the property
that each point x has a neighborhood contractible in X. Let h be a continuous
function from X to the reals, bounded from below on X, K a closed subset
of X. Suppose that there exists a deformation F of X which satisfies the
condition (¢, g), (F: X X R*—X).

Then the number of points in K is at least as large as cat (X) if cat (X)
is finite, and K s infinite if cat(X) = +oo. If h is bounded on K and
there exists a largest imteger ko for which m,(h) is finite, then ky—=
cat (X) <+ oo. If for a real number v, there exists a positive integer s such
that v =mg(h) =mg, (h), then theve exists an infinite number of points
in Knh™(r).

Proof of Theorem 2. Since 4 is bounded from below on X, (%),
which is identical with the infimum of % on X, is finite. Since each class
S, contains its successor S,,;, the sequence of numbers {m, (%)} does
not decrease with increasing £ and may become infinite for some finite
integer. Let %, be the largest integer for which m, (%) <<+ oo, and if
my, (%) is finite for every &, we set ky = + o0.



Nonlinear Eigenvalue Problems and Group Invariance 11

Since the hypothesis (c; k) is a strengthening of the condition (¢n,5)>
it follows from Theorem 1 that for any % for which m, (%) is finite, there
exists an element x, of K such that % (x;) =m, (). To prove the various
assertions of Theorem 2, if therefore suffices to prove the following:

(A) Iffor a veal number v =mg(h) =m, 4 (h), then K nh7(r) is infinite.
(B) cat(X) =ry, ¢f 1 is bounded on K.

Indeed, it follows from (A) that if two minimax values coincide,
then K is infinite. If no two minimax values coincide, there exist as least
as many points in K as there are minimax levels, i.e. at least %, points
in K. Since by (B), £, =cat (X), it follows that there are at least cat (X)
distinct points in K. The other assertions of Theorem 2 are contained
in Assertions (A) and (B).

Proof of Assertion (A). Suppose that K n%7(7) is a finite set {x,, ...,
%,3. By hypothesis, each point x; has a neighborhood V; in X which is
contractible to a point in X. Since each V; can be shrunk without de-
stroying its contractibility in X, we may assume that the neighborhoods

V. are pairwise disjoint, and moreover that they are closed in X. Let V

q
be the neighborhood of K nA7(R) given by V:_UIT/;-. Then V is con-
=

tractible to a point in X by combining the deformations defined on each
separate V. In particular, cat(V; X) =1.

We now apply the property (2) of the condition (c;, k) to the neigh-
borhood V of K n/71(r). Then there exist real numbers 4, b with a<<r<<b
and >0 such that if f,(x) =F(x,¢) for the assumed deformation F,
then

fo (B ((—o0, b)) c VUL ((—o0, a]).

Since » =m, 4 (h) = inf sup k(x), there exists a subset 4 of X with
Y 4eSe yea

cat(4; X) =s -1 such that

sup A (x) 5.
x€4
Since

Ac h‘l((woo, b:[) ,
it follows that
fo(d) e VU™ ((—oo, a]).

Let B =h"((— o0, a]). Since f,(4) is the image of A under a continuous
deformation of X, it follows from property (d) of the category in
Lemma (2.1) that

cat (f,(4); X) =cat(4; X) =s+1.
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On the other hand, by property (c) of the category in Lemma (2.1)
cat (f,(4); X) <cat(V; X) +cat(B; X) =1 +cat(B, X).

Since sup %(x) <a, and inf sup A (x) =m,(h) =7r>a, cat(B; X)<s—1.
x€EB AESs xe4
Hence

s+1 =cat (f,(4); X) <1 +cat(B; X) <s,
a contradiction proving Assertion (A). q.e.d.

Proof of Assertion (B). Let % be any positive integer with % < cat (X),
(k arbitrary if cat(X)=4oc). To prove that Assertion (B) holds, it
suffices to show for each such % that S, contains a set A with

sup A (x) <-+oo.
x€A

Since k = cat (X), S, is not a vacuous family since it includes X itself.

Let # be a real number such that A(x) <7 for all x in K. For each
point x in X and &(x)>/%(x), there exists a real number #(x) and a
neighborhood W(x) of x in X by condition (cj k) such that for ¢=¢(x)
and all # in W(x), % (f,(u)) <7. Since X is assumed to be paracompact
and HAUSDORFF, there exists a partition of unity corresponding to the
covering of X by the neighborhoods W(x), i.e. a family of real valued
functions p, from X to the interval [0, 1] such that each p; has its
support in one of the neighborhoods W(x) for some point x in X, only
a finite number of the p, differ from zero on some neighborhood of each
point v of X, and for every u in X, >} ps(u) =1. For each §, choose a

B

corresponding point x = x (f) such that p; has its support in W(x), and
with this choice fixed, set

0 (u) = %I;bﬁ(%) t(x(8))-

For any f for which pg(#) =0, we know that « lies in W(x(ﬂ)). Hence
for any ¢ =¢(x(B)), f,(u) satisfies the inequality % (f,(u)) <7. Since 6 («)
is a convex linear combination of the numbers #(x;), it is at least as
large as the least of them. Hence for ¢ =6 («) and any u in X, A (f,(u)) <.
Moreover, d is a continuous function from X to the positive real numbers.

Let f: X x[0, 1]—K be defined by
fu, t) =F(u, t6(u)).

Then f is a deformation of X into a subset of #7((—oo, #]), and the
final image of X under this deformation is a subset 4 of S, on which the
supremum of % is not greater than ». q.e.d.
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Since both Assertions (A) and (B) have been established, the proof
of Theorem 2 is complete. q.e.d.

If we strengthen our hypotheses on X and K, we can obtain the
following much stronger version of Assertion (A) in the proof of
Theorem 2:

Theorem 3. Let X be a metrizable absolute neighborhood vetract, h a
continuous veal-valued function on X, K a closed subset of X such that
Knh([a, b]) is compact for each finite interval [a, b). Suppose that there
exists a deformation F of X which satisfies condition (cjx). Suppose
further that for a finite veal number 7,

v = (h’) =My (h)="--- =Msin (h)

for positive integers s and n.
Then
cat (Kna™(r)) =n+1.

The proof of Theorem 3 is based upon the following elementary
lemma:

Lemma (2.1). Let X be a metrizable absolute neighborhood vetract, K,
a compact subset of X. Then there exists a neighborhood U of K, in X
such that
cat(U; X) =cat(K,; X).

Proof of Lemma (2.1). Since for any neighborhood U of K,
cat(U; X) =cat (K,, X), it suffices to show that if cat(K,; X) <k, we
can choose a neighborhood U of K, such that cat(U; X)=k. If
cat (K,y; X) =k, K, may be written as the union of %, subsets K; with
ky <k, with each K; a non-empty compact subset of K, which is con-
tractible to a point in X. If we knew that there exists a closed neighbor-
hood U; of K;in X which is also contractible to a point in X, then the
union U of these sets U; would be a neighborhood of K, with cat (U; X) <
ky =< k. Hence it suffices to prove the existence of such a neighborhood
U, for each 7.

Since K, is contractible to a point in X, there exists a deformation
E: K;x[0,1]—X which deforms K; into a point. We extend F; to a
mapping G; of (K;Xx[0,1]uX x{0}) =X by setting

Gi(x, 0) =x, (xcX).

Then G; is continuous, and since X is an absolute neighborhood retract
and X X [0, 1] is normal, G; may be extended to a continuous mapping
H; of a neighborhood W of (K;x[0,1]uX x{0}) in X xX[0, 1] into X.
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Since K is compact, there exists a closed neighborhood U; of K, in X
such that U; X [0, 1] is contained in W. The restriction of H; to U; X [0, 1]
is obviously a deformation of U; in X. The final image of U; under this
deformation can be considered as a subset of a prescribed neighborhood
¥, of the point which is the final image of K; under the deformation F,
provided that U, is taken as still a smaller neighborhood of K;. Since a
metrizable absolute neighborhood retract is locally contractible, it
follows that the final image of U; under H; is contractible in X. Hence
U, is contractible in X. q.e.d.

Proof of Theorem 3. We let K=K nA(r). Then K, is compact by
the hypothesis on K, and if we apply Lemma (2.1), there exists a
neighborhood ¥ of K, in X such that

cat(V; X) =cat (K,; X) =¢.

To prove Theorem 3, it suffices to show that ¢ = (» +1).

We apply the property (2) of the condition (c;, x) with respect to the
given neighborhood V of Kn#4™(r). By that property, there exist real
numbers ¢ and b with a <7 < b, and ¢ >0, such that

fo (B (=00, ])) € VUL ((— o0, a]).

Since 7 < b, while
= inf =
Mgy g (}l«) ll’la sup h (x) B

there exists a subset 4 of X with

cat(4; X)=s+#
such that

sup h(x) <0,
x€A

ie. A ch?{(—o0,b]). Thus
f(A) e VOUr((— o0, a]).
Let B=A"(—o0, a]). Since f,(A) is the image of A under a con-
tinuous deformation of X, it follows that
cat (f,(4); X) =cat(4; X) =s+n.
On the other hand,

cat (f,(4); X) <cat(V; X) +cat(B; X).
Since

sup A{x) =a<r,
x€B
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while
mg () :jlené ilég h(x) =7,

it follows that cat (B; X) <s— 1. Finally, we obtain
s+n=cat(f,(4); X) Zcat(V; X) +cat(B; X) =g+ (s —1),

which implies that
g=(n-+1). qed.

Since cat(Knhl(r); X) <cat(Knk(r)) <dim (Knh™(r)) +1, it
follows from Theorem 3 that dim (K n47(r)) = n.

3. The Lusternik-Schnirelmann category
of infinite dimensional lens spaces

The results of the Lusternik-Schnirelmann theory become useful
when we can apply them to spaces with a large category, and in particular
to spaces X with cat(X)=+o0. A particularly simple class of such
spaces is described by the following theorem:

Theorem 4. Let B be an infinite dimensional Banach space, Sy (B) its
unit sphere about the ovigin. Let T be a continuous mapping of S, (B) into
itself such that T? =the identity map of S;(B) for a given prime p =2.
Suppose that for 1 <j<p—1, T’ has not fixed points in S,;(B). Let X
be the quotient space obtained from S, (B) by identifying any point u with
T7 (u) for any q.

Then cat (X) = -+ oo.

Remark. In the particular case, p =2, and the mapping 7'(#) = —u,
we get the standard infinite-dimensional projective space obtained
from B.

Proof of Theorem 4. The quotient map g of S, (B) onto X is a covering
mapping so that m; (X) is the cyclic group Z,. Since B is of infinite-
dimension, S;(B) is a retract of the closed unit ball in B and hence is
contractible. (This follows from the wellknown theorem of Dugundji
which asserts that the closed unit ball of B has the fixed point property
if and only if B is of finite dimension.) Since the higher homotopy
groups m,(X) coincide with the corresponding groups for S,(B) for
k=2, it follows that X is aspherical in all dimensions =2. Hence X is
an Eilenberg-MacLane space K (Z,, 1).

The category of the spaces K(II, 1) was determined by EILENBERG-
GANEA [7] to be the 1+ algebraic dimension of I7 if alg dim (/1) =2. In
particular, cat (K(Z,, 1)) =+ oco. (See also GANEA [9], page 203.)
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A more direct argument can be derived using the fact that cat(X)
is bounded from below by cup-long (X), where the latter denotes the
maximal number of cohomology classes of positive dimension (over any
coefficient domain) whose product is non-null. (For this fact, see BEr-
STEIN-GANEA [1], Fox [8], or GANEA [9]). The cohomology ring of
K(Z, 1) with coefficients in Z, is a polynomial algebra on a single
element of dimension 1 for p =2, and the tensor product of a poly-
nomial algebra on an element of dimension 2 and an exterior algebra
on an element of dimension 1 for > 2. (See STEENROD-EPSTEIN [18],
Corollary (5.3), page 68.) In all cases, the cup-long is infinite. q.e.d.

4. The construction of deformations and quasi-gradient vector fields

We now begin the process of specializing the topological results of
Sections 1 and 2 to the case of principal interest, that in which X is a
differentiable manifold of class C' modelled on some Banach space B,
% is a differentiable function of class C* on X, and K is the set of critical
points of %. In order to apply the preceding results to this case, it is
necessary (under appropriate hypotheses) to find ways of constructing
deformations F: X X R*— K satisfying the condition (¢ k).

To formulate the appropriate hypotheses, we assume the existence
of a Finsler structure on the manifold X, or more precisely on the tangent
bundle T'(X), i.e. for each point x in X, we are given a norm |-||, on the
tangent space 7T, (X) to X at x which is equivalent to the B-norm and
with the property that in a coordinate neighborhood N, at x in which
T(M) can be trivialized as B X N,, then for each 2> 1, there exists a
smaller neighborhood N, of x such that

Fole = ol =klo].

for all # in N, and all v in B. By duality (since for each fiber T of the
cotangent bundle T*(X) of X, T;* (X) = (T,(X))*, the star on the right
indicating the adjoint space), there exists a corresponding Finsler struc-
ture on the cotangent bundle T*(X), i.e. a norm ||, on each T;*(X)
satisfying the corresponding continuity conditions in x.

In terms of this Finsler structure, we may define a a metric on each
component of X, where the distance 4(x, ;) between two points x and
%, is the infimum of the length of C! curves joining x to x; in X, the
length being taken with respect to the Finsler structure and being
defined for the C! curve {%(f): 0 <t =<a} as

S Olco at.
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We assume that this metric induces the same topology on each component
of X as that given originally (as has been shown by Parais {14] if X
is regular and a fortiori if X is metrizable).

Definition (4.1). Let X be a connected Ct manifold with a given Finsler
structure on T(X), h a C* function on X, K the set of critical points of hin X.
Let q be the non-negative real-valued function on X given by

g(%) =1inf {d(x, 2) +|h(x) =R} (g(x)=1 if K=9).

Let P be a continuous vector field on X. Then P is said to be a quasi-
gradient vector field for h with respect to the given Finsler structure if the
following three conditions all hold:

(@) There exists a constant ky=1 such that for all x in X,
“Px”x é kO q (x) ”dhx“x;

the norm on the left being taken in T,(X), and that on the right in T} (X).
(b) For each x in X,

dhy(B) < —q(x)|dh,|2.

(c) For each %y in X — K, we are given §(xy) >0, and on the interval
[0, 8(x,)), a trajectory of the vector field P

% (1) = £ (%)

starting at x, such that there exists a neighborhood N(xg) in X — K with
the mapping [x,t]—>C,(x) well-defined and continuous from N(xy) X
[0, £ 6(x)) into X, while for 0 <t <<t+s<6(x),

Cops (%) =05 (Cz(xo)) .

We shall construct our desired deformations by studying the prop-
erties of trajectories of quasi-gradient vector fields. We begin with the
following result:

Proposition (4.1) Let X be a connected C' manifold with a given
Finsler structure such that X is complete in the metric induced by the
Finsler structure. Let h be a C' real-valued function on X, K the set of
critical points of k in X, and suppose that h is bounded from below on X
and that for each R>0, the set K=K n{x|h(x) < R} is compact. Sup-
pose that P is a quasi-gradient vector field for h with vespect to the given
Finsler structure. Then:

(@) For each x in X — K, there exists §(x) >0 (and possibly infinite)
such that [0, B(x)) is the maximal interval on which there exists a trajectory
{x@®):0=t<B(x)} in X —K of the vector field P such that x(0)=x,

2 Functional Analysis
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while for each t in [0, B (x)) and some & () >0,
x(t+9) =2, (£(0), (0=5<6(1).

This trajectory is uniquely determined by the above conditions. If f(x) 1s
finite, then there exists a point x' of K such that x(¢) converges to x' as i
approaches B (x).

(b) For each x in X —K, there exists a constant M depending only
on h(x) such that for 0 <<¢, 6, <p(x),

a(x(0), () M|t —8]}.

Proof of Proposition (4.1). By condition (c) of Definition (4.1), there
exists a non-trivial interval [0, §(%)) on which the trajectory x(¢) =, (%)
satisfies the conditions of assertion (a) of the Proposition. The uni-
queness of x(f) in some small interval [0, §) follows from the condition
that x(f) =, (x(0)) for s small.

Suppose now that [0, d) is a given interval with 6 >0 on which we
have two trajectories {x(f): 0 <¢<< 6} and {y(f): 0 <¢ << 8} with

x(0) =x=y(0),
x(t+5) = (2 (), (0=s<d(t),
Y49 = (v(0), (0=s<4()),

for all¢in [0, 8). Let R, be the subset of all £in [0, d) for which x (£) =y (¢).
By the preceding paragraph, R, contains a small interval about zero.
Since both curves are continuous, R, is a closed subset of [0, 8). Suppose
that ¢, lies in R,. Then for 0 <s<<d (f,),

%(ty+ ) =, (x (tu)) ={ (y (to)) =yt +S9),

i.e. the interval [4,, ¢, + 6 (¢,) is also contained in R,. Let [0, J;) be the
maximal right-open interval contained in R;. Then ¢, lies in R,, and
by the maximality of the interval, it follows that 6, = . Hence R, =[0, 8)
and the two curves are identical on any common subinterval of their
domain of definition. Thus the uniqueness assertion of part (a) of
Proposition (4.1) follows.

From the uniqueness of trajectories satisfying the conditions of
part (a), it follows that there exists an unique maximal trajectory
satisfying those conditions and starting at x. To complete the proof of
part (a), it suffices to show that if §(x) <<+ oo, then x(f) converges to
some point %’ of K as {—g§(x)—. On the given trajectory,

x'(0) =L,
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and hence
d
ah (2(8) =dhy o (Boy) = —q(x0) |dhy 5|35y =0

In particular, % (x(f)) does not increase with increasing ¢, and 4 (x (f)) <
h(x) for all ¢ in [0, B (x)). In particular,

g (x()) =inf {d (x(1, 2) +[1(x() —h @)}
=min (1, dist (x (£), Kg))

where R =#(x) + 1. By hypothesis, K is compact. Since d 4 is continuous
there exist constants d and M greater than 0 such that for all x in
N;(Kg) ={x|dist(x, K) <d}, |dh,|, <M.

We integrate the inequality

L h(x()) = — g (59) [dhyo By (0=5<B (),

from O to ¢, noting that both sides are continuous, and obtain:
t

h,(x (t)) —h(x) < — f ( ) "dhx(s)”i(S) ds.

0

Let M, be the infimum of the values of 2 on X. By hypothesis, M, is
finite. Hence

oftq(x (s)) 2%, g ds=h(x) —h(x ) <h(x) —M,.

By condition (a) in Definition (4.1) for quasi-gradient vector fields,

” %(s) ”x (s) = kO q( ) ”dhx (s)”x (s)
so that

t t
ko_zof F{E0) ) ) AR ARYAES Of 7((%)8) |dh, |2 ds <h(x) — M.

Let dy=min (1, d), g, =sup{g (x): xe N;(Kg)} <oo. For any s for which
x(s) lies in X —N;(Kp), q(x(s)) =d,. For any s for which x(s) lies in
N, (Kg), we have

12 )l 5y S o 90 M -
Hence

f" (s)”x(s)dS< f

#(s) ENg(KR) x(s)€EX — Nd(Kze)

= ko 9o M B (%) + kg do[h(x) — M,].

24
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This bound is independent of ¢ for 0 < ¢ <<§(x). Hence
B(x)
Of ”x "x(s) dS—-—f ” (s)” %(s) dS§M1<OO,

where the constant M,; depends only on %(x), (since R depends only
on %(x)).
On the other hand, for 0 <t <<#; <f(x),

A(x®, 2®) = J 1¥ ey I = {f|x N2 dsf <Myt

In particular, {%(t): £—f(x¥)—} is a Cauchy sequence in the complete
metric space X, so that x (f) converges to some point %’ of X as £ (x) —
If »' lies in X —K, we can extend the trajectory x(f) to the interval
[B(9), B(x) +5(x)) by setting

2(t) =L pn(x), (B(#) =t <B(x) +0(x)).

The resulting extension is still a continuous trajectory of the vector
field P satisfying our transition conditions, which contradicts the
maximality of the interval [0, f(x)). Hence %’ lies in K. Thus the proof
of part (a) is complete.

For the proof of part (b), we note that for §(x) <<+ oo, the inequality
of the preceding paragraph establishes the desired result. Suppose
B (x) = 4 co. Applying the argument used in the proof of part (a), let

={t| x(t)eN;(Kg)}, Ry={t| x(t)c X —N;(Kg)}.

There exists a constant %, depending only on %(x), such that for ¢ in R,,
1% ()]s y = 4. By the argument of part (a),

“x S)“x(s)—kzdo( ( )—Mo)‘

Suppose first that 0 <t<t1 with (¢, —¢) <1. Then
.2
a ,x(@B) < "My ds = () ey @S-
(2 (@), #(#) = J 1% () s s ;([t’tl{an*‘U’tl]fnRa)|x(S)i o &3

The first integral in the sum has its integrand < %, and hence

[ 186 eods SElH—0) Sk —Ht.

L8N R,
For the second integral, we have
o SOk ds ==t JI¥ ) dspiska b0}

Adding both inequalities, we obtain the desired result.
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In the other case, (f; —f) =1. Let D, be the diameter of N, (Kg). If
the interval [¢, £;] contains no points of R,, then the desired inequality
follows as in the preceding paragraph. If R; does intersect [¢, 4], let
to=inf{t|tc R, N [t, 4]}, t; =sup{t|tc Ry N [¢, ;]}. By the continuity of x,

d (% (ty), % (ts)) =Ds.
If £ == 1¢,, the closed interval [¢, £,] lies in R,, and we have
d(x (), x(t)) < k(t,—1)%.
If ¢34, the closed interval [4;, ¢,] lies in R,, and we have
d(x(t), x(ts)) <k (t, —t5)?.

Obviously, if either of the equalities holds, i.e. ¢ =t¢, or {;=¢;, the in-
equalities on the distances are still valid. Finally,

d(x(tl)’ x(t)) §d(x (), x(t3)) +d(x(t3), x(tz)) +d(x(t2), x(t))
Skt —t)t +Dy+k(E—t)t
<2k(h, —1)  + D,
=(2k+Dy) (t, — 1)t

Hence the proof of part (b) is complete, and with it, the proof of Pro-
position (4.1). q.e.d.

Proposition (4.2). Let X be a connected C' manifold with a given
Finsler structure such that X is complete in the induced metric. Let h be a
real-valued C* function on X, K the set of critical points of h in X. Suppose
that h is bounded from below on X, and that for each R >0, the set K=
{Kn{x|h(x) < R}) is compact. Suppose that P is a quasi-gradient vector
field for h with vespect the given Finsler structure. Then:

(a) We may define a family of mappings T, of X into X as follows
for t=0:

(1) T,(x) =x for all x in K, t =0.

() For x in X —K, 0=<t<f(x), where [0, B (x)) is the maximal
wnterval of existence of the trajectory x (£) of part (a) of Proposition (4.1), we
set T,(x) = x(f).

(3) For x in X — K, t =f(x), we set T,(x) =x', wheve x' is the point
of K which is the limit of x(t) as t—f(x) —. (This case is possible only
if B(x) <oo.)

(b) For each £ =0, T, is a continuous self-mapping of X. The family
{T,: t = 0} forms a one-parameter semi-group, i.e.

T,,,=T,T, (0<s, 1).

ttso
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(c) The mapping I of X X R* into X given by

F(x, t) = T,(x)
1S cOntinuous.

(d) For each x in X,t=0,
(T: %)= Fp,s..

Proof of Proposition (4.2). The assertion of (a) is merely the formula-
tion of the definition of the mappings 7}, and the fact that they are
well-defined follows from Proposition (4.1).

To prove the assertions of (b), (c), and (d), let us verify first that the
family {7} forms a one-parameter semigroup. If x is a point of K, x is a
fixed point of all the mappings 7, so that the equality T, ,(x) = T, (T}(x))
follows trivially. If x lies in X —K and 0<¢<<f(x), then T,(x) =x(),
where x () is the canonical trajectory of the vector field P described in
Proposition (4.1). Suppose that 0 <¢<<¢+s<<f(x). Then the two tra-
jectories Ts(x(t)) and T, (%) both begin at the point x(f) and both
satisfy the transition condition

y(s+7)=¢,(y(s)), (0<r<dl(s)).

Hence by the uniqueness result of Proposition (4.1), the two are the
same, i.e. T, (x () = T, (%), or

Tyys(%) =T, (T,(x), 0<t <t +s<f(x).

By continuity, this holds also for ¢ +s =g (x). Suppose finally that either
t=f(x) or t4+s>f(x). If t=F(x), T,(x) =" which lies in K so that
T,(T;(x)) =='. On the other hand, T, (x) =’ by its definition, so that
T, s (2)=T, (Tt(x)) =B (x). If t<<B(x), ¢ +s>B(x), then T}, (¥)=x",
while the canonical trajectory of P starting at T,(x) is simply T, (T;(x)) =
x(t+s). If s=p(x)—¢, as is the case. T,(T;(x)) is defined to be the
limit of x(¢s) as s—f(x) —¢, (i.e. x’). Hence, in this case, we also
have T, (x) =«'= T, (T,(x)). If we combine all these cases, we obtain
the general conclusion

Tt+s:1;]-‘t:Tt]‘51 (Ogsrt)

We turn now to proving the continuity of the individual mappings
T, as self~-mappings of X. To show that T, is continuous at a given point
x of X, we break the proof down into several cases:

(1) x liesin X — K, t<<fB(%).
(2) «liesin X — K, t =pf(x).
(3) «x lies in K.

(4) xliesin X — K, t>f(x).
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To treat these four cases, we shall show first that the result in case (2)
follows from that in case (1), while the result for case (4) follows from
that in cases (2) and (3). To complete the argument, we then prove the
continuity of T, at « in cases (1) and (3).

Proof for case (2) using the result in case (1). Let {=g(x) and con-
sider s <f(x). By the result in case (1), 7 is continuous at x. We choose
a neighborhood U of x in X on which % () is uniformly bounded, with U
contained in X — K. For each # in U, it follows that for ¢, £, << (1),

4 (T, (), T, () = Mt —,

1
F3

with a constant M depending only on /(%) and therefore uniform over
the neighborhood U. As ¢,—f (#) —, we obtain the inequality

a(T, (w), ') = M|B(u) —ti|}, (W' eK).
If ¢, is greater that §(u), T, (#) = «', and we obtain
a (T, (u), T,, () S M|B(u) —t,|} <M |t, —t,|*.

Hence the inequality
A(T, (), T,, (W) = M|t,—t,

1
2

holds for all # in U and all #;, #, =0 with the same constant M.
For # in U,

d(T,(w), T,(%)) =d (T, (), T, () +d (T, (), T, (%)) +d (T, (%), T,(x))
S2M(t—s) +d (T, (), T,(x)).

s

Given & >0, we first choose s so close to ¢=f(x) that 2M (¢ —s)¥ < &/2.
Then, s being fixed, we choose a neighborhood Uj of x such that for »
in Uy, d(T;(u), T,(x)) <&/2. Then for u in U U,

d(T,(u), T,(%)) <&[2+&[2=E.

Since £>0 is arbitrary, it follows that T is continuous at x and the
proof for case (2) is complete.

Proof for case (4) using cases (2) and (3). If />pf(x), then f¢=
by -+, where f,=_0(x), t =t —f(x) > 0. By the semigroup property of
the family {73}, T,= T, T, . Since ¢, =f(x), T; is continuous at x by case
(2). Since T, (x) = «’, which lies in K, T; is continuous at 7; (x). Hence
T,= T, T, is continuous at x, and the proof for case (4) is complete.

Proof for case (1). Let R be the subset of the interval [0, f(x)) of
those values of ¢ for which 7} is continuous at x. We note first that there
exists 0 (x) >0 by Definition (4.1) and a neighborhood U of x such that
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for 0=s<$ 6(x), T, () ={,(u) for # in U, and {,(#) is continuous in #
on U. Hence R contains an interval of the form [0, 6) for some 6> 0.
If we shrink U to a neighborhood of x on which % is uniformly bounded,
then it follows as in the proof for case (2) that there exists a constant M
such that for all #in U and all s, £ =0,

(T,

s

(u), T,()) < M|t —s]t.

It follows from the latter inequality that R is closed in [0, B(x)). Indeed,
suppose we are siven a sequence {s;} in R with s;—s. Then for all »
in U,

A(T,(u), T, (x)) =2M|s; —s

S

P4 (T, (w), Tsi(x)) :

Given &> 0, we first choose s; so close to s that 2m|s; —s|¥ <£/2, and
then for fixed f, choose u so close to x that d(T;,(u), T;,(x)) <&/2. For
such a choice of u, d (T (u), T,(x)) <&, and T, is continuous at x.

Finally, if s, lies in R, let yo= T (»). Since v, lies in X — K, there
exists 6; >0 and a neighborhood V of v, such that for v in V and
0=58<6, T;, (v) =, (v). By the semigroup property for 7;, it follows
since T;, is continuous at x that there exists a neighborhood U of x
mapped by T, into ¥ and that on this neighborhood,

Tps,(w) =, (T;, (), (e V).

Since T}, is continuous at x and {,, is continuous on V, it follows that
T, s, is continuous at x for 0 <s; < d,, i.e. sy, S+ 0;) is contained in R.
Finally, let[0, 6) be the maximal right open interval contained in R.
Since R is closed, 6 lies in R. If § is different from f(x), there exists a
larger interval [0, § +&,) contained in R, contradicting the maximality
of [0, 8). Thus, R=[0, f(x)), and T, is continuous at x for all ¢ in
[0, B(%)). Thus the proof for case (1) is complete.

Proof for case (3). To prove that T, is continuous at each point x of
K, it suffices, since I, can be written as the composition of T},
n-times, to prove that there exists >0 such that T, is continuous at x
for 0 <<t << é.

Since 44, is continuous in %, there exists a neighborhood U of x and a
constant m, such that |dA,| < m, for all % in U. (In fact, since dh,=0,
my can be chosen as small as one pleases by suitable choice of U.) It
follows that

|7 (26) — B (x)| S my d (1, %)

with a suitable constant m, for all # in U. Since

g () =d(u, x) +|h(u) —h(x)] < (my +1) d(u, %),
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we have
(Bl = o (1 + ) d (w, %) 724
for all # in U.

Let £>>0 be given. We shall show that there exists § > 0 such that ¢
is independent of & and for all ¢ with 0 <¢< 4§, T, maps the ball of radius
£/2 about x into the ball of radius £ about ». Let » be a point with
d(u, x) <&[2, and suppose that T;(#) does not always lie in the ball of
radius & about x for all # with 0 <7 <¢. Then by the continuity of 7} («)
in ¢, it follows that there exists ¢ in [0, 6] with d (T} (), x) =& while
(T, (u), x) <& for all s in [0, #). Since

t t
§=d(T,(u), x) éof T () iz ds=0f 12, 0o Iy y &5

t
< [ holt ) mo& ds

Sko(1+my) my&D
1e.
EXC 8%, (C a constant)
or
6=C1.

For 6 < C-1, therefore, we are lead to a contradiction by the assumption
that T,(#) emerges from the &-ball about x for 0 <¢ =4 for some # in
the (£/2) ball about. The continuity for T, at x for every ¢ follows and
the proof of case (3) is thereby complete.

We have now completed the proof of parts (a) and (b) of Proposition
(5.2). The proof of part (c) follows directly from the result of part (b).
Indeed, let [x, £] be a point of X X R*. By the argument given above,
for each # in X, there exists a constant M depending only on % (%) such
that

a(T,(u), T, (w)) = M|t —s|}, (t, s =0).
Hence
4(T, (), T,(x)) =4 (T, (@), T,0)) +4 (To(w), Ty()

If u is taken from a neighborhood U of x on which /% is bounded, we have
a(T,(u), T,(w)) +a (T, (u), T, (%)) M|t —s|t +d (T, (u), T,()) -
Given & > 0, we choose s so close to ¢ that
Mt —s|t <2

and u so close to x that d(T,(u), T,(x)) <&/2, (which is possible by the
continuity of 7}). For such choice of [#, s] close to [«, t], it follows that
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d(T,(u), T,(x)) <&. Since £>0 was arbitrary, this establishes the
continuity of the mapping of X X R* into X, completing the proof of
part (c).

The assertion of part (d) is simply the observation that we have
already established that for each fixed x, T,(x) =x(¢) is indeed a tra-
jectory of the continuous vector field P.

Thereby the proof of Proposition (4.2) is complete.

5. Lusternik-Schnirelmann theory on Finsler manifolds

In order to apply the deformations constructed in the results of
Section 4 to obtain theorems of the Lusternik-Schnirelmann type for
real-valued functions # on Finsler manifold, we must impose restrictions
on the functions % involved of the following sort:

Definition (5.1). Let X be a C! mansfold with a given Finsler structure
on its tangent bundle T(X), h a real-valued C* function on X. Then h is
said to satisfy condition (C) with respect to the Finsler structure if the
following holds:

(C) For any sequence {x;} in X with |h(x;)| uniformly bounded and
with |dh,,,—0, there exists an infinite subsequence {x;,} converging in
the metric of X to some point x in X.

In terms of this Definition, we may apply Propositions (5.1) and
(5.2) to obtain the following theorem:

Theorem 5. Let X be a Ct manifold with a given Finsler structure and
with X complete in the metric induced by the Finsler structure. Let h be a
real-valued function on X of class C! which is bounded from below on X
and which satisfies condition (C) with respect to the Finsler structure in the
sense of Defimition (5.1). Suppose that there exists a continuous vector
freld P on X which is a quasi-gradient vector field for h with respect to the
Finsler structure (in the sense of Definition (4.1).

Then:

(a) The number of critical points of h is at least as large as the Lusternik-
Schnirvelmann category of X, cat(X).

(b) For each integer k, 1 <k <cat(X), if

() = inf sup h(x),

then my (h) << -+ oo, and for any integer k for which my,(h) is finite, there
exists at least one cvitical point x, of h such that

b (%) = my, (h) .
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(c) The sequence {m, (h)} does not decrease at any point with increasing
k. If for positive integers k and n and some real number v,

r=my(h) =myy(h) = - =my,(h),
and if K is the set of critical points of H, then

cat (Knh(r); X) Z(n+1).
In particular,

dim (K n27Y(r)) Zn; cat (Knh(r) Zn+1.

(d) If his bounded on the set of critical points K, then my (h) is finite
for every k =< cat(X).

We derive the proof of Theorem 5 below from the following more
technical result concerning the implications of the assumption of con-
dition (C) on 4 for the nature of the deformation F which was constructed
in Section 4:

Proposition (5.1). Let X be a connected C* manifold with a Finsler
structure such that X is complete in the induced metric. Let h be a real-
valued function of class C* on X which satisfies condition (C) with respect
to the Finsler structuve and with h bounded from below on X. Suppose that
there exists a quasi-gradient vector field P for h on X with respect to the
given Finsler structure. Then:

(@) If K is the set of critical points of h on X, then for each R >0, the
set Kp=K n{x|h(x) = R} is compact.

(b) I} F: X X R*—X is the deformation defined in Propositions (4.1)
and (4.2) with respect to the quasi-gradient vector field P, then I satisfies
the properties of condition (¢ g)-

Before turning to the details of the proof of Proposition (5.1), we
derive the proof of Theorem 5 from Proposition (5.1) and the results of
Sections 1 and 2.

Proof of Theorem 5 using Proposition (5.1). X being a metrizable
space is paracompact and HAUSDORFF. By hypothesis, /4 is continuous
on X and bounded from below on X, while its set of critical points K is
a closed subset of X. By part (a) of Proposition (5.1), K p=Kn{x|h(x) =R}
is compact for each R>0, and it follows that % (K) is a closed subset of
the reals. By part (b) of Proposition (5.1), the deformation F constructed
in Section 4 with respect to the given vector field P satisfies the properties
of condition (¢, k). Hence, by Theorem 2 of Section 2, the number of
critical points in K is at least as large as cat(X). Hence part (a) of
Theorem 5 follows.
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Since the condition (¢, x) implies (c,x) and & (K) is closed in the
reals, it follows from Theorem 1 of Section 1 that for each integer % for
which m,(h) is finite, there exists a critical point %, in K such that
h (%) =my, (B). Thus part (b) of Theorem 5 follows.

Since the classes S,, consisting of the subsets 4 of X for which
cat(4; X) =k, decrease with increasing %, the minimax values m, (k)
do not decrease with increasing %. The first of these, m, (%), coincides
with the infimum of %2 on X and is finite since % is bounded from below
on X. X being a metrizable manifold is an absolute neighborhood
retract with respect to the class of metrizable spaces. Since K is compact
and F satisfies condition (¢, x) by Proposition (5.1), it follows from
Theorem 3 that if for a real number » and two positive integers & and #

r=my(h)= - =m, "),
then cat (KnA=(r); X) = (n +1). Since
cat (K nhi(r); X) <cat (K nh(r)) <dim (K nA7(r)) +1
it follows that
cat (KnA(r)) = (n +1), dim (K nhY(r)) =n.

’

Thereby, the assertions of part (c) of Theorem 5 are proved.

Similarly, the conclusion of part (d) of Theorem 5 follows from the
results of Theorem 2. q.e.d.

We now turn to the proof of Proposition (5.1).

Proof of part (a) of Proposition (5.1). Let {#;} be an infinite se-
quence in K. If M is a lower bound for % on X, then for all 7, | (x))] =
R 4-|M|. Since each x, is a critical point of %, we have dhy,=0 and
hence |d4,,|,,= 0 for all §. If we apply condition (C), it follows that there
exists a convergent infinite subsequence {x;} of the sequence {x;},
with x;, converging to a point x of X as k— co. Since Ky is closed in X,
x lies in K. Hence Ky is compact for each R>0. q.e.d.

Proof of part (b) of Proposition (5.1). To prove that the deformation
D defined in Propositions (4.1) and (4.2) satisfies condition (c; k), we
must verify the two parts of that condition.

Let [a, 0] be a closed finite interval of the reals such that K does not
intersect A7([a, b]). Since % (K) is closed in the reals by the compactness
of the sets Ky, there exists dy,>0 such that for all ¥ in K, A(x) lies
outside the interval [a@ —d,, b +d,]. Hence for any point % in h([a, b])
and any point z in K, |A(x) —h(z)| =d,. It follows that for all x in
1Y([a, b])

9(x) = int {d(x, 2) +|1(x) — B ()]} Zdy.
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Let x(f) = T,(x) for a point x in A1((— oo, b]). Then

a ,
Zi (5 @) =ah,(y (¥ () =dh, (B o) = —q (2 @) Ao [y = O

In particular, A(x(#)) is a non-increasing function of ¢, and T, maps
B((— oo, a]) into itself for each ¢ =0, and similarly for 41((— oo, b]).
If x(t) lies in A7([a, ]), then

d
2t W(x®0) S —do] dhe iy -

By condition (C), there exists a constant 4 > 0 such that for all x in
h7([a, b)), |dh,|, =d. Indeed, if this were not true, there would exist a
sequence {x;} in A7([a, b]) with |dh,,—0. Passing to the infinite
subsequence which condition (C) guarantees, we may assume that u;
converges to x in X. By the continuity of ||dA,[, in », we will have
dh,=0, i.e. x lies in K. On the other hand, the continuity of » implies
that x lies in h"l([a, b]), contradicting the fact that there are no points
of K in h([a, b]).

Thus for all values of # for which a given x (f) lies in the set {x|4 (x) =a},
we have % h(t) £ —dy d2 Let T(x) be the length of the longest interval

[0, £] for which x(s) lies in the set {x|A(x) =a}, (T(x)= + o if no
longest interval exists). For any finite ¢ < T(x), we have

h(x(f) —h(x) < —dyd?t,
ie.
t(dydD) Zh(x) —h(x() < (b—a); t<dg 1 d2(b—a).
Hence
T(x) <dg* d2(b—a)

for all » in A-1([a, b]). For any #,>>dy" d-2(b —a) and any ¢ =4,
T, (x) lies in A7 ((— oo, a]),

and the proof of part (1) of the condition (c; ) is complete.

We now consider the proof of part (2) of the condition (c; x). Let 7
be a real number, and consider a given neighborhood V in X of K,=
Knh(r). We assert first that there exist real numbers a, and b, with
ay <7 <by such that Knh*([a,, b(,]) is contained in V. Indeed, if this
were not true, we could find a sequence of real numbers 7; converging
to 7 and a sequence of points {¥;} in K such that for each 7, h(x;) =7,
and x; lies in K — V. Choosing R >sup %(x;), the points «x; all lie in the
compact set K and we may assume that x; converges to some point x
of K as j— oco. Since % is continuous, % (x) :Him h(x;) =7, so that x lies
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in K nh7(r). Since each x; lies in the closed set K —V, x lies in K —V/,
which contradicts the hypothesis that V' is a neighborhood of K nA-1(#).

We may assume that ay=7—d, by=r-+d, for given d>0. We
consider real numbers a and b of the form a=7—4, b=7-+9 with
0<d<df2. We propose to show that for sufficiently small § and an
appropriately chosen ¢ >0,

T, (h((— oo, b)) € kY ((— o0, a]) L V.

We note first that since Knh=([a,, bo]) is a compact subset of V, it
has a positive distance 4; from the closed set X —V, d;>0. For any
point x in h1([ay, b,]) which lies outside the (d;/2) neighborhood of
(K nk([a,, by]), there exists a uniform constant d, >0 by condition (C)
such that ||d4,|, =d,. On the other hand, for each point x in

S

with x lying outside of V”, the % -neighborhood of K n4-1([ay, b,]), we
can estimate ¢(x) from below by noting that for any z in K, either %(2)
lies in [a,, by] so that d(x, 2) = %or else 7(2) lies outside of [a,, b,] so
that |4 (2) —h(2)| = g In both cases,

a(%,7) +|h(x) —h(3)| Zmin (4, %):d3>0.
Hence ¢ (x) =d,.

We may assume without loss of generality (by shrinking the neighbor-
hood V' to begin with) that ¢(x) is bounded by a fixed constant g, on ¥
and that there exists 2, >0 such that for all x in V, |dA,|, <k,. Then
for all # in V, we have

Consider a trajectory {y(f): 0=t =c} of the vector field P with ¥(0)
lying in V', y(s) lying in V for s <¢, and with y(c) lying in X — V. Then

d(y(c), y(0)) = % , and it follows that

[4
d(y(O), y(6)> éof “Py(S)”y(S) ds gkO 9o kl c.
We obtain the inequality
d
kogo = 71
ie.
¢ =dy (2kg ky go) 7"
This is also valid if ¥ (0) lies not in V" itself, but on the boundary of V".
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Suppose now that the trajectory {y(f): 0=¢t=c} lies in V—V",
except for its final point ¥ (c). Then for all y (s) with s < ¢, we have

a
(Y ©)) = —q () |dhy |2 -
If we know in addition that %(y(s)) lies in [r—— %, 7+ ‘;q )

@4, oy sy = d; and ¢ (y (s)) =d, by the estimations already given. Hence
h(y(c)) ——h(y (0)) = —dy d3c< —dy d; dy (2kg Ry o)t = —d,

with d,> 0.
We now choose 6 <min (34, 34d,). Let x be any point in A7((— oo,
7 +6]). We assert that if
t>268 dst 4%,
then 7, () lies in 4-1((—o0, 7 —8]) U V. To establish this fact, we consider
the trajectory x (f) = T,(x) for a given x. Let us assume that for 0=t <¢,),

h(x(@)=r—0>7— % For all values of ¢, &(x(t)) <7+ % since 4 is
non-increasing on the trajectory. We propose to show that #, <26 d3* d3°.

If the trajectory lies completely outside of V”, then for all ¢ in {0, £,],
q(y(t)) =dg and |dhy, |, () = ds, for all ¢ in [0, #,]. Hence

B) ~(0) S = [ 2y 0) ey ot ds = —t s

Since 4 (y (t)) =7 —6, and % (y(0)) =h(x) <7+, we obtain
ty dy d3 <20,

and hence ¢, <26 d3" d5”. If on the other hand, the trajectory contains
a point of the closure of V’, we can assume that its initial point ¥ (0) is a
point of the closure of V. The remainder of the trajectory then lies in
VU BY((— o0,  — 8]). Indeed, otherwise we could restrict ourselves to
the portion of the trajectory lying inside of V' and assume that for
0=t<t, x(f) lies in V' — V" and that x(%) lies in X — V. Applying our
preceding calculations, it follows that

h(x(t) =h(2(0) —dy<(r+8) —28=7r—34.
Hence, the rest of the trajectory lies in A=((— oo, 7 —4]).
With this, the proof of part (b) of Proposition (5.1) and thereby of

Proposition (5.1) as a whole is complete. q.e.d.

Definition (5.2). A C' manifold X wmodelled on a Banach space is
satd to be of class C2- if the first derivatives of the coordinate transformations
are locally Lipschitzian.
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Proposition (5.2). Let X be a metrizable manifold of class C* with a
given Finsler structure on its tangent bundle T(X), and let h be a C* veal-
valued function on X, K the set of critical points of h on X. Then there
exists a continuous quasi-gradient vector field P for h with respect to the
Finsler structuve.

Proof of Proposition (5.2). We propose to construct the quasi-
gradient vector field P to be locally Lipschitzian over X — K, which will
automatically guarantee that the condition (c) of the definition of the
quasi-gradient field is satisfied. The notion of P being locally Lipschitzian
is meaningful since transformations from one trivialization of T(X) over
a neighborhood N as N X B to another can be assumed to be locally
Lipschitzian by the hypothesis that X is of class C?-.

We remark that it suffices to construct the field P locally in the neigh-
borhood of each point x, of X — K. Indeed, by its definition, P,=0 on K,
and if we are given a covering of X —K by neighborhoods U; on each
of which we have a vector field P, which is locally Lipschitzian and
satisfies the inequalities

"‘Pj,x“x §2‘](x) ”dhx % dhx(P',x) §_ —q(x) ”dh’xuzr

7

then using the fact that X — K is metrizable and hence paracompact
and that we can find partitions of unity in any Banach space which are
locally Lipschitzian, we can choose a locally finite partition of unity
with locally Lipschitzian functions on X — K {£,} with the property that
the support of each & is contained in one of the neighborhoods U;. We
choose such a § for each 8, and denote it by 7(f). Then it is trivial to
verify that

P= %] &5(%) Bgy,x

is the desired quasi-gradient field over all of X — K and is locally Lip-
schitzian over X — K.

Let x, be a point of X — K. By the definition of the duality of norms
in the two Banach spaces T, (X) and T} (X) =(T,,(X))*, we may find
an element F of T such that

1Bl =% q(x)|an

dh,,(R) = —% q (%) |23,

xo‘xo’

Over a neighborhood U of x,, we may consider a trivialization of T(X)
as U x B, and consider the constant section F, over U. By the continuity
of the functions ¢ and 44, and the continuity of the Finsler norms, there
exists a smaller neighborhood U’ of %, such that for x in U’,

Bl =2q®)|dh.].; dh.(B) = —q(x)|dhl;-
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This is the desired local section of the quasi-gradient mapping over a
neighborhood of %,. q.e.d.

Theorem 6. Let X be a C?* manifold modelled on a Banach space B
with a given Finsler structure on its tangent space T(X) with X complete
in the induced metvic. Let h be a real-valued function on X of class C! with
h bounded from below on X. Let K be the set of critical points of h on X, and
suppose that h satisfies condition (C) with respect to the given Finsler
structure on X. Then:

(@) The number of critical points of h on X is at least cat (X).

(b) For each integer k with 1 <k =<cat(X) for which m,(h) <+ oo,
there exists at least one critical point x, of h such that h(x,) = m,, (k).

(c) If for two given positive integers k and n,
r=mmy (h) =y (B) = -+ =myp, (B) <+ o0,
then cat (Knhi(r); X ) = (n+1), and hence
cat (KN k(7)) = (n+1), dim (KN AY(r)) = n.
(d) If h is bounded on K, then my (k) is finite for all k < cat (X).

Proof of Theorem 6. By Proposition (5.2), there exists a quasi-
gradient field for » on X with respect to the given Finsler structure.
Hence the conclusions of Theorem 6 follow from those of Theorem 5.
q.e.d.

Theorem 7. The conclusion of Theorem 6 remain valid if one replaces
the hypothesis that X is a C* mamnifold by the weaker hypothests that X is
Cl-diffeomorphic with a C2-manifold X, .

Proof of Theorem 7. Let f be a (! diffeomorphism of X on X;. We
introduce a Finsler structure on X, by letting ||df, ()| )= ||, for each
u in T, (X). With this Finsler structure, it follows that f is an isometry
for the metric induced by the Finsler structure. Hence if X is complete
in its induced metric, so is Xj.

Let 4, be the real-valued C* function on X; given by 4, (y) =& ( ()
for each y in X;. Then f maps critical points of % on critical points of 4,
and conversely, the minimax values of % and %, coincide, and the results
of Theorem 7 for % will follow from those of Theorem 6 applied to the
C! function %, on the €% manifold X, provided that A, satisfies con-
dition (C) with respect to the Finsler structure on Xj.

Let {y;} be a sequence in X; with % (y,) uniformly bounded and
|@%y, y,]y,—0. Let x;=f(y;) for each 5. Then h(x,) =k, (y;) is uniformly
bounded, and by the definition of the Finsler structure, |dh,,|,=
[(@%y)y,]ly;—>0 as j—oo. Since h satisfies (C), it follows that there exists

3 Functional Analysis
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an infinite subsequence {x;,} converging to an element x of X. Then
¥iw =1(%;u) converges to f(x) in Y as k—oo by the continuity of f.
q.e.d.

6. Nonlinear eigenvalue problems in Banach spaces
The study of nonlinear eigenvalue problems is brough within the
context of the general Lusternik-Schnirelmann theory by the method
of Lagrange multipliers.
Let B a be Banach space, g and % two real-valued functions of class C*
on B. For ¢ a real constant, we set

M,={x|x€ B, g(x) =c}.

The subset M, of X inherits a manifold structure from the Banach space
B if for each point x in M, g’(x) ==0. We note that in the Banach space
case, the derivative g’ is a continuous mapping from B to its adjoint
space B*. At each point x of M, its tangent space T, (M) can be identi-
fied with the subspace of B given by

M) {v|ve B, (g'(x), v) =0},

where we use the notation (w, v) for the pairing between w in the space
B* and v in the space B.

The injection of T, (M.} into B which we have just described yields a
canonical Finsler structure on the manifold M, where the norm of v
in T, (M) is the corresponding norm in B of its canonical image in B. We
shall use this Finsler structure on M, without further reference.

The restriction of the given function 4 to M, yields a function on the
manifold which we denote by %,. To relate the differential d#, of this
function to the derivative 4’ of % on the space B, we use the following
result:

Proposition (6.1). Suppose that for each point x in M, g'(x) =0, and
that we arve given a function N from M, to B with the property that
(¢'(%), N(x)) 30 for each x in M. Then:

(a) At a given point x of M,, (dh,),=0 if and only if

W (x) =§&(x) g'(x)

with
& (%) = (W'(x), N(%)) (¢'(x), N(x))2.
(b) Let
%) =g’ ) |s= [N (%)l | (' (), N (%))
Then:

|7 (x) —&(x) & (#)]ar = (1 +C () )] (@A), ],
where the right-hand norm is taken in T,F (M ).
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Remark. It follows from part (a) of Proposition (6.1) that to obtain
eigenfunctions of A'(x) =&g'(x) on M,, it suffices to obtain critical
points of the function %, on M, .

Proof of Proposition (6.1). An element w of B lies in the canonical
image of T,(M,) in B if and only if (¢’(), w) = 0. Hence each element w
of B can be written in one and only one way in the form

=1, -+ (@) N(x)

with v, lying in T, (M) for a given x. Indeed, we observe that if such a
representation exists, then (g'(x), v,) =0, and hence

(€'(%), w) =B (w) (¢'(x), N(x))

B(@) = (¢'(x), w) (¢'(%), N(x))*.
On the other hand, if we choose §(w) to be this value, then
(¢'(x), w — B (w) N(x)) =0

so that v, =w —f (@) N(x) does lie in T,(M,). In particular, v lies in
T,(M,) if and only if g (v) =0.

If (dh,), =0 for a given x in M, then for each vin T, (M), (dh,),(v) =
(h’(x), v) =0. Hence for each w in B,

(7 (), w) = (K (), v,) +B () (W (x), N(x))
=B (w) (W' (%), N(x)),

(W' (x), w) = (W'(x), N(x)) (¢'(%), N(%)) (¢ (%), »), (we B).
It follows that

so that

ie.

W (x) =& (%) g'(%).
On the other hand, if 4'(x) =& (x) g’(x) for a given x in M, then
setting v =v —f (v) N(x) for v in T,(M ), we have
(@A), (v) = (W' (%), v — B (v) N())
= (W' (x) —&(x) g'(x), v) =0.
Hence (d4,), = 0. Thus the proof of part (a) is complete.
To prove part (b), we note first that
|8 ()| =(g'(x), @) (¢'(x), N(x))7|
=g’ )5+ 2[5 (¢'(x), N(x)) .
Hence for each w in B,

lowlzeon0 =0z =[wls +18@@)] - [N [z = [wls (14 (%))

3*
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It follows that for each w in B,
|(#'(x) =& (x) g'(x), w)| =| (#(x), w — B () N ()| =] (#(%), v,) |
= (@) (v, l = @R[ lve iz,
=(1+E@ ) @ho). ]|
Since this is true for each w in B,
|7 (%) —&(x) &' (#)]ps = (1+C (%)) |(d ),
and the proof of part (b) is complete. q.e.d.

)il

Proposition (6.2). Suppose that the following conditions hold on h and g:
(1) &' is compact on any subset of M, on which h is bounded.
(2) g’ is proper on any closed subset of M, on which h is bounded.

(3) On any subset S of M, on which h is bounded, there exists dg>0
such that £ (x) =dg for all x in S.

(4) On any subset S of M, on which h is bounded, there exists dg>0
such that for all x in S, |&(x)| =ds.

Then: h, satisfies condition (C) on M.
Proof of Proposition (6.2). Let {x;} be a sequence in M, with &, (x,) =

h(x;) uniformly bounded and with |(d%,),], —0 as j— co. By part (b)
of Proposition (6.1), we know that

”h’(xj) _g,(xf) 3 (xy‘)“B* =(1+L(x _1” ah,) x,”x,--

By hypothesis (3),
(148 (%)) S (1 445" = ¢, < o0.
Hence
O, = A (x;) —¢'(%;) & (%,)]|g«—0, (j— 0).
By hypothesis (4),
E(x) 1 S (d9) =y < oo.

Hence

”’S )R (%)) — (xi)”B* E(x;) ey =y 0,0

where 7/(x;) lies in a compact subset of B*. Since &(x,)™ is uniformly
bounded, if we set w;=§(x;)14'(x;), the set {w,} is relatively compact
in B*. Passing to an infinite subsequence, we may assume that w;
converges to an element w of B* as  — oo. Thus for given integers 7 and %

lg' () — &' (x)lls= =6’ () —w;]| +-[|w0; — 04| + [0, — &' (x:) [0,
(7, k— o).
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Since the sequence {g'(#,)} is relatively compact and the sequence {x;}
lies in M, with %(x;) uniformly bounded, it follows from hypothesis (2)
that {x;} is relatively compact in M,. Hence #, satisfies condition (C)
onM,. q.ed.

Definition (6.1). A mapping R of the Banach space B into B* is said
to satisfy condition (S) if the following holds:
(S): For any sequence {x;} in B with x; converging weakly to x in X
for which
(R(x;) — R (x), x;— x) =0,

1¢ follows that x; converges strongly to x in B.

Proposition (6.3). Let B be a veflexive Banach space, R a mapping
of B inio B* which satisfies condition (S). Then R is a proper mapping
on any bounded closed subset of B.

Proof of Proposition (6.3). It suffices to show that if {#;} is a bounded
sequence in B with R(x;) converging strongly to an element w in B¥,
then we can extract a strongly convergent subsequence from the sequence
{«;}. Since B is reflexive and the sequence {x,;} is bounded, we may
assume without loss of generality that x; converges weakly to an element
x of B. Then:

(R(x;) — R (%), x; —x) > (w — R(x), 0) =0.

Applying the condition (S), we see that x; converges strongly to x in B.
q.e.d.

Proposition (6.4). Let g be a C! function on B where the norm is of
class C* on B — {0} with (g'(x), x) ==0 for all x in M, for a given c. Suppose
that each ray from the orvigin intersects M, in exactly one point. Let v be the
mapping of M, into the unit spheve S;(B) given by y (x) =| x| x. Then y
is a Ct diffeomorphism of M, on Sy(B), and |dy,|, is uniformly bounded
on any subset of M, on which ||x|p is bounded from below.

Proof of Proposition (6.4). Since by hypothesis each ray emanating
from the origin hits M, in exactly one point, it follows that y is a one-
to-one mapping of M, onto S; (M). To show that y is a diffeomorphism
of M, on S;(B), it suffices to prove that for each point x of M, dy, is
an isomorphism of T, (M) on T,, (S, (B)).

Let x be a point of M, y =+ (x). Obviously « == 0. The tangent space
T,(S:(B)) can be identified with the subspace of B defined in the
following way:

T, (S.(B)) = {u|u € B, (J(3), ) =0}
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where J is the mapping of B into B* given by

(J), y)=lrlz, ye B,
)z =1yl

If B has a C'-norm on the complement of the origin, J is continuous
and J(v) is simply the derivative of the function f(v)=%|v[} at the
point v of B.

Let us now consider dy, the differential of y considered as a mapping
of B —{0} onto S; (B). A simple computation shows that

dy, (@) =[x w— (] (x), w)|x] 2 2.

An examination of the form of dy, shows that ||dy, |, is uniformly bounded
on the complement of any neighborhood of 0 in B. Hence, to show that
dy, is an isomorphism of T,(M,) with Ty(Sl(B)), it suffices to prove
that it is surjective from T, (M,) to T, (S, (B)).

Finally, let w be any element of T, (S, (B)). Since (g'(x), %) =0, @ can
be written in form w=v +&x, ve€T,(M,). Since dy,(x) =0, it follows
that dy,(v) =dy,(w)=w|x|?. Thus dy,(|x[v)=w, and dy, is sur-
jective. q.e.d.

Definition (6.2). Let M be a C* manifold, h a real-valued C' function
on M, and suppose that we ave given a Finsler structure on the tangent
bundle of M. Let ¢ be a C* diffeomorphism of M such that ¢ is periodic
of a given prime period p, (§? =1, the identity diffeomorphism of M ). Let
7 be the cyclic groups of order p of transformations {I, ¢, ¢2, ..., dp*1}
and suppose that all the elements ¢ of s distinct from the identity act
without fixed points on M. Let h be tnvariant under the action of ¢, i.e.
h(¢p (%)) =h(x) for all x in M. Then:

(a) M| is the C* manifold which is the quotient space of M under the
group of transformations m, and q: M —M|m is the Ct quotient mapping.

(b) The canonical Finsler structure on M|m 1s defined as follows: If
z1s a point of M|m and if v lies in T,(M|7), then we set

lol.=sup [[(@g,)*(@)[.-
*€71()

(¢) The invariant function b on M induces the C function h, on M|x
by h,(q(%)) = h(x).

Proposition (6.5). Let M, h, and ¢ be as in Definition (6.2) with a
given Finsler structure on M. Then:

(a) If M is complete in the metric induced by its Finsler structure
(assuming M to be connected ), then M| is complete in the metric induced
by the Finsler structuve defined in the canowical fashion by part (b) of
Definition (6.2).
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(b) Suppose that |d¢,|, is uniformly bounded over any set of x for
which h(x) is uniformly bounded. Then if h satisfies condition (C) with
vespect to the given Finsler structure on M, then h, satisfies condition (C)
with respect to the canonically induced Finsler structure on M|mw.

Proof of Proposition (6.5): Proof of part (a). By the definition of the
Finsler structure on M|z, for any x in M and any v in T, (M),

“ (dq)x (1)) "q (x) = ”‘l) "x .

It follows that for any Ct curve {x(f): 0 <¢=<a} in M, the image of the
curve under ¢ has length at least as large as the original curve in M.

Let z, and 2z, be any pair of points in the connected manifold M/z.
Given e> 0, there exists a C! curve of the form {z(t): 0=¢=<1} with
2(0) =2z, 2(1) =2, and the length of the curve < (14 &)d(z,, 7). Let %,
be a point in M such that ¢ (x,) = z,. Since M is a covering space of M|z,
there exists one and only one curve {x(f): 0 <¢ <1} in M with x(0) =z,
and ¢q(x (t)) =z(#) for all ¢ in [0, 1]. The lifted curve is also of class C,
and for each value in [0, 11, |'(})]l, s = |2’ @), 5y since dg, ¢ (*'(¢)) =2'(2).
If C, is the lifted curve and C the original curve in M/, it follows that

d(xy, %) =length (Cp) <length (C) =d(zy, 2) (1+¢).

On the other hand, the possible endpoints #x, of such lifted curves C,
must all lie in ¢7(z). Since ¢>0 is arbitrary, there must exist at least
one %, in the finite set ¢-1(z) such that

a(%y, %) =d (29, 21) -

Assume now that we are given a Cauchy sequence {z;} in M/x with
respect to the induced metric. To show that the given sequence con-
verges to a point z of M/, it suffices to obtain a convergent infinite
subsequence. We construct an infinite subsequence {z;} such that (k)
increases with %, while for » > (%),

Az, 1) =27
In particular,
a(2;my 2 rn) S275

We choose by iteration, a corresponding sequence {x; )} in M such that
for each &,
A%y %jpany) =27

For this new sequence, we have for m <<k,

k
d(xj(m), xj(k)) § y~%+1d (xi(k), xf(k_l)) § 27" —0, (M’I,% OO) .
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Hence the sequence {x; )} is a Cauchy sequence in the complete metrix
space M and hence converges to a point x of M. It follows since ¢ is
continuous that z;u)=¢(x;u)—>¢(¥)=2 in M/n. Hence M|n is a
complete metric space. q.e.d.

Proof of part (b). Let x be a point in M with |4 (x)| < R, w an element
of T,(M), z=¢q(x), and u=dgq, (w). Since

@, @i

|, = sup
0<7<(p

while
. i=1
(€ ). (@)|gi (y = klzo 12 Dot oot |2

where A (¢*(x)) =h(x) so that there exists a constant ¢=c¢(R) >1 such
that |d gk llph sy = ¢ (R), it follows that

Ju]. =[],

'zl

Suppose that we are given a sequence {z;} in M/x with |, (z;)| <R
and with |(d4,),,|,,—0. For each §, we choose a point x; in M such that
q(%;)=z;. Then h(x;)=h,(z;) so that |h(x;)| <R. Since h="h,q, we
have

dhy = (dh),, dg.,,
so that
|k W) fo 202y

By our preceding calculation, however, since |4(x;)] <R,
ldqs ], < c(R).

Hence |[dh,,|=c(R)?|(dh,),],—0. Applying condition (C) for the
function % on M with respect to the given Finsler structure, we may find
an infinite subsequence {x;.} of the sequence {x;} with x,,—x as
k—> oo, for some point x of M. Since ¢ is continuous from M into M/m,
it follows that z;,)=g(¥;q4) converges to ¢(x) as k—oo. Hence #,
satisfies condition (C) with respect to the induced Finsler structure on
M|n. q.e.d.
Thus the proof of Proposition (6.5) is complete.

We now combine the preceding results to derive a general theorem on
the existence of infinitely many eigenfunctions for suitable nonlinear
eigenvalue problems on infinite-dimensional Banach spaces B.

Theorem 8. Let B be an infinite dimensional Banach space, g and h
two real-valued C' functions on B such that for a given veal comstant c,
and all w in B with g(u) =c, (g'(u), u) =0. Let M,={u|u€ B, g(u)=c}
have the property that each ray emanating from the origin in B hits M, in
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exactly one point and h(u) = —k on M,. Suppose that the norm of B is a
C* function on B —{0}, that W' is compact on any subset of M, on which
h is bounded, and that g' is proper on any closed subset of M, on which h
is bounded. Suppose that for each subset S of M, on which h is bounded,
there exists a constant ds such that for each u in S, we can find an element
N(u) of B for which

ds|(g'(w), N(w))| =g’ (w)]- [N )]
|(g'(#), N(u)) <ds| (W' (), N(w))].
Let ¢ be a CL diffeomorphism of M , with itself such that ¢? is the identity

for some prime p =2, with ¢’ fixed-point frec on M, for eachjwith1 <j<p—1,
and such that

and

B () =k (), (veM).
Suppose that theve exists a C?~ diffeomorphism ¢y of S;(B) such that for

each x in M,
I (16 () = b (2 2).
Then:
(@) There exists an infinite number of distinct elements x, of M, such
that for some real &,,

W (%) =&, €' (%) -

(b) Let M |7 be the quotient space of M, by the finite cyclic group =
of transformations generated by @, q the quotient map of M,—~M 7. Then
for every integer k =1, if we consider the k-th minimax value of h given by

)= g (A%?Afdc/mzk Sup h(x),
and if my(h) is finite, then theve exists an eigenfunction x, on M, with
R (%) =&, g' (%) such that h(x,) =m,(h).

(c) cat(M, /z) = + oo.

(d) Let K={x|xe€M,. There exists a real & such that h'(x) =E&g'(x)}.
Suppose that for a finite v and positive integers k and n, my, (h) =m,_, (h).
Then cat (¢(Kn k(7)) Zn+1, and dim (q(Knh™(7))) Zn.

(e) If h is bounded on K, the set of eigenfunctions on M, then m, (h)
1s finite for every positive integer k.

Proof of Theorem 8. By proposition (6.1), each critical point of the
restricted function %, on M, is an eigenfunction of the pair [g’, #'] on M,
ie. an element of the set K, and conversely. Hence, we consider the
problem of determining the critical points of %, on M. By hypothesis,
the function 4, is invariant under the diffeomorphism ¢ of M, on itself
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and hence induces a real-valued C! function (%,), on M, [z Moreover,
¥ is a critical point of %, if and only if ¢(x) is a critical point of (4,),. If
we let K, denote the set of critical points of (%), on M, [z, we have
K=¢1(K,), and it suffices for our various conclusions to study the
set K.

We propose to prove Theorem 8 by applying Theorem 7 to the C!
function (%4,), on the C! manifold M /z with the Finsler structure given
in Definition (6.2). By Proposition (6.4), the mapping y which carries
each x of M, into y(x) in S,(B) by setting y (x) =|x|1x is a C? diffeo-
morphism of M, onto S, (B) since (g'(), u) £=0 for each » in M,. By
our hypothesis on ¢, ¢,y =y ¢ where ¢, is a C*- diffeomorphism of the
C?%- manifold S;(B). Hence M /7 has a C! diffeomorphism induced by y
on the C?% manifold S,(B)/n,, where s, is the cyclic group of trans-
formations of S, (B) generated by ¢, . Moreover, it follows from Theorem 4
of Section 3§ that cat (M ,/m) = cat (S, (B)/m) = + oo.

Since A, is bounded from below on M, (%,), is bounded from below
on M, /n. Since M, is a closed subset of the complete metric space B, it
is complete in its metric, which is dominated by the Finsler metric.
Hence, it is complete in the Finsler metric. Thus, by Proposition (6.5) (a),
M |7 is complete in the metric induced by its canonical Finsler structure.

Thus to apply Theorem 7 to obtain the results asserted in Theorem 8,
it suffices to prove that the function (%), satisfies the condition (C) on
M, /7 with respect to the canonical Finsler structure. By Proposition
(6.5) (b), since ||d ¢, |, is bounded by hypothesis on each subset of M, on
which % (#) is bounded, it suffices to prove that %, itself satisfies condi-
tion (C) on the manifold M, with respect to the natural Finsler structure
on M, induced by its imbedding in B. On the other hand, our hypotheses
include the hypotheses of Proposition (6.2), (i.e. #' compact on subsets
of M, on which % is bounded, g’ proper on such subsets, and {(x) and
|&(x)| bounded from below by positive constants on such subsets).
Hence % satisfies condition (C) on M,, and the proof of Theorem 8 is
complete. q.e.d.

Theorem 9. The conclusions of Theovem 8 remain valid if one drops
the following hypotheses of that Theovem:

(H)o: (1) (g'(u), u) =0, for all uwin M,.

(2) M, is intersected exactly once by each ray from the origin.

(3) There exists a C*~ diffeomorphism ¢, of S;(B) such that y ¢ = ¢,y
for y the radial projection of M, on S;(B);
and replaces them by the following:

(H)y: (1) Each compact subset of M, is contractible in M.
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(2) There exists a C2 manifold M,, a C* diffeomorphism v of M, onto
M, and a C* diffeomorphism ¢, of My such that

Gry=9po.

Proof of Theorem 9. The hypotheses of the set (H,) were used in the
proof of Theorem 8 for only two purposes:

(1) To show that M /= is C! diffeomorphic to a C?- manifold.

(2) To show that cat (M ,[n) = + oo.

Hypothesis (2) of (H), implies that M,/z is C* diffeomorphic to M/,
where gz, is the cyclic group of transformations generated by ¢,, and the
latter manifold is of class C*-.

If each compact subset of M, is contractible over M, then each
homotopy group =, (M,)=0 for =2, and M, is simply connected.
Since M, is a covering space of M/, it has the same homotopy groups
7, (M,[7) =0, (k=2) and m, (M /7)) = n. Hence M /x is an Eilenberg-
MacLane space K (7, 1), and the proof that cat (K (7, 1)) =+ oo for a
cyclic group s of prime period p =2 is described in the proof of Theo-
rem 4. q.e.d.

7. Nonlinear elliptic eigenvalue problems

We now apply the results of Section 6 concerning nonlinear eigen-
value problems in Banach spaces to the proof of the existence of in-
finitely many eigenfunctions for a general class of nonlinear elliptic
eigenvalue problems.

Let ©2 be a bounded open subset of the Euclidean #-dimensional
space R". We let x denote the general point of R” and dx, the element
of Lebesgue n-measure on R”. For each n-tulpe a of nonnegative integers
o= (0, ..., o,), we set

#n

D= [] (8]0 %), o] :j‘i"laf’

j=1

where for « = (0, ..., 0), D* is the identity operator. For a given integer
m, we let &, denote the m-jet of a real-valued function # at a point
of R*, i.e.

En={&l | =m},

where &, lies in a Euclidean space R with dimension depending on .
Similarly, we denote by {,,, a corresponding vector whose components
are pure m-th derivatives

b= {Cal || =3,

and lety,,_, = {y;| || =m — 1} represent the remaining components of £,,.



44 F. E. BROWDER:

To obtain our nonlinear eigenvalue problems, we begin with two
multiple integral variational problems of order # and (m — 1) respectively,
of the form

gu)= [G(x, u, Du, ..., D" u) dx,
2

and
k(u)= [ K(x, u, Du, ..., D" u) dx,
2

for # a real-valued function on 2, with G a C! function from Q2 x R*» to
the reals, K a C* function from 2 X R*»: to the reals. We write

G(xr gm) =G(x’ le wm—l)r K(x"wm—-l)

to indicate the variables upon which G and K depend. If we put &, () =
{D*u||e| <m}, and y,,_, () = {DPu||B| =m —1}, the functionals g and %
can be written in a less suggestive but more precise way as

g) =[G (&, (u) (x)) dx,

k) = [ K (%, 9,y (x) dx.

Definition (7.1). For each o with || <m, let

aG ) om,
Goc (x, Em) = (6};“‘5‘)_
and for B with |f| <m —1, let
oK
K (% p) = 5 (% Y-

Let A and B be the two partial differential operators of the form
Aw)= X (=) D*G,(x, &, ),

o <m

B(M): Z (—1)Iﬂl DﬁKﬁ(x’Wm—l(u))'

[Bl=m—1

Then by an eigenfunction of the pair [A, B] is meant formally a function u
such that for some real constant A, we have

A(u) = 2AB(u).

We shall interpet the above partial differential equation, as well as
the corresponding boundary conditions, in a variational way by introduc-
ing the concept of a weak solution of the corresponding variational
problem in a suitable subspace V of a Sobolev space W™ ?(Q).

Let ¢ be a real number with 1< <+ oo. We denote by W™?(Q)
the Banach space of functions on £ given by

W™t (Q) = {u|ue LP(Q), D* ue L2 (Q) for || <m},
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where L?(Q) is the L? space with respect to Lebesgue #n-measure on £
and the derivatives D* are taken in the sense of the theory of distribu-
tions. If we introduce a norm on W™?#(Q) by setting

1/
Pebop=( 2 10l

then with respect to this norm, W™?(Q) is a separable Banach space
which is uniformly convex and hence reflexive.

In order to define our given eigenvalue problem in terms of a functional
equation on a closed subspace V of the Sobolev space W™?(Q), we
must introduce our basic analytic assumptions upon the functions G
and K from which our differential operators A and B are derived.
These assumptions are the following:

Assumptions on G and K:

(1) For each fixed &, G (x, &,,) is measurable in x on 82. For each fixed
Y1, K (%, 9,,_1) s measurable in x on Q. For each fixed x outside a
nullset in 2, G(x,&,) s Ct in &, on R™ and K(x,v,,_,) is Ct in ¢, _;
on Rom—

(2) The functions G and K satisfy the following inequalities:
IG(xtEm) éc(gb) (x) +cl(§b) Z igcxlsa:

m— %é[a{ém

| K (%, $m—1)| =c () (%) 1 (3) 2 sl

m— % <|flEm—1
whnere

b=m— 5] & ={Ellal =8} v, = (sl 1B =8},

c; s a continuous function from R® o R, ¢ is a continuous map from R
to LP(Q), and s7* =pt—ntm —|a|), sp<oo, tg<<ss.
(3) The functions G, satisfy the following inequality:
chx (x: Sm)l éc«x (‘Sb) (x) +Cl (‘Sb) Z IEBIP“‘?’

m— % S|B|=m

where: ¢, 1s a continuous function from R% to R, cis a continuous function from
R to LP2(Q), and the following inequalities hold for the exponents p, and
Dup: (v =the conjugate exponent to v).

pa=2p", for |a|=m,
Py >m,, for m—-%_é_\oc|<m, myt =p1—nl(m—|al),

Pa=1, for|a|<m— 1;
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and
Pap =P —1, for |oa|=|B|=m

Paa Smalm) s, for m— 2 <lal Zm, |8 S, |a] +|6] <2,

»
?
Pap=mg, for |o|<m— %
4) The functions K, satisfy the following inequality:
B
lKﬂ(xr 'Pm—l)l §Cﬁ(%) (%) +c1 () 2 |‘/’¢lﬁﬁ"’»

m— % <|gl=m—1
where c, 1s a continuous function from R*® to RY, cis a continuous function from
R 30 LP8(Q2), and the exponents are defined as in (3).
(5) For each x in 82, each vy,,_, in R, and two pure m-jets {,, and
Crw with £, =C., we have

Z [Goc (x: Cm’ 'Wm—l) _Ga (x; C;n: Wm—l)] (Ca —Co,;) >0.

Jaj=m

(6) There exist two continuous functions c, and ¢, from R to R with
¢o () >0 for each v, such that for all x,{,,, and yp,,_,, we have

Z Ga (x, é-mJ u)m—l) Cocgco (wb)lcmlﬂ_c(wb) Z |1pﬁlﬁmﬁ
lel=m m— 2 <lplsm—1
where p,,p is an exponent for py g with |o| =m.
Proposition (7.1). Suppose that the functions G and K satisfy the above

Assumptions, and for w and v in a given closed subspace V of W™?(Q)
for which the Sobolev Imbedding Theovem holds, let

gw) = [ G(x,&,(u) (%) dx,
()= [ K (%, p,_(u) (%)) dx,

and letting (w, w)) = [ w(x)w, (x) dx, set

a(u, v) = 2 (Gy(%, £,(w), D),

la]<m

b(u’ v) = Z (Kﬂ(x’ wm—-l(u))) DF 'U) .

|Bl=m—1

Then:

(@) The functionals g and k are well-defined, bounded on bounded sub-
sets, and of class Cton V. For eachuw and v, in V, a(u, v) and b (u, v) are well-
defined, and we have

(g'(u), v) =a(u, v); (B (u), v) =b(u, )

for all wand v in V.
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(b) g satisfies the condition (S) of Section 6, Definition (6.1) and is
bounded on bounded sets.
(c) &' is compact on each bounded closed subset of V.

Proof of Proposition (6.1). For the proof, we refer to the Appendix to
Section 1 of BROWDER [4].

Definition (6.1). Let G and K be functions satisfying the Assumptions
given above, and let A and B be the corvesponding Euler-Lagrange operators

A@w) = % (=) D*G,(, &, (w),

lajsm

B(w)= 2 (—1)? D? Ky (%, 1 (1))
B =m—1
If V is a closed subspace of W™? (Q) with the Sobolev Imbedding Theorem
valid on Q, then u from V is said to be an eigenfunction for A(u) =AB (u),
A real, with the natural boundary conditions corvesponding to V', (or briefly,
u 1s an esgenfunction for (A, B) with respect to V and with eigenvalue 1),
if the following holds:

a(u, v) =Ab(u, v), for all vin V.

Theorem 10. Let Q2 be a bounded open subset of R* for which the Sobolev
Imbedding Theovem is valid. Let g and k be two multiple integral fumc-
tronals on 2 of the form

g (u) =Qf G (%, &, (w) dx, R (u) =Qf K (%, 91 () dx,

where the functions G and K satisfy the Assumptions stated above for a
given real p with 2 =p <<co. Let A and B be the Euler-Lagrange operators
for the functionals g and k, respectively, i.e.

A)= X (=) D*Gy(x, &, (1),

la|=m
Bu)= Y (—1)/DPKy(x,9,_1(u),
[Bl=m—1
and let a (u, v), b(u, v) be the generalized Divichlet forms which correspond to
the representation of A and B in generalized divergence form, i.e.

u(“) 'Z}) = Z (Ga(x: Em (M))» D> 'U):

|| =m

bu,v)= 2 (K,s(x» #’m—1(u)), D).
[Blsm—1
Jor w and v in V, a closed subspace of W™# (). Let K denote the set of
esgenfunciions win V of the pair (A, B) withrespectto V and with real eigen-
values, and for a given real c, let M,={u|ucV, g(u)=c}.
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Suppose the following additional conditions hold:

(1) For win M, k(u) > 0. Given d >0, there exists a constant d,>0
such that for w in M, with k(u) =d, b(u, u) =d,.

(2) There exist constants dy>0 and 7y>>0 such that for |u|=r, or
g(u) =c, we have a(u, u) =dy> 0.

(3) There exists a bounded lLinear mapping ¢ of W™P(0Q) into itself
which is continuously invertible such that ¢¥ =1 for a prime q =2 with
@' having no fixed points except for O for 1 <j=<q —1, such that ¢ maps
M, onto itself, and k(¢ (u)) =k (u) for all u in M,.

Then there exists an infinite number of distinct elements of K tn M,
i.e. an infinite sequence {u,} of elements of V with g(w,) =c such that each
uy, 1S an eigenfunction in the sense of Definition (6.1) with the natural
boundary conditions of V of

A(wy) =2, B (wy) .

Proof of Theorem 10. We shall apply Theorem 8 with the Banach
space B=1V, with the functional g as given and with

R() =1k (u).

V, being a closed subspace of a reflxive Banach space, is reflexive.

By Proposition (7.1), g and & are C! real-valued functions on V. Since
k(u) >0 for win M,, h is of class C* on a neighborhood of M, in V, and
no other use of the differentiability hypotheses on % is made use of in
the proof of Theorem 8. By proposition (6.1), the eigenfunctions of K
correspond to the solutions of the equation g’(#) = A&'(»), while

W () = [k (u)]72 &' (u).

Hence, eigenfunctions of K in M, correspond to the eigenfunctions »
in M, of #'(u) =&g'(u) with £==0.

It follows from hypothesis (2) of Theorem 10 that M, is bounded and
that each ray from the origin intersects M, in exactly one point. Since
M, is bounded, it follows from Proposition (6.1) that g’ is proper on M,
since g’ satisfies condition (S) on a reflexive Banach space and hence
is proper on bounded closed subsets of M, by Proposition (6.3).

By the hypothesis of Theorem 10, given d>0, there exists d; >0
such that for any # in M, with k(#) =d, we have b(u, u) =d,. By
Proposition (6.1), b (u, v) = (k'(u), v), and by definition % (u) =k (1)
Hence if 4 (u) <d-1, we have

(W (u), w) =k (u)~2 (k' (u), u) =d, M2,

where M is an upper bound for the bounded functional % on M. (Indeed,
£ is bounded on bounded subsets of V.)



Nonlinear Eigenvalue Problems and Group Invariance 49

Since ¢ is itself obviously a diffeomorphism of class C2?- on S, (V)
being a bounded linear mapping on the Banach space V¥, whose norm is
of class C?- because of the assumption that p =2, and since

¢ 1+l %) = [ ¢ (=)

and ||¢ (%) ¢ () are both positive multiples of ¢ (x) lying on S; (V), we
have ¢ (|x|| %) =] ¢ (x)| 2 ¢ (x) for all x in M.

Finally, since £’ is compact on bounded subsets of ¥ and hence on
M, while ' =k~2k', b’ is compact on each closed subset of M, on which %
is bounded.

Thus all the hypotheses of Theorem § are satisfied for this case, and
the conclusion of Theorem 10 follows if we set N(u) =u for each # in
M,, and note that

(0, 5) Zdy, [ O <y, [l Sy, (wE M),
and for any # with % (u) <d!

(K (u), w) 2d3>0. q.ed.

8. Galerkin approximations for nonlinear eigenvalue problems

If we wish to extend the results of Theorem 10 to the case of p with
1< p <2, we can no longer assume that the problem can be transplanted
to a suitable C?- manifold since the Banach space 7 has a norm whose
second derivatives do not exist. Thus it is of interest to obtain another
method of establishing results of the Lusternik-Schnirelmann type for
C? functions on C! manifolds without any sort of regularization in terms
of differentiability class. The technique of argument which we shall
apply in the present Section accomplishes such objectives in the treat-
ment of nonlinear eigenvalue problems and is based upon the use of
GALERKIN or (more properly speaking) Rayleigh-Ritz approximation of
the given eigenvalue problem by finite dimensional eigenvalue problems.

Let B be an infinite dimensional Banach space, g and 4 two continuous
real-valued functions defined on B. Let ¢ be a real number, and as
before,

M,={u|ue B, g(u) =c}.

We assume that 0 does not lie in M, that both g and 4 are of class C?
on a neighborhood of M, and that for all » in M,, g'(#) ==0. Then M,
is a closed submanifold of B of class C1. We are concerned with deter-
mining the critical points on M, of the function A,=h|y,.

Proposition (8.1). Let B be a separable Banach space, ¢ a continuous,
tnvertible linear mapping of B on B such that for a given prime q, ¢p?=1,
while for 1 <7 <q—1, ¢ has only 0 as a fixed poini.

4 Functional Analysis
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Then there exists an increasing sequence {B,} of finite dimensional
subspace of B such that each B, is itnvariant under ¢, the union of the B
is dense in B, and if

n
Mc,nchmBn,
the unton of the sets M, , is dense in M,.

Proof of Proposition (8.1). Let {x,} be a dense sequence in B con-
taining a dense sequence in M,. For each #, let B, be the finite dimen-
sional subspace of B spanned by {¢*(x,): 1=7=<#n, 0=k =g —1}. Then
the sequence of subspaces B, satisfies the conditions of Proposition
(8.1). q.e.d.

Proposition (8.2). Let B be a reflextve Banach space, g a veal-valued Ct
function on B such that g' satisfies the condition (S) and maps bounded
subsets of B into bounded subsets of B*. Suppose that B is separable, that
M, is bounded, and that {B,} is the sequence of finite dimensional sub-
spaces of B constructed with respect to some mapping ¢ as in Proposition
(8.1). Let g,, be the restriction of g to B, and g,: B, — B} its derivative.
Then theve exists ng =1 such that for all n =n,, g, (u) <=0 for all win M, ,,
and M, , is a closed C* submanifold of B,,.

Proof of Proposition (8.2). It suffices to prove that for # =#, for
some 7y, g, (#) =0 for all » in M, ,. Suppose this to be false. Then for
an infinite sequence of integers, which we can identify with our original
sequence, there exist elements x, of M, , with g, (x,)=0.

For each #, let 7, be the injection map of B, into B, and j the dual
projection map of B* onto B¥. For each # and vin B,,,

(60 (), v) =(g'(1), v) = (&' 7. (8), 7, (0) = (i3 &' 7 (w), v).

Hence g,=7¥ ¢ j,, the n-th Galerkin approximant of g’ with respect
to the sequence {B,} of finite dimensional subspaces of B.

Let v be an element of the dense subset U B, of B. Then v lies in
B,, for some m, and for # =m, "

0= (g:z(xn)x v) = (7: g,(xn)’ 7)) = (g’(xn): 'l)) .

Since all the x, belong to M,, which is bounded, g’(x,) is uniformly
bounded for all #. Hence, since g'(x,) converges weakly to 0 against a
dense subset of B, g'(x,) converges weakly to 0 as #— co.

Consider
(gl(xn) _g,(x): xn_x) = (gl(xn): xn) - (gl(xn)’ x) - (g’(x), xn_x) .

Since #, converges weakly to x, (g'(x), ¥, —x)—0. Since g'(x,) con-
verges weakly to 0, (g'(x,), x) —0. Finally, (¢'(x,), x,) = (g, (%,), %,,) =0.
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Combining these results, we see that
(g,(xn) _'g’(x)’ Xn— x) —0.

Since g’ satisfies condition (S), it follows that x, converges strongly to x
in X, x lies in M,, and g'(») =lm g'(x,). However, g'(x,) converges

weakly to 0, so that g’'(x) must equal 0. This contradicts the assumption
that ¢’(x) =0 for x in M. This contradiction establishes the validity of
the Proposition. q.e.d.

Definition (8.1). If X is a topological space, the compact category of X
is defined by

comp cat (X) =sup{cat(K): K is a compact subset of X}.

Proposition (8.3). Let X be the quotient of S;(B) by a cyclic group n
of transformations of prime order, B an infinite dimensional Banach space.
Then comp cat (X) = + oco.

More generally let X = Z |7, where Z is a metyizable absolute neighborhood
vetract such that every compact subset of Z is contractible in Z. Then comp
cat(X) = + .

Proof of Proposition (8.3). In both cases, X is an Eilenberg-MacLane
space K(m, 1), and the result follows by a slight modification of the
argument of Section 3.

Proposition (8.4). Let B be a separable Banach space with norm of
class Ct on B —{0}, ¢ a bounded linear operator in B such that ¢?=1 for
a given prime q =2, and ¢ has no non-null fixed points for 17 = (g —1).
Let {B,} be an increasing sequence of finite dimensional subspaces of B
such that each B, is invariant under ¢ and the union of the B, is dense in B.
Let g be a C function on B, and for a veal c, let M, ={u|g(u)=c}
and M, ,=M N B,. Assume that M, is bounded and invariant under @,
while the wnion of the M, ,, is dense in M,. We assume also that for each u
in M,, (g'(u), #) 50, and that each ray from the origin intersects M, in
exactly one point.

Lot X=Mn, X,=M, ,|7, where 7 is the cyclic group of trans-
formations generated by ¢. Then:

(@) If K is a compact subset of X, and €>0 is given, there exists an
integer n and a compact subset K, of X, such that K can be deformed into
K, through X and the distance in X of K from K, is less than e.

(b} For each n, cat(X,, X) is finite, and
cat(X,; X) <cat(X,.,; X) <comp cat(X),
cat(X,; X)—>comp cat(X).

4%
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(¢) If h,is a continuous real-valued function on M, tnvariant under ¢,
and if
mk,comp (k) = lnf Sup h(x) b

AESE €4
where

Sp={A|A compact in M,, q(A) of category =k in X}
where g is the quotient map of M, on X =M [x, and if

h = i f h ’
i, (h) Aes,’,lznA CBy ,S,EE )
then:
My, (B) Z 1 iy (B) Z 90 oy (h),
and
mk, n (h’) '_>mk,comp (h)’ (7’L—> oo) .

Proof of Proposition (8.5): Proof of part (a). It suffices to show that
for given e and for K’=¢"(K), there exists an e-deformation of K’ into
B,, which is invariant under the mapping ¢ for » sufficiently large, i.e.
amapping F: K’ x [0, 1] —M_ such that F is continuous, F(K’' x{1}) = B,,,

F(p(x),t) =¢ (F(x,1), ([x t]e K'x[0, 1)

[F(x, &) — x| e,

and

for all x in K’ and each ¢in [0, 1]. Indeed, if such a deformation F exists,
we take K, =¢/(f,(K')), where f, (x) =F(x, 1), and let the deformation G
of K% [0, 1] through X be given by

G(v, 1) =q(F(g@),?).

If G is a deformation, the result of part (a) will then follow. If I satisfies
the commutation condition with ¢ stated above, G is well defined, and
it suffices to show that G is continuous. Since ¢ is a covering mapping,
however, for each point v, in K, we can choose a neighborhood N on
which there exists a continuous single-valued branch of ¢=t. Using the
continuity of this branch, the continuity of G on N X [0, 1] follows by
the definition of G. Hence, it suffices to prove the existence of the
deformation I as described above.

By hypothesis, the norm of B is of class C* on B — {0}, each ray from
the origin intersects M, in exactly one point, and (g'(u), %) ==0 for each u
in M,. Hence by Proposition (6.4), the mapping ¢ of M, onto S,(B)
given by radial projection is a C! diffeomorphism of M, onto S;(B),
(y (%) =]|x|1%). Let g, be the inverse mapping of S, (B) into N,. If we
extend y to the whole of B —{0} by the same definition, then y =,y
is a continuous retraction of B —{0} into M, where y(x) for each x is
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the unique point of M, on the ray from the origin passing through the
point x. Since ¢ is linear and M, is invariant under ¢, it follows that
¢ w =1 ¢ where both mappings are assumed to act on B —{0}.

Let >0 be given. Since v is continuous and K’ is compact, there

exists & with 0 << g, < % such that if x lies in the ¢-neighborhood of K’,

then [y(x) — x| <¢/2. By hypothesis, the union of the spaces B, is
dense in B. Since K’ is compact, there exists an integer » and a finite
subset S={%, ..., x,} in B, invariant under ¢ such that for each x in
K’ and some index &k with 1<k =<7, we have |v—x,|<e,, where
es=|¢[? &. (We note that since pg=1, || =1.) Let 8 be a continuous
function from R* to R* such that B(r)=0 for r=¢,, f(r)>0 for
0=7<g,. For each &, let

B0 = Z 192 — g/ ().

B is a continuous non-negative function from B to the reals, and since
the summand for j =0 is simply 8 (|« — %), B (¥) > 0 on the open &,-ball
about x,. The support of 8, consists of a subset of the union on j of
{x] ¢’ (x) lies in the &, ball about ¢7(x,)}, i.e.
-1 . . g—1 . .
supp (B = U, 671 (B, (¢7 () = U, 67 (B, (¢ (50).

Since & ¢[? < ¢, it follows that

97 (B, (¢ (1) < B g1, (9" (%)) = B., (%)

for each g in the range [0, ¢ —17]. Hence the support of each function g,
is contained in the closed ¢ -ball about the point x, in B.

For two given integers £ and m, let x,= ¢ (x,,). Then

)= 2100 (0) = (sl = S B 63—~ 5] (8 ().

Hence the system of functions {8,} is invariant under the mapping ¢.
For each &2 with 12 <7, we set

oty (%) = B (%) (kélﬁkx(x)>—l

For every point x of K’, at least one of the functions §, is different from

zero at x, and hence Z B, (¥) >0. It follows that the functions «, are
-

all well-defined and contmuous on K’ with supp (&) =supp (f;) for each
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k, 0=a,(x) <1 forall xin K’, and >} a,(x) =1 for all ¥ in K'. Moreover,
k=1

it follows as before that if x, = ¢ (x,,), then a, (x) =, (¢ (x)).
We now define the deformation F: K’ X [0, 1]—M, by setting

F(x, 1) =y ((1 —Hx+ tké1“k (x) xk) .

Let f be the mapping of K’ into B defined by

=2 o(x) x
k=1
Then

18 () = B9 (9) 5= 5 @ Lo (4) 2Je =)
=¢(f(x)), xeK'.
It follows that for each x in K’ and ¢ in [0, 1],

F(p(x), ) =p((1—0)¢ (%) +11( () =w(d((1—1) x+1f(x))
=¢(p((1—1) x +t{ (%)) = $F(x,1).

For a given x in K’, those %, in S for which e, (%) > 0 are all contained
in the ball of radius ¢ about x. Since f(x) is a convex linear combination
of such points x,, it follows that f(x)€ B, (x) and for each ¢ in [0, 1], the
same is true for the convex linear combination (1 —¥) x +¢f(x). By our
choice of ¢, since (1—12) x +#f(x) lies in the & neighborhood of K’,

lp((1—1) 2 +21(x) — (1—1) x+2f (D) | < 5.
Hence
IF(x, £) — x| S|F(x, ) — (1—1) % +2£(x))] +](1 —1) % +2f(x) — ]
Seteg<e.

Hence F is the desired deformation, and the proof of part (a) is com-
plete. g.e.d.

Proof of part (b) of Proposition (8.4). Since each M , is a closed
bounded set in a finite dimensional space, it is compact. Since the M, ,,
increase with #, it follows immediately that cat(X,; X) do not decrease
with increasing #, and that for every n

cat (X ,; X) < comp cat (X).

It suffices therefore to show that cat(X,; X)->comp cat(X). This
follows directly from the result of part (a), however, since given a
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compact subset K of X with cat (K; X) =# for a given integer 2, we may
deform it over X into a compact subset K, of X, . Hence cat (K ,; X) =k,
and the limit relation follows. q.e.d.

Proof of part (c) of Proposition (8.4). It follows immediately from
the definitions that since X, is increasing, the minimax numbers
my, ,(h) decrease with » and are all bounded from below by #; ., (4).
Hence, we need only prove that m, , (h) —>m, com, (k) as n— co.

By the definition of #; .y, (%), if we are given ¢ >0, we may find a
compact subset K of X such that cat(K; X) =k, and

sup h (x) gMik,comp (h’) + .

€K
Since % is continuous and K is compact, we may find &> 0 such that
if x lies in K and #, lies in the g, ball about x, then |h(x) —h(x)| <e.
If we apply the result of part (a), we may deform K over X into K, a
subset of X, such that for each x; in K, there exists » in K such that
| — %, < &. It follows that cat(K,; X) =, and

sup h (xl) g mk,comp (h) _l_ 2e.
zEK
Hence

mk, n (k) gmk,comp (h’) +23’

and since £>0 is arbitrary, it follows that my , (%) =" eomp (B) as
n—> oo, Hence the proof of part (c) is complete, and with it the proof of
Proposition (8.4). q.e.d.

Theorem 11. Let B be an infinite dimensional veflexive Banach space
whose norm 1s of class Ct on B —{0}, ¢ a bounded linear mapping of B
on itself such that for a given prime q =2, ¢7=1, the identity, while for
1<j<q—1, ¢' has no non-null pixed points. Let g be a real-valued
function of class C* on B with g' satisfying the conditton (S) of Definition
(6.1). For a given real number c,let M ,={u|u€ B, g(u) =c} and suppose
that each ray from the ovigin hits M, in exactly one point while for win M,
(g' (), u) == 0. Suppose that b is a C* function from a neighborhood of M,
to the reals, and that ¢ maps M, on itself with h(¢(x)) =h(x) for all x
in M. Suppose that M, is bounded and that k' is compact on subsets of M,
on which h is bounded. Suppose that g’ is bounded on bounded sets, and
that on any subset Sy of M, on which h is bounded, we have a positive
constant ds, > 0 such that for all u in S,

ds, (g' (), u) <| (A (u), u)|.
Then:

(a) Let B, be a sequence of finite dimensional subspaces of B whose
union is dense in B with each B, invariant under ¢ as constructed on



56 F. E. BROWDER:

Proposition (8.1) with B,= B, for each n. For each n and each integer
k=cat(X,; X), where X =M [m and X, = M, ,|7 as in Proposition (8.4),
there exists an element wy, , of M, ,, such that

g; (“k,n) :lk,n h;»(“k,n)r h(“k,n) :mk,n(h‘)

where my, ,, 1S the vestricted minimax defined in Proposition (8.4) and g,
and h,, are the restriction of the functions g and h to B,,.
(b) For each k for which my, . (k) < 4 oo, there exists an element u,
n M, with
g (up) = 2 ' (uy), b () = My, comp (h).
.00, the weak

and for any weakly convergent sequence {wy ,} with n;
limit is an element u, satisfying the conditions of part (b), and the sequence
Uy, CONVETZES strongly to uy,.

(€) If My, comp (B)—> 0o, then there exist an infinite number of distinct
wy, in M, such that g'(u,) =2, b'(w) for veal 4,.

Proof of Theorem 11: Proof of part (a). The result of the finite
dimensional case follows from a special case of Theorem 8, with the
modification that we consider the deformation invariant class of subsets
of X, whose category with respect to X is =#.

Proof of part (b). We know that m, , (h) =y oom, (B) by Proposi-
tion (8.4). We consider the sequence {u; ,} defined by the finite dimensio-
nal problems in part (a}, which lies in the bounded subset M, of B. Hence,
using the reflexivity of the Banach space B, we can assume that u, ,,
converges weakly to an element #, as §— oo for an infinite subsequence
uy,, ;- 1t suffices to prove that u, satisfies the desired conditions and that
Uy, »; cOnverges strongly to u,. To simplify our notation, we may identify
the sequence {n;} with our original sequence, and assume that u, ,
converges to the element u, weakly.

For each #,
g:t (Mk,n) = }'k,n h:t(uk,n): h(uk,n) =My -

By a previously given argument for g, g, =7¥ ¢’ 7,,, by =17% b’ j,, where j,
is the injection map of B, into B, and 4 is the dual projection mapping
of B* onto B}¥. Then for each v in B,,, we have

(g:z(u’k,n)’ 1)) = (gl(uk,n): v) s

(h;b (u’k,n)’ 'U) = (h’(uk,n)l 'U) .
In particular,

(g’(uk,n)r uk,n) =lk,n(h’(uk,n): Mk,n) )

)‘k,n: (g’(uk,n)’ Mk,n) (h"(u’k,n)’ uk,n)_l'

and therefore,
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Since by our construction A (u;, ,) =my ,—>My o (B) <+ 0o, the u, ,
lie on a fixed S, on which % is bounded, and by our hypotheses, there
exists a constant ¢, such that |4, ,| Z¢,, n=1.

To show that our given sequence {u; ,} converges strongly, it suffices
to show that for any such sequence, one can extract a strongly convergent
subsequence. (Indeed, if the original sequence did not converge, one
could extract an infinite subsequence whose distance from the weak
limit #, remained above a fixed bound. If one extracts a strongly con-
vergent infinite subsequence of this subsequence, its limit must be %,
since its weak limit is #,. However, no subsequence of the subsequence
first chosen can converge to u,.)

Since |4 ,| is uniformly bounded and A (u ,) is uniformly bounded
for all #», we may extract an infinite subsequence which we identify
with our original sequence and assume that 2, ,—4, for some 7, as
n—>oo and that %4'(«, ,) converges strongly to an element w of B* since
k' is compact on subsets on which 4 is bounded.

Let v be any element of the dense subset #, B, of B. Then v lies in
some B,,, and for n =m, we have

(g’(uk,n)! 'U) = (g;(uk,n)’ 'U) :lk,n(h;t(uk,n)’ ‘U) Z}’k,n(h’(uk,n)r 'U) .
Hence
(&' (uy,, ), v) =>4 (w, v), (n— 0).

Since g'(#, ,) is uniformly bounded for all #, it follows that g’(u, ,) con-
verges weakly to 4, w as n— co. As a consequence

(&' (wr, ) — &' (1), W, oy —101) = (A @0 — &' (43), 0) =0

as n— oo since the sequence in one term of the pairing converges strongly
and the other weakly. Since g’ satisfies condition (S), it follows that
uy,, , converges strongly to u,. Hence A'(u;, ,)—h'(u;) and &' (u;) = A, w.
Finally g'(u; ,) converges strongly to g'(«,), and g'(u;) = A, w =4, h'(uy)
by the uniqueness of weak limits. Finally, % (u,)=1m A(%, ,) =
lizn My, (B) =My comp (B).  q-€.d.

The proof of part (c) follows obviously from the result of part (b),
and thereby the proof of Theorem 11 is complete. q.e.d.
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Minimal Submanifolds of a Sphere with
Second Fundamental Form of Constant Length

By S. S. CaErn*, M. Do CARMO **, and S. KOBAYASHI *#*
University of California, Berkeley, and IMPA, Rio de Janeiro

1. Introduction

Let M be an #-dimensional manifold which is minimally immersed
in a unit sphere S"*? of dimension # - p. Let % be the second fundamental
form of this immersion; it is a certain symmetric bilinear mapping
T,xT,—TL for xc M, where T, is the tangent space of M at x and T
is the normal space to M at x. We denote by S the square of the length
of A. It is known that if M is moreover compact, then

J«Z“%)S—@S-*uzm

where #1 denotes the volume element of M, (SiMoNs [3]; a slightly
more general formula will be proved in §§ 2 and 3). It follows that if

S<an / (2 — %) everywhere on M, then either

1) S=0 (i.e., M is totally geodesic)

2) Szn/(z——;;).

The purpose of the present paper is to determine all minimal sub-

manifolds M of S satisfying S —n / (2— 5

the results presented by the first named author in his lectures on minimal
submanifolds in Berkeley in the Winter of 1968, in which an exposition
of the work of Simons [3] was made by the use of moving frames. To
describe our result, we begin with examples of minimal submanifolds.
In general, let S?(7) denote a ¢-dimensional sphere in R?™' with
radius 7. Let m and # be positive integers such that m<(# and let
* Work done under partial support by NSF Grant GP-6974;
** Work done under partial support by NSF Grant GP-6974 and
Guggenheim Foundation;
*** Work done under partial support by NSF Grant GP-8008.

or

). The proof depends upon
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M, o=S" (]/%) X S”"”(V";m). We imbed M,, ,_, into S**1
= S"t1(1) as follows. Let (u, v) be a point of M,, ,_., where u (resp. v)

is a vector in R™™' (resp. R"™™*!) of length V% (resp. l/n;m )
We can consider (u,v) as a unit vector in R""2=R"+! x R*~"*1 It
will be shown that M, , , is a minimal submanifold of S**! satis-
fying S =mn.

We shall now define the Veronese surface. Let (x, ¥, 2) be the natural
coordinate system in R® and (u!, u?, ®, u4, 4% the natural coordinate
system in R5. We consider the mapping defined by

1 1 1 1
11— 2—_—,. 3—_..—— 4—_—"—,: 2 ___ 42
u_vjyz,u l/3;:x,u Véxy,u 273 (%2 —v?),
u:%(xz—l—yz—zzz)

This defines an isometric immersion of S2( J/3) into S*=S%(1). Two
points (x, ¥, z) and (—x, —y, —z) of S%()/3) are mapped into the same
point of S%, and this mapping defines an imbedding of the real projective
plane into S%. This real projective plane imbedded in S* will be called
the Veronese surface. It will be shown that the Veronese surface is a
minimal submanifold of S* satisfying S = 4/3.

Main theorem. The Veromese surface tn S* and the submanifolds

M, o min S"t are the only compact minimal submanifolds of dimension

n in S"? satisfying S :n/(z - %) .

The proof is by local argument and the corresponding local result

also holds: An #n-dimensional minimal submanifold of S"*? satisfying

S=n / (2 — %) is locally M, ,_,, or the Veronese surface.

For p =1, the theorem was proved independently by B. Lawson [2].

It should be pointed out that, by the equation of Gauss, S=
n(n—1) —R for an n-dimensional minimal submanifold M of S"**?,
where R is the scalar curvature of M. In particular, S is an intrinsic
invariant when M is minimal.

2. Local formulas for a minimal submanifold

In this section we shall compute the Laplacian of the second funda-
mental form of a minimal submanifold of a symmetric space.

Let M be an n-dimensional manifold immersed in an (# 4 p)-dimen-
sional riemannian manifold N. We choose a local field of orthonormal
framese, ..., €,+,in N such that, restricted to M, the vectorse,, ..., ¢,
are tangent to M (and, consequently, the remaining vectorse, ., ..., €,1,
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are normal to M). We shall make use of the following convention on
the ranges of indices:

1=4,B,C, ..., <n+p; 1=i,j k..., =n;
n+1 éa)ﬂ:y: L] én—l_?:

and we shall agree that repeated indices are summed over the respective
ranges. With respect to the frame field of IV chosen above, let wt, ..., " tP
be the field of dual frames. Then the structure equations of IV are given by

do?=—> wire®, ofitoi=0, _ (21)
dog=—Yoirof+ D5, D5=%2K'5cpo°ro®,
KABCD +KABDC =0. 22
We restrict these forms to M. Then
w*=0. (23)
Since 0 =dw”*= — Y, w?A®’, by CARTAN’S lemma we may write
wf =N B0l =R (2.4)
From these formulas, we obtain
do'=—Y wire!, oitol=0, (2.5)

dwi=— ohrol +0f, Qi=1Y R, 0" rd, (2.6)

RiiklzKiikl + 2 (A b — R ) (2.7)

o
daf=— 2 wArw}+25, %=1 R%, o' Aed, (2.8)
R% =K%+ Z (B, Wy — B3 Hy) (2.9)

t

The riemannian connection of M is defined by (w]). The form ()
defines a connection in the normal bundle of M. We call J 4% ' ¢,
the second fundamental form of the immersed manifold M. Sometimes
we shall denote the second fundamental form by its components Af;.

1
We call > ;(Z hﬁ-‘i) e, the mean curvature normal or the mean curvature
o i

vector. An immersion is said to be minimal if its mean curvature normal
vanishes identically, i.e., if > A% =0 for all «.

We take exterior differentiation of (2.4) and define 4;, by

D Hp ot =dhE— 3 b oh — 2 B o+ X B wof. (2.10)



62 S. S. CHERN, M. po CARMO, and S. KOBAYASHI:

Then .
Z( 17k+2 Uk) ijwk:O: (211)
nk 1k1—K“ik7'= _Kuijk~ (212)
We take exterior differentiation of (2.10) and define 4%, by

2 W 0 = ARG, — 3 by i — X iy 0f — X B o)+ 3 By o (2.13)
Then
2 M — 3 2 W R4y — 3 2 i R™ 4+ 5 D W R% ) of At =0, (2.14)
Wiy — B =2 B R™ 14y + 2 b R™ 1 — 20 BB R® B8Rl (2.15)
We stated earlier that (w;:) defines a connection in the tangent
bundle T=T (M) [and, hence, a connection in the cotangent bundle
T*=T*(M) also] and that (w§) defines a connection in the normal
bundle T1=T< (M). Consequently, we have covariant differentiation
which maps a section of T*RT*Q ... T*, (T*:k times), into a
section of Tt RT* ®...QT*QT*, (T*:k+41 times). The second
fundamental form A is a section of the vector bundle T+ Q T* ® T*,
and Aj; is the covariant derivative of 4%;. Similarly, 4%, is the covariant
derivative of 4;,.

Similarly, we may consider K%, as a section of the bundle
T+ QT*QT*QT*. Its covariant derivative K* i1 i defined by

2 K* ikt @ '=dK* 71 -2 K mik Wi P =2 K%y @]
-2 K%, of +2 K? ik OF-
This covariant derivative of K*;,, must be distinguished from the

covariant derivative of K45, as a curvature tensor of N, which will
be denoted by K4 pcp;e- Restricted to M, K%, ., is given by

Kip =K% — 2 K%;), =2 K%, h/jsz —2 K%g "
=+ Z Kmijk Hon
In this section, we shall assume that N is locally symmetric, i.e.,
KABCD £=0.
The Laplacian 4 4; of the second fundamental form 4; is defined by

Ah;zl:%h”kk (218)

(2.16)

(2.17)

From (2.12) we obtain
Ahg‘,-:%’,h:-‘k,-k—; K“,.jkk:kZh;,-,-k—gK“i,kk. (2.19)

From (2.15) we obtain
Biin=Pinj + 2 Wim R i1+ 2 Figyi R™in — 2 kgiRaﬁjk' (2.20)
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Replace %y, in (2.20) by 7y, — K%, [see (2.12)] and then substitue the
right hand side of (2.20) into A%,;;, of (2.19). Then

i hgf = ; (h‘%kii _Kakiki —'Kaijkk)

i (2.21)
+2 (Z Bem R™ i+ 20 By R™ i — 2 W R ﬁy‘k) .
E \m m B
From (2.7), (2.9), (2.17) and (2.21) we obtain
ArG= % Rrij +ﬂ2k( —K%;p Wy + 2K%;,; h?k — K%, ;
+2 K% W)+ 2 (K™ 1+ K™ B
o (2.22)

F2K™ i, )+ 2 (W Hoi Wy 20, HE B,

Bymk

— Fop W Wy — B Ml W — iy W )

Now, we assume that M is minimal in N so that D\ W, =0 for all B.
Then, from (2.22) we obtain

Dk A= X (4K, Wy Bl — K% gy 1 W)

Y AN
+ 2 k(ZKmkik B B 2 K™ i, B B)
o, My 5, 7,
(2.23)
= L (R — i Bl) (i — 5y
0y Py % 15 Ry
s 127 . lh‘:"j AR

3. Minimal submanifolds of a space of constant curvature

Throughout this section we shall assume that the ambient space N is a
space of constant curvature c. Then

Kipcp=c (64¢ 08D — 04p () -
Then (2.23) reduces to
D0 - Aby= — X (W% Wy — Wl hgy) (B Wl — Wy )

o 7,0 o (31)
— 2 b b h’fj AR (h35)2.
For each o, let H, denote the symmetric matrix (h3;), and set
5a5=z_ he; hff. (3.2)

%7

Then the (p X p)-matrix (S,4) is symmetric and can be assumed to be
diagonal for a suitable choice of ¢4, ..., ¢,.,. We set

SlZ:SlZlZ' (3‘3)
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We denote the square of the length of the second fundamental form by
S, ie.,
S=Xnm;n=2S,. (3.4)
[+
In general, for a matrix A = (a;;) we denote by N(4) the square of
the norm of 4, i.e.,
N(A4) =trace 4 -4 =} (a;;)%

Clearly, N(A)=N(T-* AT) for any orthogonal matrix 7. Now, (3.1)
may be rewritten as follows:

Zhﬁ‘i-dhsz—%N(HaHﬁ HyH) =3 S+neS.  (35)

We need the following algebraic lemma.
Lemma 1. Let A and B be symmetric (n Xn)-matrices. Then
N(AB—BA)<2N(4) - N(B),

and the equality holds for nonzero matrices A and B if and only if A and B
can be transformed simultaneously by an orthogonal matrix into scalay
multiples of A and B respectively, where

01 1 0
'100 0—1 O

g: B — M E: —

>

Moreover, if Ay, Ay and Ay are (n X n)-symmetric matrices and if
N(4,A45—A3A4,)=2N(4,) N4y 1=a,f=3,
then at least one of the matrices A, must be zero.

Proof. We may assume that B is diagonal and we denote by by, ..., b,
the diagonal entries in B. By a simple calculation we obtain

N(AB—BA)=2 a}- (b;—0b)?
ik
where A = (a;;). Since (b; —b,)? < 2(b7 +03), we obtain
N(AB—BA) S'Z a3 (b; —bg)? §2_Z a3y (0 +05)
(3.6)
=2(Zah)(Z0)=2N () - N(B).

Now, assume that 4 and B are nonzero matrices and that the equality
holds. Then the equality must holds everywhere in (3.6). From the
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second equality in (3.6), it follows that
= ... =a,,=0,
and that
b1+bk:O lf a,ik:*:().
Without loss of generality, we may assume that a,,==0. Then b, =—2b,.
From the third equality, we now obtain

by= ... =b,=0.

Since B ==0, we must have b, = —b,=0 and we conclude that a,,=
for (s, k) (1, 2). To prove the last statement, let 4,, 4,, A3 be all
nonzero symmetric matrices. From the second statement we have just
proved, we see that one of these matrices can be transformed to a
scalar multiple of 4 as well as to a scalar multiple of B by orthogonal
matrices. But this is impossible since 4 and B are not orthogonally
equivalent. q.e.d.

Applying Lemma 1 to (3.5), we obtain
— 2 AR <23 N(H,) - N(Hp) + 2 St —ncS
akf o

akf o

9 (3.7)
= (ZSa) +2XS,S;—neS
a a<f
=pai+p(p—1) oy—ncS,
where
pa=Y5,=s, LE=Ug_ %55, (3.8)
o a<f
It can be easily seen that
pE(p —1) (01 —0a) = 2 (Su—Sp)* =0, (3.9)
and therefore a<p
— 2B ARG =p2 ol +p(p—1) 0, —ncS
=(2p2—p) o —p(p —1) (61 —0y) —ncS
<p@2p—1) 0 —ncS (3.10)

= 2—i S2—ncS.
=3

Theorem 1. Let M be an n-dimensional compact oriented manifold
which 1s minimally immersed in an (n -+ p)-dimensional space of constant

curvature c. Then Msz_ %) S——nc} S*1=>o0, (3.11)

where *1 denotes the volume element of M.

5 Functional Analysis
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Proof. This follows from (3.10) and the following lemma.

Lemma 2. If M is an n-dimensional oriented compact manifold im-
mersed in an (n -+ p)-dimensional riemannian manifold N, then

Z‘{(Zh - AhE) ——fZ (h%x)? +1 0.

Proof of Lemma 2. We have

%A (Z(hn)z)zz Mk +Zh Ahg‘] (312)

Integrating (3.12) over M and applying Green’s theorem to the left
hand side, we see that the integral of the left hand side and hence that
of the right hand side also vanish. q.e.d.

Corollary. Let M be a compact manifold minimally immersed in a
space N of constant curvature c. If M is not totally geodesic and if

Sgnc/(:z_ %) everywhere on M, then S:nc/(z—— %)
Assume that S= ) (h%)? is a constant. Whether M is compact or

not, (3.12) implies
0=2 (hn)? + 2% - Ah;.
This combined with (3.10) yields

(= 3)s—ne|s =0

We may therefore conclude that if S=wn¢ / (2 —_— ;), then %%,=0, ie.,

the second fundamental form 4f; is parallel.

4, Minimal submanifolds of a unit sphere with S=un / (2—i>.

P

Throughout this section, we shall assume that NV is a space of constant
curvature 1, that M is not totally geodesic and that

S= (% 2:%/(2——%).

At the end of §3 we proved that A%, =0. Then A4 =0, and the
terms at the both ends of (3.10) vanish. It follows that all inequalities in
(3.7), (3.9) and (3.10) are actually equalities. In deriving (3.7) from (3.5),
we made use of the inequality N (H, H;—H; H,) <2N (H,) - N (Hj).
Hence,

N(H,H; — HpH,) =2N (H,) - N(Hp)  af. (4.1)

From (3.9) we obtain
p(p—1) (01 —ay) =0. (4.2)
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From (4.1) and Lemma 1, we conclude that at most two of the
matrices H, are nonzero, in which case they can be assumed to be
scalar multiples of A and B in Lemma 1. We now consider the cases
p =1 and p =2 separately.

Case p=1. We set

hij=ht.

We choose our frame field in such a way that

hi;=0 for i=7, (4.3)
and we set

hi=h;;.

K3 (X

Lemma 3. After a suitable renumbering of the basis elements e, , ..
we have

* gn:

(@)  hby=...=h,=Ai=constant,
hpir= ... =h, =pu=constant, (1<<m<n),
Ap=—1,

(b) wfzo for 1=Zi<m and m+-1=7=mn.

Proof. Since %;;,=0, setting ¢=7 in (2.10) and noting (4.3) we
obtain

which shows that 4; is a constant. Since 4;;, =0 and dA;;=0, (2.10)
implies
0=Xhiy o+ Zhjoi=(h;—h) o,
which shows that w;::() whenever %, ==h;. Thus, if 4;=4;, then
0=doi=—Ywire} —) A0 +o'rdl.
The first sum of the equation above is zero, because w =0 and w;’ +=0
would imply A, = h, = h;, contradicting the hypothesis. Hence,
0= —a A0t foiref
=2l by oF Aot 0t Al
= (h; h;+1) ' AV .
This shows that if ;== 4, then A, h;= —1. Set A=h,. By renumbering

the indices of ¢, ..., ¢,, let A=~ = ... =h, and A=A, for 1 =m +1.
Since X k;=0 and M is not totally geodesic, not all %, ..., &, are equal
to A. Since A, h;= —1 for j Zm -1, we obtain &, ;= ... =h,= — %

We set u= — iﬂ q.ed.

5%
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From (b) of Lemma 3, it follows that the two distributions defined
by wl=...=@"=0 and 0™"'=...=w"=0 are both integrable and
give a local decomposition of M. Then every point of M has a neigh-
borhood U which is a riemannian product ¥ XV, with dim ¥, = and
dim V, =n —m. The curvatures of 7] and 1} are given by [see (2.7)]

Ri;kl:(/l "I—Z.z) (61k671—6116]k) fOI' 1§1/., 7‘, k,lém; (4.5)
Rz]kl:('l +lu2) (5” (‘571”“6116]k) for m—i—'l __S_i, ], k,lgn. (46)

If m =2 (resp. w —m =2), then V] (resp. V,) is a space of constant cur-
vature 1 442 (resp. 1 +u?). If m =1 (resp. » —m =1), then V, (resp. V})
is a curve and hence is also a space of constant curvature.

The minimality of the immersion implies
0= h;=mld+(n—m)pu.
On the other hand, the assumption S=# / (2 — %) = n implies
n=>5S=2h2=nl2+ (n—m) ud
These two relations together with Ay = —1 imply
A=Vn—mm,  p=—Ym|(n—m)

A=—Vn—m)m, p=Ym|(n—m).

or

Replacing ¢,,, by —e,,, if necessary, we may assume that 1=
V(n —m)[m and g = —)m|(n —m). In summary, we have

Theorem 2. Let M be a minimal hypersurface immersed in an (n ++1)-
dimensional space N of constani curvature 1 satisfying S=wn. Then M
is locally a riemannian divect product M = U =V, XV, of spaces V; and V,
of constant curvature, dAimVi=m=1 and dim V,=n—m=1. With
respect to an adapted frame field, the connection form (w3) of N, restricted
to M, is given by

w} e wl, Aot
of L on A"
0 ol cee P pomtt (4.7)
wZH w;‘ ,u.co”
—Aot ... —A0™| —po™t ... —uw™|0
where A=)(n —m)[m and p= —)n|(n —m).
We consider now the submanifold M, ,_,, of S**! defined in §1

and shall prove that the connection form of S**!, restricted to M,

W, B— W3
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is given by (4.7). Let f,, f;, ..., f,, be an orthonormal frame field for
R™*1 such that f, is normal to S™ (V%) and let ¢° ¢!, ..., @™t be the

n—m

dual frame field. Similarly, for S*=* (]/ ) in R* "% we choose an
orthonormal frame field f,.,,..., f,., such that f,,, is normal to
S""”(l/ ~%;m) and let ¢™*t1, ..., ¢"*! be the dual frame field. Let

) 4,B=0,1,- -, n+1 D€ the connection form for R**2 with respect to the
dual frame field (@*)4_¢,1,..., »i1. These forms, restricted to M, ,_,.,
satisfy

¢*=g"t =0,

:—(pé:—]/%(pi t=1,...,m,

. 1’L .
Pa=—¢ ==, P, T=m

¢h=—¢5=0 for A=0,1,...,m and B=m+1,...,n+1.

The image of the imbedding M,, , ,—>R"*? lies in the unit sphere
S*+1 We take a new frame field e,, ..., ¢,,, for R*** as follows:

50:V§fo+]/@fn+1,

e,=f, i=1,...,n,

3n+1:l/n>_”’%zfo—l/% fata-

Then ¢, is normal to S"**and ¢, , isnormalto M, ,_,,. Letw?, ..., o"*!
be the dual frame field. Then

wo_l/i @ + ___ﬂ (pn+1’

w—tp, i:1

CO”+1: A __l/m

The connection form (w%) 4,801, , » for R*"? with respect to the dual
frame field (w,) is then given by

: m n—m .
w;?z_w{,zl/—(p;?_}-/ - gitt for j=1,...,mn,

0l
Wy 1= —W ‘Pn+1:

=¢; for 4,i=1,.

i
n+1 n—m
Wyyyy = —O; —l/ 7 "V Prta-
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We restrict these forms to M,, ,_,,. Then by a straightforward calcula-
tion we can verify easily that the connection form (w$)s p—y,.--, ny1 Of
S*+1, restricted to M,, ,_,, coincides with the form in (4.7). We may
therefore conclude that a minimal hypersurface of S*** satisfying S =#x

coincides locally with M,, ,_,,. If it is compact, then it coincides with
M,

m, n—m:*
Case p = 2. In this case, (4.2) implies
02 =0,.
We know that at most two of H,,a=n-1, ..., n+p, are different
from zero. Assume that only one of them, say H,, is different from
zero. Then we have oy = % S, and 0,=0, in contradiction to 0% =g,.
We may therefore assume that
H,,=M4, H, ,=uB, A u=0,
H,=0 for az=n+3,

where 4 and B are defined in Lemma 1. In other words,

ot =lw?, oif'=le!, oftt=0 for i=3,...,n,
o=, oft=—pw? o}?=0 for i=3,...,n,

wi=0 for a=n-43,...,n+p and i=1,...,n.
Since %, =0, we have [see (2.10)]
Ah% =7 hh of + 2 B ol — 3 1 . (4.8)

Setting =% 41, =1 and j =2, we see that dA=dAlf*=0, ie., 1 is
constant. Setting e =# +1, ¢=1 and j =3, we see that

w?=0 for j=3. (4.9)
Setting « =% +1, =2 and § =3, we see that
wj=0 for §=3. (4.10)

Similarly, setting e« =#» +2, and ¢=j=1, we see that u is a constant.
From (4.8), (4.9) and (4.10), it follows that if § =3, then

0=dw;= ——Zwi/\wf—}—wlfxw":wl/\wf.

Since !, ..., w" are orthonormal, w'Aw =0 implies o’ =0 for j=3.
This shows that dim M =2. From

poy=2(A+p% and p(p—1)0®=84pu,
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we obtain

p2p—1) (01 —o09) =4[(p —1) ' =222 i + (p —1) p].

Since the left hand side is zero by (4.2), the discriminant of the right
hand side must be non-negative, i.e.,

1—(p—1)2=0.

Since p =2, p must be 2. Hence, dim N =4. From 0=A%—222 u? + pt,
it follows that A2=p2. Since 4 =S=442, we have

MR=pyt=%. (4.11)
Replacing ¢; by —e¢; and ¢4 by —e, if necessary, we may assume that
—A=p=V1J3.
Setting «.=3 and ¢ =7 =1, we obtain
wi———%wi:—Zwi. (4.12)

The curvature of M is given by
QR=o'r?+oi Aol Foiroi=(1—2—ud) o'lrwt=10'Aw?. (4.13)
In summary, we have

Theorem 3. Let M be an n-dimensional manifold immersed minimally
in an (n -+ p)-dimensional space N of comstant curvature 1 satisfying
Szn/(z—_;;). If p =2, then n=1p=2. With respect to a an adapted
dual orthonormal frame field wt, w?, w3, w?, the connection form (%) of
N, restricted to M, is given by

0 w3 pw? —pot

2 1 2 ——
w; 0 uw now 1
Ao Aol 0O 205 |’ —A=p= V‘3— (4.14)
—dwt Aw? 20f 0

We consider now the Veronese surface defined in §1. We shall
compute its structure equations by group theoretic means. Let

1 1 1 1
1 2___ 3 — 4 __ 2 A2
ut= 5 ¥4, ut= g3 2%, u_vgxy, u—-zj(x y?),
ud = % (2% 492 —22%)

be as in §1. These equations define an immersion of S?(}/3) into S*
and induce an action of SO (3) on S* so that the immersion S%(}/3)—S*
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is equivariant. In other words, we obtain a representation of SO (3) into
SO(5). This induces a representation of the Lie algebra so(3) into the
Lie algebra so(5). By a straightforward, simple calculation, we see that
this representation maps a matrix of the form

0 —a —y
o 0 —f]eso(3)
y B 0O

into a matrix of the form

0 0 y —B 138

—a 3 B y 13y

—y —p 0 2. 0 Jeso(5).
Jij —y 2 0 0

=138 —13r 0 0 0

Let (wf) be the Maurer-Cartan form for SO (5) and set
o'=wf i=1,...,4.

Then the restriction of (w4) to the image of SO (3) in SO(5) is given by

0 w} uw* —upol ot
w? 0 uot po?  w? -
Aw? Aol 0 2w3 0 |, —A:,u:]/?.
— Aot Aw? 203 0 o0
—o! —w? 0 0 0

Comparing this with (4.14), we may conclude that a minimal surface
in S* satisfying S=4% coincides locally with the Veronese surface. If
it is compact, it coincides with the Veronese surface. This completes
the proof of the main theorem.

5. Related examples

Example 1.
S x S SMFa+m
Let

Sm:{(xm Xy oees X )ean+1. ngzd}

ST={(¥o, Y1, .-, V) ERITY; Diyi=1},
Smratmi —{(u,); i=0,1,...,m; 1=0,1,...,q; 2Du;2=1}.
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Then the mapping S™ X S7—>S"*+7t7 defined by u;;==x,y; is an
isometric immersion. Two points (¥, ¥) and (—x, —y) of $” x S7 are
mapped into the same point. We have

R = scalar curvature of S” x S?=m (m —1) +q(g —1),
S =(m+gq) (m+g—1)—R=2myq.

On the other hand, if we denote m +g¢ by # and the codimension mg
by ¢, then

%/(2— %):mq(m—{—q)/(quwi).

Consider the case m=¢=1.ThenS=2= n/(z — %) ,and thisminimal

immersion satisfies the assumption in our main theorem. We shall
show that this immersion of S! x S1—S% is a double covering of the

immersion of M, ;=S (l/Z) x St ( V_> into S? defined in § 1. The immer-
sion

(%> %15 Yo, Y1) €S X St (v, vy - Wy, wy) €S| ) X SY, €S?
l/ V2
defined by
1
=z (% Yo — %1 Y1) » 1/2 (%1 Yo + %o Y1)
1
=7z (%o Yo =+ %1 Y1), w1:]T-2-(x1 Yo — %o Y1) »
differs from the immersion
(%0, %1, Yo, Y1) €ST X ST—= (%4 Yo, %o Y1, %1 Yo, %y Y1) €SP
by a rigid motion of S3.

Example 2. S” (Vi(-nqj_—i)) —S"*? with p 2% (n—1) (n+2).
Let

Let E be the space of (n-+1) X (n-+41) symmetric matrices (u,;),
(5,7=1, ..., n), such that X u,,=0; it is a vector space of dimension
inn —l—3) We define a norm in E by | (u;)|f= 2u,;? Let S"*? with
p=2(n—1) (n+2) be the unit hypersphere in E. The mapping of

s (V“Ljﬁ) into S** defined by

_1y_n 25
Wii=2 Vw1 ¥ g %
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is an isometric minimal immersion. (Actually, this gives an imbedding
of the real projective space of #-dimension into S**#.) We have

R = scalar curvature of S” (Vﬂ%ﬂ) =n?(n—1)/2(n+1),
S=nn—1)—R=nn—1) (n+2)/2n+1).
On the other hand,
1
%/(2—;;):%(%——1) (0 +2)[2(n2 1 —3).
For n =2, we recover the Veronese surface.

Example 3. S2(]/6) —S8.

Making use of harmonic polynomials of degree 3, we consider the
following minimal immersion of S2(J/6) into S* defined by

_ V6 , aa_aan 2 1 a2
uo_ﬁz( Jx 3y +22), M1Mﬁx( X —y2+4z2),
10 1
%221/272(962—3/2), M3=%x(x2—3y2),
——~_1_ — 2 __ g2 2 ~_V_T9
Ug= oy (=2t —yi 42, uy= o ayz,
/1—
u6=—1725 y(3 %% —v?
We have
R = scalar curvature of S?(]/6) =%,
S=2—R=8,
whereas

fo-3)-3

For each positive integer %, the space of harmonic polynomials of
degree k in variables x, y,z is a vector space of dimension 2%&--1.
Introducing an inner product in this vector space in a well known
manner, we get a minimal immersion of a 2-sphere into the hyper-
sphere S# in a natural manner. The case k=2 gives the Veronese sur-
face. The case k=3 was described above. Generally, for every positive
integer &, we have an isometric minimal immersion

S2 (V“L;‘Q) _>52k,

for which S =2 — ?(7%4?3 . For a systematic study of minimal immersions
of 2-spheres obtained in this manner, see Boruvka [1] and a forth-
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coming paper of o CARMO and WALLACH.

— — k
Example 4. Sml(]/%) X oee X S™E (V%) SR = m,.
i1

We can generalize the construction of M, ,_,, as follows. Let

My, ..., My be positive integers and #=m, + --- +m,. Let x; be a point

of S™ (]//%i), i.e., a vector of length I/%i in R™+1 Then (%, ..., %)

is a unit vector in R"**, This defines a minimal immersion of M,, .=

JIs™ (V%) into S***~1, We have
R = scalar curvature of M,, . .= ([#—Ek)»,
S=nn—1)—R=(k—1)n,

n/(z—%):(k—ﬂ nf(2k—3).

6. Some questions

The above discussions seem to show the interest of the study of
compact minimal submanifolds on the sphere with S =constant. With
fixed # and $ the question naturally arises as to the possible values

for S. We proved in the above that S does not take values in the open

/
interval (O, 7 / (2 — %)) It is plausible that the set of values for S is

discrete, at least for S not arbitrarily large. If this is the case, an estimate

of the value for S next to » / (2 — %) should be of interest. This problem

can be restricted by imposing further conditions on M, such as M be
topologically or metrically a sphere.

Another natural question is that of uniqueness. At least for compact
minimal hypersurfaces (codim 1) it seems likely that the values of S
should determine the hypersurface up to a rigid motion in the ambient
sphere S"*1.
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FEisenstein Series over Finite Fields

By HarisH-CHANDRA
The Institute for Advanced Study, Princeton

1. Introduction

Let me begin by recalling the definition and some properties of the
classical Eisenstein Series. Let G=SL(2, R) and I'=SL (2, Z). Then
G =K AU where

K—=50(2), A:{atz(i 2_t>,teR}, U:{(é?),ueR}.

Let P be the normalizer of U in G. Then P =M A U where M = {1, —1}.
Every element x of G can be written uniquely as x=*kau (RcK,
a€A, ucU). Put ¢(x)=t where a=a,. For 2¢C with* R1<—1, put

EQd:x)= 2, 3(1—1)t(xy):% > A=z
yEL/INP yE@NTrs

where I, =I'nU. If
ab a a1 ok
=\, 4 w=|, and || = (a®4c?)?,

E(d:x) =} §F| ()l

then

For any £>0, this series converges absolutely and uniformly if x
remains in a compact subset of G and A=< —1 —e. Hence the function
E is holomorphic in A for ®A<< —1. Moreover E(A:kx) =E(A:x) (ke K)
and

¢ [ E(:au)du=e*+c(l)e ™ (tcR, RA< —1).

Ulle
Here ¢(A) is a holomorphic function of A for 1< —1 and the Haar
measure du on U is so normalized that the total measure of U/l is 1.
The functions ¢ and E have the following properties.

1) ¢ extends to a meromorphic function on C satisfying the func-

tional equation ¢ ()¢ (— 4) =1. Moreover |¢(4)| =1 when R1=0.

* R A denotes the real part of a complex number A.
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2) For any x¢G, E(A:x) extends to a meromorphic function of
A€ with the functional equation

E(d:x)=c(A)E(—A:x).
In fact
() =a"I(—42)¢ (=) {I'(A[2)¢ ()}

where £ is the Riemann Zeta function.

Similar results hold in other cases. During the past fifteen years,
such series have been studied by SELBERG [5]. More recently LaNG-
LANDS [4(a), (b)] has proved corresponding results for the Eisenstein
Series on G/I" where G is any semisimple algebraic group defined over
Q and I" an arithmetic subgroup of G.

In 1966—1967 I gave some lectures on LANGLANDS’ work in Prince-
ton (see [3]) and thereby learnt, what I now call, the philosophy of
cusp forms. In the case of G/I" this philosophy is certainly implicit
in SELBERG [5]. Moreover it has been expounded, in a more general
context, by GELFAND in his 1962 Stockholm address [2], although I
could not understand it then. Actually I realized its full scope only
when I tried to relate LANGLANDS' work to my own on harmonic
analysis on G. This philosophy works in the following four cases.

1) G/I'. In fact it originated there.

2) A real semisimple group G.

3) T believe it is also applicable to a reductive p-adic group G,
although this case has not yet been sufficiently investigated.

4) Tt works for reductive algebraic groups defined over a finite field.

In this lecture we shall be concerned with 4). Our main object is
to define the Eisenstein Series and prove their functional equations
(see §7, Theorem 3).

2. Bruhat’s Lemma and its consequences

We begin by recalling some known facts (see [1]). Let K be a field
which will be kept fixed throughout. By a K-group we mean a (linear)
algebraic group defined over K. Let G be a connected reductive K-group.
By a parabolic subgroup P of G we mean an algebraic subgroup which
contains a Borel subgroup of G. We say that P is K-parabolic if it is
parabolic and defined over K. Fix a K-parabolic subgroup P and
let U denote the unipotent radical of P. Then U is a K-subgroup. By
a Levi K-subgroup M of P, we mean a reductive K-subgroup such
that the mapping (m, u) — mu (mcM, ue U) defines a K-isomorphism
of the algebraic varieties M X U and P. Such a subgroup M always
exists and is connected. Fix M and let A4 be a maximal K-split torus
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lying in the center of M. Then A is unique and M is the centralizer
of A in G'. We call A a split component of P. Let G denote the group
of K-rational points of G. For any split component A’ of P there exists
a unique element ucU=UnNG such that* A4’'=A4" Hence dim A
depends only on P. We call it the parabolic rank of P and denote it
by prk P.

A cuspidal subgroup P of G is a group of the form P =GP, where
P is a K-parabolic subgroup of G. P determines P completely. By a
split component 4 of P, we mean a split component of P, We write
prk P=dim A and call (P, 4) a cuspidal pair in G. Once A4 is fixed,
we have the corresponding Levi K-decompositions P=MU and
P=MU where M =M nG. We shall call U the unipotent radical of P.

Let (B, A;) (i=1,2) be two cuspidal pairs in G. We write
(B, A) > B, Ay) if EoB, and 4, <A, A cuspidal pair is called
mincuspidal if it is minimal with respect to this partial order. Let
o (4,, 4,) denote the set of all bijections s: 4, - A, with the follow-
ing property. There should exist an element y¢G such that a®=a” for
all acA,. F, F, are called associated if (4, 4,) = i.e. if A; and 4,
are conjugate under G. (The two pairs (B, 4;) =1, 2, are then also
called associated.) It is known that (4, 4,) is a finite set. Fix
sew(A,, 4,). We say that yeG is a representative of s in G if a°=a”
for all acd;. In case A;=A,=A, we write w(4) =1 (A4, A). Then
0 (A) is a finite group. The following important result has been proved
in [1, p. 100].

Bruhat’s Lemma. Let (P, A) be a mincuspidal paiv in G and P=M U
the corresponding Levi K-decomposition. For each sciw(A), fix a
representative y, of s mm G. Then

G= U Uy/P
s€w(A)
where the union is disjoint.

Fix two cuspidal pairs (P, 4;) (f=1, 2) in G and let P,.= M, U, be
the corresponding decompositions. The following facts are simple
consequences of BRUHAT’S lemma.

Lemma 1. B\G/E is a finite set. Fix x€G. Then Byn Uf < U, if and
only if there exist elements u;c U; (i =1, 2) such that A{*“ < A,

Corollary. The following two statements are equivalent.

1) BaUfcl,, U nB cl,.

2) There exist u;cU; (i =1, 2) such that A=A, for y =u, xu,.
mte xY =yxy-tior x, y€ G. If S is any subset of G then S¥ =y Sy~-1.
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3. The cusp forms

Let S be a finite set. By the standard measure on S, we mean the
measure which assigns to each point of S the mass 1. Let C(S) denote
the space of all complex-valued functions on S and [S] the number
of elements of S.

Now assume that K is a finite field. Then G is a finite group. For
any f€C(G) and any cuspidal subgroup P of G, put

fp(%) :Uff(W) du  (x€G)

where du is a Haar measure on the unipotent radical U of P. We say
that f is a cusp form if f» =0 for every cuspidal subgroup P == G of G.

Let °C(G) be the space of all cusp forms. It is easy to see that
°C(G) is stable under both left- and right-translations of G. Hence
°C(G) is a two-sided ideal in the group algebra C(G).

Let 4 denote the left-regular representation of G on C(G) and 9] the
restriction of 4 on °C(G). Let &(G) denote the set of all equivalence
classes of irreducible (complex) representations of G and °¢(G) the
subset of those classes which occur in the reduction of °4. It is easy
to see that an element we& (G) lies in % (G) if and only if the character
of w is a cusp form. For any weé (G), let C(G, w) denote the space of
all elements in C(G) which transform under A according to w.

Let (P, 4) be a cuspidal pair in G and P=M U the corresponding
decomposition. Fix feC(G). Then we write fp ~0 if*

f conj ¢ (m) - fp(xm) dm =0
M

for all pc®°C(M) and x¢G. (Here dm is the standard measure on M.)
It is easy to verify that this definition is independent of the choice
of A.

Lemma 2. Let f be an element in C(G) such that fp~0 for all cuspidal
subgroups P of G (tncluding P =G). Then {=0.

This is entirely analogous to a result of LANGLANDS [4(a), p. 3.24].

4. The irreducibility of induced representations

Let (P, A) be a cuspidal pair in G and P=M U the corresponding
decomposition. Fix w €% (M) and let w* denote the class contragredient
to w. Let o be a right representation of M on a finite-dimensional
complex vector space L such that w* is the class of ¢. (This means that
tr o (m) = conj 0 (m) (meM) where 0 is the character of w.) Let D (P, w)
denote the space of all functions f:G — L such that f(xmu) = (x) o (m)

* conj ¢ denotes the complex conjugate of a number c€C.
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(x€G, meM,nclU). We get a representation 4 of G on D (P, w) by
setting

(A1) ) =F=xy)  (ve6)
for xeG and feD (P, w). Let (P, o) denote the class of 2.

Let (£, 4, (¢=1,2) be two cuspidal pairs and P,=M,U; the
corresponding decompositions. Fix we®8 (M), seiv(4,, 4,) and let
y be a representative of s in G. Then M,=M7. If ¢ is a representation
of M, in w, we define the representation ¢” of M, by o (m*) =0 (m)
(meM;). Let w” denote the class of ¢”. Then w” depends only on s and
we also denote it by ’. It is easy to verify that w’®e% (M,).

The following theorem and its corollary play an important role in
our discussion.

Theorem 1. Fix w;c% (M,) (¢=1,2) and let W, be the set of all
sew (A4,, Ay) such that w;=w,. Then

I(*Q(Pb wy), 25, wz)) =[tny].

Here I denotes the intertwining number.

It follows in particular that if B, F, are not associated, then this
intertwining number is zero.

Let (P, A) be a cuspidal pair (P=MU). Fix we® (M) and let
v (w) denote the subgroup of all sew(A) such that w®*=w. Then
r=[v{w)] is called the ramification index of w. We say that w is
unramified (in G) if r =1.

Corollary. 2B, w) —Q(B,, wg) if W+, Moreover OB, ) is
trreducible if w, 1s unramified.

5. Definition and some properties of Eisenstein Series

Now fix, once for all, a subgroup I" of G. Let (P, 4) be a cuspidal
pair (P =M U). We denote by °Z (P) the space of all functions f¢C(G)
such that:

1) f(xy)=/f(x) for all xeG and ye (I'n P)U.

2) For every x¢G, the function m—>f(xm) (meM) lies in °C(M).
It is easy to see that the space °2(P) does not depend on the choice
of 4. For fe%Z (P), define

Ey(x)= 2 f(xy) (x€G).

yETJINP

Then E;cC(G[TI'). For any ge C(G/I'), put
gp(%) = [ g(xu)d®u  (x€G)

UIrNU
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where 4% is the Haar measure on U so normalized that the total
measure of U/I'nU is 1.

Theorem 2. Let (P, A) and (P', A’) be two cuspidal pairs (P=MU,
P =MU"). Fix {¢°D(P). Then (E;)pr~0 unless P’ is associated to P.
Now suppose P and P’ are associated. Put o =1 (A, A") and let d°u’
denote the Haar measure on U’ so normalized that the total measure of
Ul'nU"is1. Then

| Ej(xw) du' =3 (cprip(s)f) (%) (x€G).

U’[roNu’ SEW

Here cp\p(s) is a linear transformation of °D(P) into °PD (P') defined
as follows. Put
I'(sy=I'n(P'yP)

where vy is a representative of s in G. Then
(coip(s)f) (0= [ 2 f(xu'y)dow
UJU'NT y €TS)TNP
for fe°D (P) and x¢G.

Fix we® (M) and let 2 (P, w) be the space of all fe°P (P) with
the following property. For every x¢G, the function m—f(xm) (meM)
lies in C(M,w). Then cpp(s) maps (P, w) into Z (P, w.). In fact
cpr|p(8) is the zeta-function of GELFAND [2, §8].

For f, g2 (P), define

(1, Q¢ir~p= J conj f(x) - g (x) dx
GIPNP

where dx is the standard measure on G/I'nP. In this way °2(P)
becomes a Hilbert space.

Lemma 3. Let (B, A;) (1=1,2) be two associated cuspidal pairs.
Then

(fas ¢p,|p (5) h)eira p= (Cp,w1 (s /s fl)G/Pr\Pl
for 1,62 (P) (i=1, 2) and sctv(4,, 4,).
We regard C(G/I") as a Hilbert space in the usual way so that
W, <i5)<;,p=G/{F conj Y/ (%) - p(x)dx (Y, pC(G/I))

where dx is the standard measure on G/I".
Corollary. Let (P, A;) (i=1,2) be two cuspidal pairs in G. Fix
[:€°D (F) and put
E (x)= 2 fi(xy) (x€G).

yELI'NP;
6 Functional Analysis



82 HARISH-CHANDRA :

Then
(Bt Ep)ar= 20 (fa cp, () h)sirew, -

s€w(A,, Ay)
In particular,

(Ef’, Ef1)G/P2 O
if B, B, are not associated.
We return to the notation of Theorem 2.

Lemma 4. Let g C(G/I"). Then

(Ess )eir=(f, gp)eir~p
for all fc°D (P).

Combining this with Lemma 2 we get the following corollary.

Corollary. C(G/I') is spanned by E; for all f€°D (P) and all cuspidal
subgroups P of G.

6. The series E(P: ¢)

Consider a cuspidal pair (P, 4) in G with P=MU. Fix e’ (M)
and let y;(1 <i=<q) be a complete system of representatives for
I'\G/P in G. Define

(B, 4y, My, Uy, 0) = (P, A%, M, U, o)
and put
Q(P,W)ZH.@(B,Q)J, OQ(P):HDQ(E)’
1<i=q 1=i=sg
where the products are direct. Then D (P) is a Hilbert space with the
scalar product
(6, ¥) = 2 (bi, Vioir~n (¢, YD (P)).
1=i<q
(Here ¢, is the component of ¢ in °@(P), 1 <i <g. Similarly for v.)
Put

E(P:¢:x)=2 X ¢;(vy) (v€G)

1sisq yEIirNPp;

for ¢ <D (P).
Lemma 5. Let feC(GT") and ¢ c°D (P). Then
(E(P3¢), f)c;/r=1 2 (i, IR)eirnp-

sisgq

7. Functional equations of the Eisenstein Series

Let (P, A;) (1=<¢=7) be a set of associated cuspidal pairs in G
with P,=M,; U,. For each 7, fix a complete system of representatives
y:;(1=7=gq,;) for I'G/P,. Then we can define the Hilbert spaces
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°D(P) and D(F;, w;) (w;€°6 (M)} as in §6. For any scw(4;, 4)),
define a linear transformation ep,(s) of °D (P) into °D (F;) as follows.
If ¢ c°D(P), then

(chlPi(s)¢)l:1 Z C&z]&z:(ﬁ’jﬂ“%/%)‘l’k 1=l=g).

SiEq

Here y;;0s0 y7; denotes the element ¢t (4%* A%7) given by
(@)= (&) (acd,).

(We note that (B;,, 4;,) = (P¥*, A¥**) and similarly for (P, 4,)).)

Theorem 3. Fix 1,7,k (14,1, k=<7) and we®E(M,). Then if w
18 not ramafied in G,

E(P;:¢)=E(B:cpp(s)$)
and

¢p, 5 (f) €5y 5 (s) @ =Cpyp(ts) P

for $cD (P, w), scw(A;, A;) and tcw(A;, Ay). Moreover cpp,(s) then
defines a wnitary transformation of D (F;, w) onto D (P, o).

The situation when w is ramified seems to be complicated. However,
not all ramified w behave badly. For example suppose prk P.=1 and
w is ramified. Then Q(F;, w) =42, +2, where ,, 2, are two distinct
elements of & (G). Let us further assume that the degrees of £, and 2,
are the same. Then one can show that the statements of Theorem 3
continue to hold in this case.

8. Proof of Theorem 3
Let me briefly sketch the proof of Theorem 3.

Lemma 6. Let ¢pc%D (P). Then
(E(Pi:d)))Pﬂ: Z (CPile(S) ¢)l
sEw (i, 4y)
for1 =1 =gq,.

This follows from Theorem 2.

We may regard C(G/I") as a subspace of C(G). For any Q¢&(G),
put C(GII',2)=C(G/I") n C(G, £2). Now let us use the notation of
§6 and suppose

QP,0)= 2 n; 8,
1<i=N
where 7, are positive integers and £2; (1 <7 < N) are distinct elements
of &(G). Put
V(P,w)= 2 C(GI",2,).
1=i=N
6*
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Lemma 7. ¢ >E(P:¢) (pcD (P, w)) is a surjective mapping of
D (P, w) onto V(P, w).

Let D (P, w) denote the space of all functions feC(G) such that:

1) f(xu) =f(x) (x€G, ucU).

2) For every x¢G, the fanction m—f(xm) (meM) lies in C(M, w).

Fix y¢G and for any /¢ D (P, w), define the function £, by £, (%) = f(x )
(x€G). Then the mapping f—f, is a bijection of D (P, w) onto D (P?, w?).
Since

G= U I'y, P,

1Si<q
it follows easily that the space
W= > XD (PY¥, oo? %)
1Si<q yEr

is stable under both left and right translations of G. Therefore it is
clear that

w=2CG Q).

1<i=N

For any f¢ W, define
E(x)=Xf(xy) (x€G).

yerl'

Then f—F, is a surjective mapping of W onto
2 CGIT,Q2)=V(P,w).
1<i=N

Moreover F, =F, for ycl'. Therefore every element of V(P,w) can
be written in the form F, where

fE Z D(P“, w”’).

1<i<q
The assertion of Lemma 7 is now obvious.

Lemma 8. Lot w, ' be two distinct elements of °8(M). Then the
spaces D (P, w) and D (P, ') are mutually orthogonal in °D (P).

We now return to the notation of §7. Fix we®(M;) and
sew(A4;, A;). Then Q(P,,w)=0Q(F;, ) from the corollary of Lemma 1.
Hence

V(B o) =V(F, o) =V (say).

Let (¢, ¥); (¢, Yc*D(P)) denote the scalar product in °D(F).

Lemma 9. Fix sci(4;, A;). Then

(llj’ Cp”p,.(s) ¢)1= (cPiIPf(s-l) lp: ¢)1
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for ¢ %D (P) and y °D (B). Moreover

cp () pD (B, o)
for ¢ D (P, w). Finally

cpin()p=0¢ ($c°D(R)).

Here 1 denotes the unit element of the group w(A,).
This follows from the results of §5.
Now we come to the proof of Theorem 3. Fix ¢ D (P, w) and let

[=E(P:¢) —E(B:epp(s)p) V.

We have to show that f=0. Fix Y€ D (B, o). In view of Lemma 7,
it is enough to verify that

(E(B:Y), flgr=0.

But
(E(P;‘P): Ner= > (‘Pz: ijl) GIT Py
1<i=g;
= 2 W epplt)d)— 2 ('P cpip(t) € R () D)
vew(A;, Aj) tEw(Aj)
= 20 (W, epp(ts) ¢ —cp 5 () €p R (5) D);
t€w(Ay)

from Lemmas 5 and 6. Now by Lemma 9, e¢pp(ts)¢ and
¢p, 5 () €p(p,(s) ¢ are both in D (B, »*). Since w is unramitied, o’ +w°
unless ¢ = 1. Therefore we conclude from Lemmas 8 and 9 that

(E(E;:4), f)oir=0.
This proves that f=0.

Now fix s and ¢ as in Theorem 3. Then it follows from the above
result that

E(B:§)=E (B:enin(s)$) = E(Bicr 50 €ayn(s) 8).
Hence
f=E(P:¢) —E (B, 5() cpnls)¢) =0.
Now fix € D (B,:0*). Then

= (E (B:), f)G/F'—_]SlZS: W1 freirmpu
= 2 (lﬁ Cpy | p;(4) @) — Z (‘P Cp, . () Cpy 5 (t) Cpy 1, (S) D)

u€w(A;, A

= 2 cPkIP,(vts)d)_‘cPk]Pk(v) cPk|P,-(75) CP1|Pi(s)¢)k

vEm (Ag)
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from Lemmas 5 and 6. Since w is unramified, we again conclude from
Lemmas 8 and 9 that the right side is equal to

(¥, py R, (t5)  —€p 5 (F) €5 (S) D) -
This implies that

Cpy B, (t5) @ —€py g () €p p(s) P =0.

On the other hand from Lemma 9,

(e n@))*=epp(s?)  (sew(4;, 4)),

where the star denotes the adjoint. Therefore if  is unramified it
follows from the above proof that

(er17(9)*en pls) d =Cn 5(s?) Cpyn(s) d=Cp n(1) p = ¢

for D (P, w). Since the situation is symmetrical in ¢ and 7, it is
clear that epp(s) defines a unitary transformation of D (P, ) onto
D (B, wf). This completes the proof of Theorem 3.

9. A counterexample

Let G=SL(2) and P the group of all upper triangular matrices
in G. Then P is a K-parabolic subgroup of G. Let M be the group of
all diagonal matrices in G' and U the group of all unipotent matrices
in P. Then P=MU is a Levi K-decomposition of P and A =M the
corresponding split component of P.

Now G=SL (2, K), the pair (P, A) is mincuspidal and prk P=1.
Put '=sU=UnG and

01
=1

Then {1,y} is a complete set of representatives of I'\G/P. Put
B =P,B,=0P" Then B=P where P is the subgroup of all lower
triangular matrices in G. The group =1 (4) consists of just two
elements {1, s} and y is a representative of s in G.

We observe that
*D(P) =9 (R) X °2(P)
and €p|p(1) =1. Put C=cpp(s). Then if ¢ c°D (P), we have
(Co)r=cpip(s) pr+cp5(1) Po
(C¢)2=CP|P(1)¢1+CP1F(3) O
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Moreover cpp(s) =0 since I'n (Py P) = (J. Hence

. 0 » Cp|p (1))
€= (Cﬁ|p(1), cpip(s) )
On the other hand I'n (P P)=I"n (P P)=U =1 Hence
(cpip(1) ¢a) (%) =Uf¢z(x“) du

and _
(cpip(1) @y (%) =1[U ]‘lﬁf ¢y (xu)dn  (2€G),

where du and d#% are the standard measures on U and U respectively.
(U = U7 is the unipotent radical of P.) Finally

E(P:¢:x)=¢,(%) +Uf¢z(xu) du

and
E(P.Cop:x)=[y(xu)du+ (U] [ ¢y (vuit)dudi
U UxU

for ¢ €°D (P) and x€G. Hence
E(P:¢)=E(P:Ce)
if and only if
¢ (0) =01 [ ¢y(vud)dudii  (x€G).

UxT
Similarly the second assertion of Theorem 3 may be written in the form

C2p=4¢ (D (P, w)).
But a simple calculation shows that the above condition implies that
cp)p(s) P2 =0 for ¢,€2 (P, »°).

Since P is mincuspidal, & (M) =098 (M). Moreover M = A where 4
is the group of all diagonal matrices in G. Hence & (M) may be
identified with the set A* of all characters of the finite abelian group 4.
Fix y€A* and suppose y is ramified. Then there are two cases.

1) x=1.
2) g1, 2=1.
If y =1, we can take ¢, =1. Then ¢,cZ (P,
(cp15(s) da) (%) = [ﬁ]_l_f 2 Ga(x@y)d
U yeUN(Py P)

By BruHAT'S lemma G is the disjoint union of P and PyP. Since
U nP ={1}, we conclude that

¥°) and
4=[Un(PyP)] (x€G).

11 - =
(O 1)eUn(PyP)
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and therefore
cpp(s) P2 0.

This means that Theorem 3 does not hold in this case. On the other
hand it can be shown that the statements of Theorem 3 remain valid
for case 2) above.

10. Concluding remarks

It is clear from the above discussion that the ramified case requires
further study. However, in my opinion, a more serious problem is to
find an effective method of obtaining the elements of °¢ (G). This is
entirely similar to the problem of determining the discrete series in
the real or the p-adic case.

Let B be a Cartan subgroup of G defined over K and let X (B)
denote the group of all K-morphisms of B in GL (1). We say that B
is (K-)anisotropic if Xy (B)={1}. Put B=BnG and let B* be the
group of all (complex) characters of the finite abelian group B. There
seem to be some indications (see TaANAkA [6, p. 83]) that in case
prk G =0, % (G) is ,, parameterized” by B* for the various anisotropic
Cartan K-subgroups B of G. This is in fact so for real semisimple Lie
groups and the same is believed to be true for the p-adic groups. Thus the
construction of the ,,discrete series’ appears to be the central problem
in all cases.
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£, Transforms on Compact Groups

By Epwin HEWITT

University of Washington, Seattle

It is an honor and a privilege to address this conference, honoring
MarsHALL H. STONE on the occasion of his retirement from the Uni-
versity of Chicago. I offer my sincere thanks to the program committee
for the opportunity of doing so.

Let me first follow Professor MACKEY’s good example by indulging
in a few minutes of retrospection. Harmonic analysis on locally compact
Abelian groups and on compact groups has evolved at a dazzling pace
during the last two decades. The roots of this development are clearly
seen in the work of WEYL, PETER, and BOCHNER in the 1920’s, espe-
cially in the use of integral equations (convolutions actually) to establish
the main theorem on almost periodic functions on the line and the
completeness of the irreducible unitary representations of a compact
Lie group. The work of WIENER in the early 1930’s, culminating in his
famous Tauberian theorem, set the stage for the study of the &, algebra
of a locally compact Abelian group, a study which is far advanced but
far from complete at the present day.

In 1933, ALFRED HAAR published the famous paper in which Haar
measure on locally compact groups was constructed. It is a sad fact
that Haar died in the same year, so that he never saw the flowering of
the discipline which his discovery made possible. A second indispensable
tool for abstract harmonic analysis is the Pontryagin-van Kampen
duality theorem, published in 1934 and 1935.

A milestone in the development of the theory was the publication
in 1940 of ANDRE WEIL's fundamental book [27], in which many basic
facts about Fourier series and Fourier integrals were extended to
arbitrary compact and locally compact Abelian groups. Among these
facts are PLANCEHEREL’S theorem, BoCHNER’s theorem, the Weyl-Peter
theorem, and the Hausdorff-Young inequality. It is true that WEIL’S
style is exceedingly condensed, and that a conscientious reader has many
details to fill in for himself. But the book is there, it is a genuine mile-
stone, and its importance in the subsequent evolution of abstract
harmonic analysis is enormous.
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Also in the early 1940’s other writers discovered parts of abstract
harmonic analysis, independent of WEIL’S work. Thus M. G. KreiwN [14]
proved PLANCHEREL’S theorem for locally compact Abelian groups, by
a method quite unlike WEIL’s. KREIN’S proof, by the way, is the one
that appears in most textbooks today. Raikov [22] and PovzNER [21]
also gave proofs in 1940 of BOCHNER’S theorem on arbitrary locally
compact Abelian groups.

Another important line of thought was initiated in the 1930’s by
several analysts, who took up the algebraic side of a number of analytic
constructs. Algebraic notions were already present implicitly in WIENER'S
classic book The Fourier integral and certain of tis applications [28] and
also in the paper [29] of WIENER and PrrT. A decisively algebraic point
of view was introduced by M. H. SToNE in his long 1937 memoir in the
Transactions of the American Mathematical Society [24]. In this paper,
he studied, among many other things, the algebra € (X, R) of all real-
valued continuous functions on a compact Hausdorff space X. He
obtained a complete description of the closed ideals in this algebra,
classified linear isometries between two of them, and in passing proved
the Stone-Weierstrass theorem, which today is part of the equipment
of every analyst. ARNE BEURLING, in a paper presented to the IX. Con-
gress of Scandinavian Mathematicians at Helsingfors (1938) [1], studied
the algebra M (R) of all complex Borel measures on the line, under
convolution, and stated for the first time the spectral radius formula

1
. nlin A
Jim " =sup {2 @)1},
which he proved for all measures y having singular component zero.
These papers were the forerunners of GEL'’FAND’s fundamental dis-
covery of Banach algebras [normed rings in his terminology] in 1941 [5].
The Banach algebra point of view toward algebras of functions and
measures on groups has of course completely transformed the theory.
It forms the mise en scéne of standard texts (see for example [16], [19],
[9], and [23]), and it dictates the questions one asks. The recent text-
book on Fourier series by R.E.EpwarDps [3] sheds much light on
classical matters by adopting the Banach algebra point of view.

Later work in the 1940’s and 1950’s by SEGAL, GODEMENT, CARTAN
and GODEMENT, MACKEY, Loomis, AMBROSE, KREIN, RaTKov, GEL'FAND,
NAIMARK, and many other writers have set the stage for the present
efflorescence of abstract harmonic analysis. A useful survey of the state
of the art in 1952, together with some original viewpoints and construc-
tions, appears in M. H. STONE’s 1952 memoir [25]. We now have a
generation of younger workers, who are carrying the field forward at
an ever accelerating tempo.
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What is the goal of abstract harmonic analysis? One may say that
it is to rewrite ZyGMUND [30] for every locally compact Abelian group
and every compact non-Abelian group. This is not strictly true, of course:
but a major aim is to provide the sort of detailed knowledge about each
locally compact Abelian or compact group that we have for the circle
T and the line R. Unquestionably some of this can be done. The
p-adic numbers, for example, are just as good a group as R, and there
is no reason why Hilbert transforms, conjugate functions, CARLESON’S
theorem, SALEM’S singular measures with small Fourier-Stieltjes trans-
forms and Cantor set supports, et cetera, should not be studied on this
group. The same is true of other neo-classical groups, such as the character
group of the discrete additive rationals. The classical compact non-
Abelian groups are also wide open for detailed analysis. Extremely
refined studies of ©11(2) are being carried on by R. A. MAYER [17] and
Davip RacoziN. PAauL SaArry, MitcHELL TAIBLESON, KEITH PHILLIPS,
to name three others of a large group, are concerned with detailed
analysis on one or another group. The higher-dimensional unitary
groups &l (») for n =3 are of great interest to physicists. Here diffi-
culties arise in obtaining explicitly the irreducible unitary represen-
tations, although WEYL’s work gives an algorithm for computing them
all. No reasonable formula is known for decomposing the tensor product
of two irreducible representations into its irreducible components. But
the future looks bright, and for the older generation of harmonic analysts,
the main problem is to grasp the new work as quickly as the younger
people write it.

After this perhaps overlengthy preamble, let me turn to the main
topic of my address. This is joint work with KENNETH A. Ross of the
University of Oregon, and will appear in a book [10], which we hope
will be in print in 1970. A preliminary announcement of some of our
results is given in [11]. We are concerned with certain algebras and
function spaces on general compact groups. The level of abstraction is
about like that of the general theory of &, (G) for a locally compact
Abelian group G, although some surprisingly explicit details appear.

Throughout the remainder of this talk, the symbol G will denote an
arbitrary compact group, and X will denote the dual object of G. Let us
explain exactly what X is. We consider a homomorphism x—U, of G
into the group of unitary operators on a Hilbert space H with the prop-
erty that the function x—<(U,&, %) is continuous on G for every pair
of vectors &, 7 in H. If the representation U is irreducible, that is, if
the set of operators {U,: xcG} leaves no proper subspace of H invariant,
then H must be finite-dimensional: a very simple proof of this theorem
is due to L. NacuBIN [18]. For a given irreducible U, consider the class ¢
of all representations of G unitarily equivalent with U. Such a class ¢
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is an element of the dual object Z, and, obviously, 2 consists of all the
classes ¢. Let 4, be the dimension of the Hilbert space H, on which a
certain U c¢ acts. Plainly d, depends only upon ¢, and as noted above,
d, is a positive integer.

For 1 =p < oo, the symbol &,(G) means the space of Borel mea-
surable complex-valued functions f on G such that | /|? has a finite integral
with respect to Haar measure A on G, which we normalize by the con-
vention that 1(G)=1. For a function f¢ &, (G), we define the Fourier
transform f as a certain function on the dual object 2. We choose a
fixed UP¢q for each geZ. The entity /(o) is defined as the operator
on the representation space H, of U such that

Flo) & nd =Gf CUPE M) [ (x) dx

for all &, 7 ¢H,. Obviously (o) depends upon the particular choice
of U”¢q, but upon changing from U® to a unitarily equivalent rep-
resentation, /(o) changes into a unitarily equivalent representation,
as a trivial computation shows. In what follows, we will choose a fixed
U ¢q for each ¢cZ. The representation space of U will be denoted
by H,.

We are concerned with certain norms for the operators (o), which
were discovered by J.v. NEUMANN, and described in a 1937 paper in
the Tomsk University Izvestiya [20]. Given a linear operator 4 on a
d-dimensional Hilbert space H (4 is a positive integer), consider the
adjoint operator A~, and the self-adjoint positive-definite operator
A A~ . This operator has nonnegative eigenvalues, let us say oy, oy, ..., 0.
For 1 <p < oo, we define |4|,, by

-y

b b P 1
14, =lo? +od + - +af]?.

We define |4],.,, by
|4, = max {«d, o}, ..., od}.

It is a remarkable fact that each | |,, is @ norm on B (H), the linear
space of all linear operators on H. (These norms are defined and dis-
cussed in a more general situation in [2], pp. 1088 ¢t. seq.) The @, norms
have a number of remarkable properties. For example:

\oAV),,=|4],,if U and V are unitary;
14 By, = 1415, Blo,:

|4 B, <)Ly, |Bl,,, where p'= P

and so on. The v. NEUMANN norm |4 ||, is just the operator norm of 4.

I
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v. NEUMANN’s norms received no attention that we know of until the
late 1940’s, when M. G. KREIN used the @, and ¢, norms in his study
of continuous positive-definite functions on compact groups. KREIN’S
paper [13] also has lingered in undeserved obscurity, perhaps because
of the obscure journal where it appeared. My own attention to it was
drawn by the detailed and thoughtful review written by G.W.MACKEY
(MR 12, p. 719).

In 1958, R. A. Kunze [15] published a construction of Fourier
transforms on unimodular locally compact groups, which contains
KREIN'S work on compact groups as a special case. There is no evidence
that Kunze knew of KREIN'S work. Let us sketch the special case of
Kunze’s construction that we will use. Consider the Cartesian product
GEZEB(HG), which we denote by the symbol €. That is, € is the space
of all B (H,)-valued operator functions on Z. If G is Abelian so that
every d;,=1, € is the space of all complex-valued functions on the
character group Z of G. The space € is far too large to be useful for
analytical purposes. We single out certain subspaces, as follows:

G = (£ €6: Bl =sup |E. |, < oo}

Cy={(E,)€C: for every ¢>0, there are only finitely many o such that
I|Eq|p., > €}, and we give €, the || ||,, norm.

The Weyl-Peter formula
115 =2 dlf @) (Fe2(6))
compels us to proceed differently in defining the spaces €, for1 =g < oo:

€, ={(E) ®: T 4, | Eff,< oo}
,1,
For Ec€,, we define |E|, as [Z d(,”EGHZ%}‘-’. All of these normed
cEZ

spaces are Banach spaces. Again, the Abelian case produces the familiar
function spaces /,(Z).

With this notation, two familiar facts appear in a succinct form:
& (G)~ <Gy, and ||f]|, =]/, (thisis the Riemann-Lebesgue lemma);
(G)"=G6,, and |fl,=||f|]. (this is the Weyl-Peter formula).

As KuNnzE showed, we can apply the M. Riesz convexity theorem
to the two foregoing facts and obtain:

for 1<p<<2, we have &,(G)” =€, and ”ﬂlp =\ (HY)
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3 f ;- The inequality (HY) is

of course the Hausdorff-Young inequality for Fourier series, generalized
to all compact groups. I remark here J. E. LITTLEWO0OD’S observation
that his principal contribution to Fourier analysis is the profound fact
that in (HY), the big number stands on the left. From here on, p will
denote an arbitrary number such that 1 <<p<C2.

Ross and I (referred to as ““we’” hereafter) asked ourselves for what
functions in £,(G) does equality occur in (HY), and — a companion
question — for what f€ 2, (G) is f in €, and | e =17l ¢ [Functions in
8, (G) with equality in (HY) are called &,-maximal, and functions in
24 (G) with ||f|,=|f|, are called L,-maximal.] The above questions
have a long history. In 1926, HARDY and LITTLEWOOD [6] answered
the first for the circle group T, ‘.e., for ordinary Fourier series. The
only &;-maximal functions on T" are those which are trivially &,-maximal,
namely, functions ¢—o exp [#nf], where « is a complex constant and #
is an integer.

Here ' is the usual conjugate exponent

The question was taken up many years later (1954) by I. I. HirscH-
MAN, JR., and me [7]. We considered an arbitrary locally compact
Abelian group H [not necessarily compact]. Let 4 be a compact open
subgroup of H, let y be a continuous character of 4, and let y, be the
function on G such that

_fx(x) for xed,
ra(®) =1, for x¢A.

Such a function is called a subcharacter of G. It is simple to show that
every subcharacter is &,-maximal, and obvious that a constant times a
translate of an ¢ ,-maximal function is also £,-maximal. The Hewitt-
Hirschman theorem states that these are all of the ,-maximal functions.
On R, for example, the inequality ||f l»»<<|7ll> holds for all nonzero f
in &,(R), since R lacks compact open subgroups.

In 1959, HirsCHMAN [12] took up compact non-Abelian groups G,
introducing the following norm in part of €:

1
— 24| E |2 |7
Bl = | Za vz,
for 1 =¢<< co. He proved that for a function f in &,(G), the equality
I#l, = |7l,- holds if and only if f is a constant times a translate of a sub-
character yg,, where Gy is an open normal subgroup of G. He also proved
that these are exactly the functions that are £,~-maximal for his norm

171,
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Looking at KuNzE’s norms |E|, on €, and noting the inequality
(HY), one is quickly convinced that KUNZzE’S norm, rather than
HirscHMAN'S, is the appropriate one to use on f for fe 2,(G). Ross and 1
were able to show that &,-maximal and £,-maximal functions under
KUunzE’s norm can also be characterized. They are exactly the functions
that are constants times translates of subcharacters y; , where now G,
is an arbitrary open subgroup of G. HIRSCHMAN’S maximal functions
are translates of central functions that are maximal in our sense.

It is easy and also instructive to check that yg, is &,- and £,-maximal.
For typographical convenience, we write ¢ for y; . One sees at once
that @ (xv?) @ (y) =¢ (%) for all x, yeG, and so

Prp(x) =p(0) [ 1400) =99 2(G) = (%),

where # is the cardinal number of G/G,. Thus (n¢)=*(n¢) is ne. Also
we have (n@)~ (¥) =ng(x) by the definition of f for all functions
fon G, and clearly @(x1)=¢@(x). Thus (n@)” =n¢@. Under Fourier
transforms, we have

(f+g)~ (6)=F(0) g (6)  (operator multiplication)
and
()~ () =f(6)~ (the last ~ means adjoint).
Therefore (n¢)~ (o) is idempotent and Hermitian, 7.¢., a projection. Thus
there is an integer /,¢ {0, 1, ..., d,} such that ¢ (¢)~ ¢ (o) has eigenvalue %
with multiplicity /, and eigenvalue 0 with multiplicity 4, —/,. It follows
that

19l =2 |9, = 2 d, L™ =0~ 2. d, L.
o€Z gE€ZX 6EZ

For p =’ =2, we have |p[=3, and so

1
W :%_2Zdo' lo':
" c€Z

so that

|l =n'=*

P

and

N S |
[#ly=n? "=n ? =]l

The proof that ¢ is &,-maximal is just the same.

The converse is much harder to prove. The proof is long, and uses
many delicate facts about v. NEUMANN’S norms. In the end, it comes
down to a careful application of the maximum modulus principle. It is
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so messy in fact that only its authors, one feels, could love it. Rather
than go into its details, I would prefer to spend my remaining time
discussing an algebra of functions on G that KreIN [13] first discussed.

Recall that @ is the space of all (E,)€@ for which 2’ 4,| E,|,, =
cEZ

|E|; is finite. KREIN proved the following two theorems [13].

I. A function f on G is continuous and positive-definite [we write
feB(G)] if and only if f (6) is a positive-definite operator for all €
and feG,.

II. A function f on G is a linear combination of functions in P (G)
[we write f€ ® (G)] if and only if f € €. For f¢ ®(G), we have

= 2 d,tr(4,UP),
c€EX

where (4,)€@,, and the series converges absolutely and uniformly
on G.*

KRrEIN’s first theorem is an exact analogue for compact non-Abelian
groups of BoCHNER’s theorem, at least in one direction. (There is no
really satisfactory description of the Fourier-Stieltjes transforms jic@
for nonnegative measures on G — this would be BOCHNER’S theorem
in the other direction.)

Since the pointwise product of positive-definite functions is positive-
definite, & (G) is an algebra of functions on G. Under the norm |f|, =
Z 4,)f (0)]l,,» R(G) turns out to be a Banach algebra, which can very

reasonably be called the algebra of absolutely convergemt Fourier series
on G. It is elementary although somewhat tedious to verify that
I7gle. =W lolglp,- If G is Abehan K(G) is of course the algebra of

functions f on G of the form Z 0y Xn, Where ||f||= Z |et,| < o0 and each

#» is a continuous character of G

KREIN [13] observed that every multiplicative linear functional on
®(G) has the form f—>f(a) for some acG. (This fact has been generalized
by EYMARD [4], who apparently was unaware of KREIN's work.) KREIN
also showed that the algebra ®(G) is regular, so that the Gel'fand
topology of G regarded as the space of multiplicative linear functionals
of &(G) is the original topology of G.

Ross and I have investigated & (G) as a Banach algebra and have
found some interesting facts about it. Here, without any proofs, are
some of these facts.

* We can express 4, in terms of f(0): 4,=D,f(0)~ D,, where D, is a
conjugate-linear mapping of H, onto itself such that <D ¢, D 5> =<{n, {>
for all {, n€H, and D3 =1.
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The algebra & (G) is exactly the set €,(G) * ,(G): and we know of
no other way to show that @,(G) + &,(G) is a linear space. (In [4],
EvMARD has proved a generalization of this fact.) There seems no
simple way to characterize & (G) * & (G).

Next, &(G) satisfies DITKIN’s condition. If f¢ ®(G) and f(a) =0, one
can find a sequence {4}, such that k,cR(G), |k,],, =2, each &,
vanishes in some neighborhood of 4, and nll)ngo I#, f —F|,=0. Thus

SiLov’s theorem on closed ideals holds for & (G) (see for example [16],
p. 86).

Finally, spectral synthesis fails for ®(G) if G contains an infinite
Abelian subgroup. That is, there is a closed subset I' of G such that
there are two distinct closed ideals & and J, of ®(G) for which
F:feﬂs{xeG:f(x)=O}:fer):§{xEG:f(x)=O}. This result is not very

satisfactory, for two reasons. First, we conjecture, but have been unable
to prove, that every infinite compact group contains an infinite Abelian
subgroup. Second, our proof that spectral synthesis fails for &(G) in
this case merely appeals to MALLIAVIN’S theorem. A proper proof would
construct “independent” sets in G like those constructed by KAKUTANI
and myself [8] and would then follow VArROPOULOS’S proof [26] of
MaLLIAVIN’S theorem. But we have no idea as yet how this can be done.
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Theory of Simple Scattering and
Eigenfunction Expansions

By Tosio Kato and S. T. KurRODA

University of California, Berkeley,
and University of Tokyo, and Yale University

Introduction

In the theory of simple scattering systems we consider the wave
operators W* = ts_—)llerg ¢'*H: ¢~ and the scattering operator S = (W+)*W-,
where H;, H, are selfadjoint operators in a Hilbert space §
describing the unperturbed and perturbed systems (see JaucuH [12]).
W#? are isometric and intertwine H, and H, (H,W * > W* H,) whenever
they exist. S is unitary if and only if the ranges of W* are identical.
For technical reasons, it was found convenient to define the (generalized)
wave operators by W* = s-lim ¢Heg=#hp . where B ,, is the

projection of $ onto the subspace 9, ,, of absolute continuity with
respect to H, (see Kato [17], Kuropa [18]). Then W¥ are, if they
exist, partial isometries with initial sets §, ,, and final sets (ranges)
n 9y 4 S is unitary on §; 4, if and only if the ranges of W1 coincide.
In particular we say that W* (W-) is complete if its range is §, g

Construction of the wave operators directly based on the above
definition is customarily referred to as the time-dependent (or non-
stationary) theory. Without going into details of this theory, we simply
note that most of sufficient conditions so far obtained for the existence
and completeness of the wave operators assume some frace condition,
which states that H, —H; (or some related quantity) belongs to the
trace class of compact operators. We note also that the ‘nvariance
principle has been proved under rather mild assumptions, to the effect
that W*=W?* (H,, H,) is equal to W*(y(H,),y(H,)) for any piece-
wise monotone increasing function y satisfying some continuity
condition (see KaTo [15, 17]). For details of the time-dependent theory
see the references mentioned above.

Other methods for constructing W* are known as the stationary
theory and date back to FRIEDRICHS [4, 5]. Here W* are constructed
by solving certain singular integral equations, which are given in terms
of a spectral representation for the unperturbed operator H;. W¥* are

7%
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then shown to be equal to the time limits used in the definition of W*
in the time-dependent theory. Further developments in this direction
(theory of gentle perturbations) were given by FRIEDRICHS [6], REJTO
[24, 25], FADDEEV [3], and others.

A stationary method of somewhat different kind was given by
Karto [13], in which H, — H, is assumed to be of rank one. Here certain
spectral representations for H,, H, are constructed, through which
W? are defined in such a way that their partial isometry and inter-
twining property are obvious. This method was later generalized to
more general cases in Kuropa [19, 20, 21, 22]. Its final form [22],
in which use is made of a spectral representation by Hilbert spaces
constructed in terms of certain operator-valued measures, is rather
general and has wide range of application. It can not only be applied
to cases with trace conditions but it also contains the main results of
IKEBE [11] concerning the existence and completeness of W for the
Schrédinger operators H;=—A4, Hy=—A4+V(x) - in $=L2(R?),
for example. Moreover, it shows that the invariance principle holds
in this case, a result not proved in [11]. But it is still restricted in that
the perturbation is assumed to be factorizable into the product of two
operators acting in §.

Stationary methods of another type were proposed by RejT0 [26, 27]
and HowLAND [9] independently. These are characterized by the use
of an auxiliary Banach space X, part of which is densely embedded
in . Roughly speaking, X is assumed to be such that the resolvents
R;(0) = (H;—{)™ have weak boundary values on the two edges of the
real axis in an operator topology associated with the topology of X
and that Q;({) = (Hy—H,) R;({) map ¥ into ¥ continuously and have
boundary values on the real axis in the strong operator topology.
W# are then defined in a direct way not necessarily using spectral
representations. Their methods were applied successfully to many
interesting cases, but it appears that the cases with trace conditions
or the invariance principle were not covered by their results.

There are still other stationary methods of “direct” type, due to
BirMaAN-ENTINA [2], BirMAN [1], KaTO [16]. But these are somewhat
special, being related to trace conditions or to ““smooth” perturbations.

In the present work, the authors intend to construct a unified
theory which hopefully comprises most of the stationary methods
mentioned above. In one direction it simplifies the method of [22] by
constructing the spectral representations in a more direct and simple
way. At the same time it generalizes the latter by eliminating the
assumption that the perturbation be factorizable. As it turns out, our
basic assumptions resemble those of [26] and [9] inasmuch as an
auxiliary subspace ¥ of $ is used. But it differs from [26] and [9] in
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that X need not be a normed space nor a dense subset of $ and that
we do not assume continuous dependence of the Q;({) on . This makes
it possible to apply the results not only to gentle and smooth per-
turbations but also to perturbations with the trace conditions. Also
we are able to prove the invariance principle in a general setting, with
the single but essential restriction that X has the structure of a pre-
Hilbert space. In the case of an arbitrary X, we have not been able
to prove the time-limit formula for W, but we do have a slightly
weakened result that the time-limit formula is true in the sense of the
Abel limit (this was proved in [9] under somewhat stronger assumptions).

Actually the theory of the wave operators are here presented in the
case of two wumitary operators U, U, rather than of two selfadjoint
operators H;, H,. In the time-dependent theory, this corresponds to
considering the discrete groups {U}} rather than the continuous groups
{¢*H7}. We plan to discuss the selfadjoint case in detail in a later publi-
cation, together with applications. But it should be noted that some
results on the perturbation of selfadjoint operators follow directly from
the ones for the unitary operators through the Cayley transformation.

The composition of the present paper is as follows. We start with
an abstract theorem on the perturbation of spectral systems. By a
spectral system we mean a spectral measure E, with values in the set
of all orthogonal projections in a Hilbert space £, on a measurable
space (I, B), together with a numerical measure on B with completion
m. By a standard process, E is then decomposed into the absolutely
continuous part E,, and the singular part E.. A spectral form for such
a system is a complex-valued function f(8; «, y) defined on I"' x X X %,
where I'é B and X is a linear manifold in $, such that f(0; x, y) is a
nonnegative Hermitian form in x,y and m-measurable in 0, and
that Aff(G; x,y) m (d0) = (E,,(4) %, y) for AcB. Under these assump-

tions we construct a spectral representation for E,, on the subspace
E,.(I") &, where & is the reducing subspace for E generated by ¥. It is
essentially a unitary map of E,,(I")® onto a direct integral of Hilbert
spaces % (6), each obtained by completing X with respect to the norm
induced by f(0; - , -) (see Section 1).

If we have two such spectral systems 1, 2 and if there is an isometric
map G (6) of X, (8) into X, (6) for each O€rl, then it is easy to construct
an isometric map W of E, ,.(IN% into E, ,,(I") 2, that intertwines
E, and E,. We call W the general wave operator; it is the prototype of
the wave operators W* between two unitary or selfadjoint operators
(see Section 2).

So far we need no topologies in ¥, or X,. In applications, however,
the 5(0) are usually constructed as limits of mappings from X, to X,;
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then we need a topology at least in ¥,. But it is found that the topology
plays a minor role and it suffices to assume that ¥, is a linear topological
space®. We need a topology in ¥, too if we want W to be complete.
The construction of the G () is carried out in Section 3 along the lines
indicated. In Section 5 we consider a more specific situation involving
two unitary operators, constructing two wave operators W*. In
Section 6 it is shown that many new as well as known results for wave
operators follow as applications of the general results of Section 5.
Section 7 is devoted to the proof of the invariance principle, under
the additional assumption that X is a pre-Hilbert space.

Another problem considered in this paper is the theory of eigen-
function expansions as a perturbation problem (see Section 4). A pre-
liminary report of this theory based on [22] was given by Kuropa [23],
but here we give a detailed proof in a more general setting. The eigen-
function expansion is formulated in an abstract way, analogous to that
given by GELFAND-SHILOV [7] and GELFAND-VILENKIN [7a]. Suppose
that the unitary operator U, has “‘eigenfunctions” ¢, (£), with the
parameter & varying on a measure space (2, %, p), which form a
“complete set” in E; ,.(I")Q;. We assume that the parameter £cQ
corresponds to a more refined spectral representation than the one
constructed above, so that in particular €l is a function w (&) of &.
Furthermore, we regard ¢,(§) as belonging to ¥F, the adjoint space
of ¥;. Under certain conditions similar to the ones used for the
construction of the CN;(O), we construct a map G(w(£))*, depending
on ¢, from X to X{ and show that @,(&) =G (w (£))*L @, (&) gives the
“eigenfunctions” for U, This relationship between ¢, (£) and @, (&)
is an abstract analog of the Lippmann-Schwinger equation. It should
be noted that HowLAND [10] develops a similar theory of eigenfunction
expansions on the basis of his stationary theory of wave operators.

The authors are indebted to Professors S. Kakurani and C. E.
RickArT for stimulating discussions, which, among others, led to great

improvement of the basic theorem. This work was partly supported by
NSF GP 6838.

1. Spectral systems and spectral representations

Definition 1.1. A spectral system (I, B, m, 9, E) is a spectral measure
E on a measurable space (I, B), with values in the set of all orthogonal
projections in a complex Hilbert space §, together with a o-finite,
nonnegative scalar measure on B, the completion of which is denoted
by m.

* Throughout this paper, linear topological spaces are always assumed
to be Hausdorff.
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We denote the norm and inner product in § by | | and (,). Some-
times we write || | and (,)g to indicate that these symbols refer to .
We denote by [B] the set of all B-measurable, bounded scalar functions
on I'y. We define the m-measurability of a scalar function on I in the
usual way. (In applications I, is usually the real line or the unit circle
on the plane, B is the set of all Borel subsets of Iy, and m is the
Lebesgue measure.)

Let 9,. be the set of all #€$ such that the numerical measure
|E(-)u|? is m-absolutely continuous; $,, is a closed subspace of §
reducing all E(4), 4¢B. Let P,, be the projection of $ onto §,,, so
that P,, commutes with all E(4). Set E, (4)=E(4)E,,. E,, is the
absolutely continuous part of E; it is also a spectral measure on B,
except that E, (Ip) is in general not the identity operator. E,, is
absolutely continuous in the sense that m(4) =0 implies E,, (4} =0.
We note that for each uc§ there is 4,€B such that m(l[y—A4,)=0
and P, u=E(A,)u (cf. [17]).

Definition 1.2. Let (I, B, m, §, E) be a spectral system. A spectral
form for this system is a complex-valued function f on I'X ¥ X ¥,
where I'c Iy, I'e B, and ¥ is a linear manifold in §, with the following
properties. (a) For each x, yeX, 0-f(0; %, y) is m-integrable on I
and its integral on each 4 =T, A€B, is equal to (E, (4)x, v). (b) For
each 0¢l, x, vy f(6; x, y) is a nonnegative Hermitian form on ¥ x X.
(We write f(0; x) for /(0 x, x).)

Remark 1.3. Since (E,. (), v) is a complex-valued, m-absolutely
continuous measure for each #, v€$, it is an indefinite integral of a
complex-valued, m-integrable function f(-;u,v) on I}. Since such f
is not unique for a given pair #, v, however, it would be in general
difficult to choose f(0; %, v) as a Hermitian form in #,v€§ for each
0¢cly. But it can be done easily if #, v, and 0 are suitably restricted.
This is what Definition 1.2 is concerned with.

Example 1.4. If ¥ is finite-dimensional, there always exists a spectral
form f on I'y X ¥ X X. To see this, choose a basis {¢;} of ¥ and a density
function f;,(-) for the measure (E,.()¢;, ¢;) for each pair ¢;,e¢,
(Remark 1.3). Then f(0; %, y) =2 o;8:/;(0) for x=2 e, ¥y =2, Pres
defines a spectral form on Iy X ¥ x ¥. This example is not altogether
trivial. If E has finite multiplicity, a finite-dimensional X can generate
the whole space with respect to E. As is seen below, this is sufficient
for the purpose of the spectral representation of E,,.

Example 1.5, Let $=L2(— oo, ), [(=R! with the Lebesgue
measure #, and let E(4) be the operator of multiplication by the
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characteristic function of A, defined for all Lebesgue-measurable set
A < R If X is the set of all continuous functions in L2(— oo, o), then
7(0; x, v) = 2 (0) y (0) defines a spectral form on R! x ¥ X ¥. Note that
E,.=EFE here. In this example X is dense in §, but this is not neces-
sary for the spectral representation introduced below.

Suppose f is a spectral form on I' X X X X. For each 6¢l’, f(0; -, )
defines a semi-inner product in X. Let 9 (0) = X be the set of all x with
f(0; x)=0. Then the quotient space X/N(H) is a pre-Hilbert space
with the inner product induced by f(0;-,:). We denote by %(0) its
completion, by (-, ), and |- [, the inner product and norm in ¥ (6),
and by J(f) the canonical map of ¥ onto X/R(6) < ¥(6). Thus
(J©O) %, J(0)y)o=/(0; x,v) for x,yeX, and J(B)x=0 if and only
if f(0; x) =0.

Consider the product vector space %:H%(G) consisting of all
6er

vector fields g={g(0)}yc, With g(0)cX(0). We say two elements
g, g:€%X are equivalent, in symbol g ~g,, if g (0) =g.(6) for m-a.e.
fel’. Clearly it is an equivalence relation compatible with linear
operations in % and with the operation of multiplication gr»og=
{oe(0) g (6)} with a scalar function « on I".

Definition 1.6. gc X is said to be f-measurable if there is a sequence
{,} of quasi-simple functions on I" to ¥ such that

Lim [g(6) — ] (0) b (8)[y;=0 for m-ae. el (1.1)

Here we mean by a quasi-simple function %4 a function of the form
(finite sum)

hO) =2, (0)%,, o,€[B], x,€%. (1.2)

(We use quasi-simple functions rather than simple functions for con-
venience.)

The following are easy consequences of the definition. If g ~g,,
gy is f-measurable if and only if g, is. If g is f-measurable and « is an
m-measurable scalar function, then ag is also f-measurable.

Lemma 1.7. If {g,} is a sequence of f-measurable elements of X such
that Lim g,(0)=g(0) in X(0) for m-ae. OcI', then g={g(6)} is
[-measurable.

Proof. This follows immediately from Corollary B of Appendix.

Proposition 1.8. If g,, g,c% are f-measurable, then 6+>(g, (), g2(6))o
is m-measurable on I
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Proof. Let A;, be quasi-simple functions on I' to X such that
nlir?o lg;(0) —J(0)h;, (0) =0 m-ae., j=1,2. Then f(0; Ay, (0), ksy,(0))

= (J(6) 21, (), J(0) 72, (0))o—(g1.(6), £2(0))p m-ae. Since f(-; hy,(),
ks, () is obviously m-measurable, the desired result follows.

We denote by It the set of all f-measurable elements gei such
that |gaz= [|g(B)|fm(d0) < co, where equivalent elements are to
Ir

be identified. Thus IR is a pre-Hilbert space with the inner product
(81, g2)am =1"f (8&(0): 82(6))0 m(a0). (1.3)

Proposition 1.9. IR is a Hilbert space.

Proof. It suffices to show that IR is complete. The proof is essentially
the same as the proof of the completeness of L2-spaces and may be
omitted.

Proposition 1.10. Quasi-simple functions on I' to X are densely
embedded in 3¢ in the following sense. (a) For any quasi-simple function
h, we have Jh={J(0)h(0)}cM. (b) For each gcM and £>0, there
is a quasi-simple function % such that |g — J [y <e.

Proof Let h be given by (1.2). Then |J ()2 (0)|f=1/(0; k(6))
=u;(0 )/(0; %;, x). But since f(-; x, ) is equal to a density
funct1on for ( :() %, ¥) by definition, it follows that

L17@ A6 m @)
=er “j(e) o, (6)

(1.4)

(Eac(de) xi’ xk) = "1}“25<00 4
where
v=2 04 (E)E, (') % (1.5)
Here we use the notation «(E) = f o (0) E(d0) for any ac [B]. (1.4) shows
I

that JheIR with | J Al =[]
To prove (b), let geM. Since O |g(6)|f is m-integrable on I
there is I < I', I'" € B, with m([")< oo, such that [ |lg(8)[fm (40)<<e.
r-r
Also there is >0 such that m(4)<<d implies [|g(6)[fm(d0)<e.
4

Since g is f-measurable, there are quasi-simple functions #4,,
n=1,2, ..., on I' to ¥ such that |g(8)—J(6)h,(6)[y—0, n— oo,
for m-a.e. 0el. Since m(I")<C oo, there is I = I",I""€B, such that
mI" —I")<6 and |g(6) — J(0)%,(0)[s—0, n— oo, uniformly on I
(EGOROFF’s theorem). Hence [|g(6) —J(0)%, (0) [ m(d46)<<e for suffi-

o

ciently large #n. Fix one such # and set A=yp+k,, where yp. is the
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characteristic function of I'”'. Then
Ffllg(e) —J(0)1(0)]5 m(a6)
=| L+ ]Ilg ) B
r-r
+f”g (6) — ”em (d0)y<<3e.

But % is quasi-simple, so that JA€IR by (a) and the last inequality
can be written |g — J 4|3, <3 . This proves (b).

We can now prove the main result of this section on the spectral
representation for E. We denote by  the smallest closed subspace
of  containing ¥ and reducing E (i.e. reducing the «(E) for all
a€[B]). & is the closed span of the set of all vectors of the form
o(E)x with a€[B] and xcX. Hence &, ,(I')=E, (I')Q is the closure
of the set of all vectors of the form (1.5). &,.(I") also reduces E.
L) =E, (I 9 if X generates § (i.e. if €= §). For this it is sufficient,
but not necessary, that X be dense in §.

Theorem 1.11. There is a unitary map 11 on &, (") to I such that (a)
o (E)u=allu="{(0) (ITu) (6)} for each ac[B] and uc<, (I'), and (b)
IE, (I x={](0) x} for each x€X.

Proof. Consider all veQ,,(I") of the form (1.5) and all # of the
form (1.2). (1.4) shows that the map vi> J2eIM is well-defined and is
isometric. Since the v are dense in €, (I") by the remark given above
and since the J% are dense in I by Proposition 1.10, the isometry can
be extended to a unitary operator I7 on &,,(I") to . It is clear that (a)
is true for # =v of the above form, and it is extended to all u€&,,(I")
by continuity. (b) is a special case of v+ J A when % (0) = x.

2. The general wave operator
In this section we consider two spectral systems (I'y, B, m, ;, E;)
with spectral forms (I, ¥, f,),7=1, 2, where the measure space
(I'y, B, m) and I'c B are common to the two systems (see Definitions
1.1 and 1.2). We use the obvious notations such as 9, ., E; 4c»
X;0), 7;0), &, oo | ior By, 1T, 4, Y 4 o), ete.
As a link between the two systems, we introduce the following
assumption.
(2A) For each f¢I” there is an isometric operator G (6) on %, (6) to
%,(0), such that 0-G () J1(0) x is fz-measurable on I" for each x¢€¥,.
For each g = {g(6) }¢ %, we set Gg={G (0)g(0)}€ %, It is clear that
g~g' implies Gg~Gg'. The following proposmons are easily proved.
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Proposition 2.1, If ge %1 is f;-measurable, then (N;ge %, is /,-measurable.
Proposition 2.2. G restricted on IR, is isometric on I, to MP,.
We now define a linear operator W on &, to §, by

Wu=II3*GIT,u for uely (),
Wu=0 for ul® ,.(I).

Recall that /7, is a unitary operator on &, ,,(I") to ;.

1, ac

Theorem 2.3. W is a partial isometry with initial set &, ,.(I") and
final set contained in Ly ,.(I'). W has the intertwining property
a(Ey) W=Wal(E,) for ac[B].

Proof. The first assertion follows directly from Proposition 2.2. The
intertwining property follows from the fact that the operator «(E))
acting in &; ,,(I") is transformed into the operator of multiplication
by «, acting in I%;, under the unitary transformation /7,.

Theorem 2.4. The final set of W is exactly &, ,.(I') if the following
additional condition is satisfied:

(2B) For each OcI' G(6) is unitary on %,(0) to %,(0), and
0 G (0)1],(0)y is fi-measurable for each vy €X,.

Proof. The G (0)! satisfy (2A) with =1, 2 exchanged, so that G-
is isometric on R, to 9M,. Hence G is unitary on I, to IM,, and the
range of Wis &, ,.(I).

Theorems 2.3 and 2.4 are the basis for constructing the wave oper-
ators between two unitary or selfadjoint operators in this paper. We
call W the general wave operator associated with the two systems. We
say W is complete if the range of W is equal to &, ,,(I"). W is “local”
since I' is in general a subset of I;,. We are naturally most interested
in the case in which &, .. (I') and &, ,,(I') are large, e.g. &4 =9, and
82:%)2’ so that 21, ac(F) =E1,uc (F) ‘@1 and g2, uc(-r’) :Ez, uc(r)'@%
and in which ['is as large as possible.

Although the theorems given above are quite general, they are
rather formal and have no direct application. The real problem is how
to construct the G () satisfying (2A) and (2B). The following sections
are devoted to this question. Before closing this section, we prove a
preliminary lemma.

Lemma 2.5. Condition (2A) is equivalent to

(2A") For each OcI there is a linear operator G’ (0) on %, to X,(0),
such that (a) |G’ (0) x|y =1(0; %) for each x€¥,, and (b) G'(-)x is
fo-measurable for each x€X,.
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Proof. If (2A) is satisfied, we obtain the G’ (f) satisfying (2A’) by
setting G’ (0) x=G (0) J,(0) » for x€¥,. Conversely, suppose (2A’) is
satisfied. By (a), G'(0) induces an isometric operator on X%,/%(0)
to %, (0), which can be extended by continuity to an isometric operator
G on %,(0) to X,(6). Then (b) implies that G(-) ;(-)x=G'()x is
fo-measurable.

3. Construction of the é(())

We continue to consider two spectral systems as in the previous
section.

We want to construct (N;(O) satisfying (2A) or, equivalently, G’ ()
satisfying (2A’). The problem would be rather simple if we constructed
G’ (0) from an operator on X, to ¥X,, but this is too restrictive to be
useful in applications. What we are going to do is, roughly speaking,
to derive G’ (0) from a converging sequence of operators* on X, to %,.
This requires that we introduce a topology into ¥,. With this in mind
we consider the following conditions.

(3A,) There is a sequence of approximating spectral forms f;,,
n=1,2,..., on I'x¥;x¥%;, in the following sense. For each €[,
(@) f;»(0;-,) is a nonnegative Hermitian form on ¥;x¥;, and
(b) f;n(0; %, y) —1;(0; x, y), n— oo, for each x, yeX,. (Again we write
fjn(e; %) :fjn(o; X, x))

(3B;) ¥; is a linear topological space with its own topology. For
each 0cI, {f;,(0; - , -)}, is equicontinuous on ¥; X ¥,.

(3C,) For each B¢l there is a sequence {G, ()} of linear operators
on ¥, to ¥, such that f,,(0; G, (0) x) =£,(0; %) for xc¥,. Furthermore,
the following conditions are satisfied with respect to the topology of
X, given in (3B,): (a) For each §€el” and x¢¥%,, {G,(0) x}, is a Cauchy
sequence in X,. (b} For each x€¥, and #, G,(-) x is strongly measurable
on I" (i.e. it is the limit m-a.e. of a sequence of quasi-simple functions).

We note that the existence of lim f,,(0; x, ¥) is a consequence
of (34,), (3B,), and (3C,); see Lemma D of Appendix.

* Another method for constructing the G’ () is to construct first mappings
G(6) on %, to &,, the completion of ¥,, assuming that X, is a linear topo-
logical space and the f,(0; - , -) are continuous on X, X ¥, so that they can be
extended continuously to %, X ,. Then J,(8) can be extended continuously
to J,(0) on %, to %,(6), and we set G’ (0) = J,(0)G(6). Now G(8) may be
constructed as the limit of a sequence G, () of operators on %, to X, under
conditions given below. This method is not essentially different from the
one given in the text. But sometimes one may find it convenient to use
operators G, (6) on ¥, to X,. In this paper we do not use %,, working ex-
clusively within X, and %,.
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Proposition 3.1. Assume (3A;) and (3B;). Then for each 6¢I’, (a) the
Hermitian form f;(6; -, -) is continuous on X; x ¥;, and (b) the map
J;(0):X;,—%,(0) is continuous.

Proof. f; is continuous since it is the limit of an equicontinuous
sequence. The continuity of J;(0) follows from this immediately.

Proposition 3.2. (3A;), (3A,), (3B,), and (3C,) together imply (2A’)
and hence (2A).

Proof. We shall construct G’ () satisfying (2A"); then (2A) follows
by Lemma 2.5.

Let 6el" and x€X,. Since {G,(0)x} is Cauchy in %,, {J,(0)G, (0) x}
is Cauchy in %,(0) by the continuity of J,(f) (Proposition 3.1). Thus
G’ () x==1im J,(6)G, (0) x exists. G’ (0) is a linear operator on ¥, to X, (6).

In particular we have f,(0; G, (0) x) =] J5(0) G, (0) x |o 2 |G’ (6) % |2 6%,
#—> oo, On the other hand

£2(0; G, (0) x) —f5,(0; G, (0) x) =0, n—> o0,

because f,,(0; y)—/5(0; v) for each yeX,, {G,(0)x} is Cauchy in ¥,,
and {f,,} is equicontinuous (see Lemma D). Since f,,(0;G, (0)x)
=f,(0; %)/ (0; ), we obtain |G’ (0) x[ys2=/;(0; #). This proves (a)
of (2A7).

Since G, (-) x is strongly measurable, it can be approximated in X,
m-a.e. by a sequence of quasi-simple functions. Since [, (6) is continuous,
it follows that [, (-)G, (-) # is fy-measurable. Hence G’ (-) x =1lim [, (-G, (-) ¥
is also fy-measurable (see Lemma 1.7). This proves (b) of (2A’).

In order to satisfy (2B) we need additional conditions.

(3C,) The G,(0) introduced in (3C;) are onto X,, and the
G, (0)7:X,—¥,; satisfy condition (3C,) with subscripts 1, 2 exchanged
(so that the topology of ¥, is involved).

(3D) With the topologies in ¥X; as in (3B;), {G,(0)}, and {G, (0)™},
are equicontinuous for each §¢rl.

Proposition 3.3. (34,), (3B;), (3C,) for both j=1,2 and (3D)
together imply (2A) and (2B).

Proof. We write G,(0)*=H,(f). As in Proposition 3.2, we can
construct H' (0):%,~> %, (6) and hence an isometric operator H (0): %, ()
— %, (0) such that H(0) J, () y is f,-measurable for yc¥,. What remains
is to show that & (0) = G (6)~.

The construction of G’ () and G (6) shows that

LO)G,0)2—G 0)x=CO) ,(O)» in %(0), xc¥. (.4)
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Similarly
(0 H,(6) —H(0) ,(0)]y—~0 in % (©0), yec¥,. (3.2)

The operators in [] are equicontinuous on X, to %1(0) for n=1,2,....
Since {G, (0) x} is Cauchy in ¥,, it follows from Lemma C (Appendix)
that

[1(6)H,(0) —H(6) J.(6)1G, () x—~0 in %,(0). (3-3)
Using (3.1) and the fact that H,(0) =G
continuous (being isometric), we obtain
HO)GO) 10)x=h(0)x, xcky. (3.4)
Since J,(6)%, is dense in %(6), it follows that H(0)G(0)=1 (the
identity on %, ().
In the same way we can show that G (6)H(f) =1. This proves that
HO) =G 6).
In the remainder of this section we consider the adjoint operators
of the G, (0) and their convergence.

(6) and noting that H(f) is

n

For a linear topological space X, we denote by X* its adjoint space;
X* is the set of all continuous antilinear forms on X. The value of
x*eX* at xcX is denoted by {x*, x), and we write {x, x*> = {x*, x>
so that <{x, #*) is linear in x and antilinear in x*.

If X,9 are linear topological spaces and 4:X¥—%) is linear and
continuous, there is a unique linear operator 4*: §* —X* such that
{Ax, y*y =<, x, A*y*> for xcX, y*cP*. (We do not consider topologies
in ¥*, 9* nor the continuity of 4*.)

Under the assumptions of Proposition 3.3, G, (6):%,—>%, is linear
and continuous so that G,(0)*:Xy —X{ exists. Since {G,(0)x} is
Cauchy for each x¢¥,, lim(x, G,(0)*y*> =1Lm <G, (0)», v*) exists for
each x€¥; and y*cXy. Since {G,(0)}, is equicontinuous, the sequence
{<+,G,(0)*y*>}, is equicontinuous and hence the limit is continuous.
Thus the limit can be written as < -, *) with a unique x*c¥j. Setting
x* =G (0)*y* defines a linear operator G(0)*:XFf—>X¥. We may
express this result by writing

G,(0)*—~G(0)*, n—>oo (weak* convergence). (3.5)

Note that G (0) does not in general make sense (unless one introduces
the completion of X,), only G (6)* does.
Similarly, for H,(0) =G, ()™ we have

H,(0)*—~H(0)*, n—>oo. (3.6)
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Proposition 3.4. G(6)*:XF —X} and H(6)*:%f —%F are inverse
to each other.

Proof. For simplicity we omit the argument 6. Let ycX, and
y*eXs. Since {(-,G¥y*>} is equicontinuous and has limit (-, G*y*)
and since {H,y} is Cauchy in ¥, it follows from Lemma C that
{H,y,G¥y*>—<(H,y,G*y*>—0. Here the first term is equal to
(G,H,y, y*> =<y, y*>, while the second term is equal to {y, H¥G*y*)
and tends to <y, H*G*y*>. Hence (y, y*> =y, H*G*y*> and so
H*G* =1. Similarly we prove G* H* =1,

4. Eigenfunction expansions

In Section 1 we considered a spectral representation for a given
spectral system. In this section we consider a sort of eigenfunction
expansion for the system.

Let (I3, B, m, $, E) be a spectral system with a spectral form
(I', X, ). Then there is a unitary operator /T on &,,(I") to I with the
properties stated in Theorem 1.11. We now introduce the following
conditions, which imply that the system has a representation in a
somewhat more refined sense.

(4A) There exist a o-finite measure space (£2, X, g), a partial isometry
@ of $ onto L%(p) with initial set &,.(I"), and a measurable function
o on £ to Iy such that

(Do (B)u) (&) =ox(w(§)) (Pu) (§),  g-ae. €, (4.4)

for each we® and «c[B]. (The measurability of o means that
w(4)eX whenever AeB. Thus aow is g-measurable on Q if « is B-
measurable on I5.)

(4B) There is a complex-valued function ¢ on £ X ¥ such that for
each fixed £¢£2, x> ¢ (&; %) is linear and for each fixed x€¥,

p&; x)=(Dx) (§) for p-ae £c. (4.2)

(4C) X is a linear topological space and x> @(&; %) is continuous
on ¥ for each £¢Q. (In this case we write ¢(&; x) =<x, p(£)>, where
p(&)eX*; each (&) will be called an eigenfunction of E. For the
definition of X* see Section 3.)

Example 4.1. Let $=1L2%(R%, @ the Fourier-Plancherel trans-
formation of § onto § = L2(f), where 2 is another copy of R%, ¥ the
set of all Borel subsets of £2, ¢ the Lebesgue measure on {2, » the map
of Q into I'=I{=R"* given by w(£) =|&|2=¢&]+& +£&5, B the set
of all Borel subsets of I, m the Lebesgue measure on [, E(4) =
@1E(A) D, where E(A) is the operator of multiplication by Koo (4>
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X=I'(R} N9 with the Ll-topology, ¢(&)cX* given by the function
(2m)~ 3% in the sense that

<u,(p(é)}z(Zn)‘i{u(x)e"f"’dx, uec¥X, (4.3)
and
sin (0} x —
105 ,9)= a2 [ —%ﬂu(x)mdm% (4.4)
R3x R®
0el’, u,veX.

The spectral measure E is the one associated with the selfadjoint
operator —A in §, and the ¢ () are the eigenfunctions of — A in the
usual sense. Note that f(0; », v) is well-defined by virtue of the Sobolev
inequality because ¥ = L#(R®). f(0; , v) depends on 0 continuously,
though this is not required in the general theory. It is even continuous
in u, v jointly if the topology of X is strengthened to the IlnL:-
topology.

Proposition 4.2. Assume (4A). We have w(£)¢l" for p-a.e. & 1If
A€B with m (4) =0, then g (w™(4)) =0.

Proof. Set S=w1(I;—1I")and S’ = S, S’c %, o(S') < 0. (4A) implies
that there is weQ, (I") such that @u=y.. If we set a=y, in (4.1)
and note that «(E)u=E(I")u =u, we obtain (Pu) (§) ==0 p-a.e. Hence
0 (S’ =0. Since g is o-finite, we have p(S) =0. In other words, w (§)el’
for g-a.e. §.

Next let 4¢B, m(4)=0, S=w(4). Let S'< S and #e&, (") be
as above. If we set a=y, in (4.1), the left member is zero because
a(FYu=EM)u=E,,(A)u=0. But the right member is equal to
(Du) () on S because y,(w(£)) =yxs(£). Thus yo=Pu=0, so that
0(S’) =0. It follows as above that g(S)=0.

Proposition 4.3. Assume (4A) and (4B). If %4 is an X-valued quasi-
simple function on I"and if w =II"1(Jh)€&,.(I), then

(Pu) ) = (&: (@) o-ae. (4.5)
Proof. Let % be given by (1.2). Then # is given by (1.5), so that
(Pu) (§) =2 (0 () (Px) (§)  cae.
:Z“k (co (5)) @& %) g-a.e.
= (& h@©)).

Proposition 4.4, Assume (4A), (4B), and (4C). Let J(6):X— % (6)
be continuous for each 6. Let #€Q,,(I'), and let {%,} be a sequence
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of strongly measurable functions on I' to ¥ such that for m-a.e.
Oel’, {h,(0)} is Cauchy and J(0) A, (0) — (IIu) (0), n— co. Then

(Du) (§) = lim <y (0(8), 9@  eae. (4.6)

Proof. Since {#,(0)} is Cauchy for m-a.e. ¢TI, {h,(w (£))} is Cauchy
for g-a.e. £€ 2 by Proposition 4.2. Hence

(€) =lim <k, (0 (&), ¢ (€)> (4.7)

exists g-a.e. We have to show that y (§) = (Pu) (§) e-a.e.

Each 4, is by definition an m-a.e. limit of a sequence {A,,}, of
quasi-simple functions. Hence <k, (@ (&), ¢(&)>— b, (w0 (8), ¢ &)
p-a.e. as k—>oco. On the other hand J(6)A,,(0)— J(0)4,(0) m-a.e. as
k—>oo. It follows from Corollary B of Appendix that the repeated
limits lign liin of these two double sequences can be replaced by simple
limits involving 4,,,, with certain subsequences {n,}, {#,} of positive

integers. Writing %, =h,,;,, We see that

p()= ?1'gr;°<h'p (@(@), &) eae
(IIu) (0) =p£r§° J(O)h,(0)  m-ae.,
where each A is quasi-simple and therefore of the form
AG)) =Zq]ocpq(0) Tpgr  OpgE[Bl,  xp,€X.

Recalling the proof of Proposition 1.10, we now see easily that
there exist a sequence {I}},I,€B, suchthat ; c I3 < ...... andUI, =T,
and a subsequence {p,} of {p} such that |y, J 4, —ITu|m—0 as r— co.
Here %, =y, h}, is again a quasi-simple function. Let u,=II"1 Jh,’
€L, (). Then |u, —u|g = | [T u, —ITu|pm—> 0and hence Pu,— Puin L2 (g).

hy = yr,hy,, implies that

By (@ (&), 9 E)> =11, () <, (@ @), 9(E)>
—xr(@@)y@=p@) cae;

note that w(£§)€l’ p-a.e. by Proposition 4.2. On the other hand, the
convergence @u,—Pu proved above implies that (Du,)(&)—(DPu) (&)
o-a.e. along a suitable subsequence of {r}. Since the left member of
(4.8) is equal to (Du,) (§) by Proposition 4.3, it follows that
»(§) = (Pu) (§) o-a.e. as we wished to show.

We can now prove the main theorem on the relationship between
eigenfunction expansions for two spectral systems.

(4.8)

8 Functional Analysis
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Theorem 4.5. Suppose we have two spectral systems, with indices 1
and 2, as in Section 2. Assume that conditions (3A;), (3B;), (3C;) for
both 1 =1, 2, and (3D) are satisfied, so that the general wave operator W with
the properties in Theovems 2.3, 2.4 exists. Assume further that the system 1
satisfies (4A), (4B), and (4C), with the parital isometry D,:9;—>L2(p)
and the eigenfunctions @ (E)€XE. Then the system 2 also satisfies these
conditions with the same measure space (2, X, o) and with the partial
isometry Dy=DQ,W*:9,—L2%(0) and the eigenfunctions @q(8)=
(G (o (£))*] Ly (£)€XS. Here the operators G(0)*:X35—%F and their
inverses were defined in Proposition 3.4.

Remark 4.6. The relation between the two sets of eigenfunctions
may be written

G(0(@)* @2 (&) = @1 (£). (4.9)

This is the Lippmann-Schwinger equation in an abstract form. Recall
that G(6)* is a linear operator on X§ to ¥¥, but that G(f) was not
defined in general.

Proof of Theorem 4.5. First we note that J,(0):%,—%,(0) are
continuous by Proposition 3.1, so that Proposition 4.4 holds for
system 1.

W* is a partial isometry on $, to §, with initial set &, ,.(I") and
final set & ,.(I") (see Theorems 2.3, 2.4 and Proposition 3.3). Since
by hypothesis @, is a partial isometry on $, onto L2(g) with initial
set & ,.([), Py=D,W* is a partial isometry on §, onto L2(g) with
initial set &, ,.(I"). Furthermore, @Dya(E,)u=D W*a(E)u=
= @,a(E,)W*u by the intertwining property of W¥* resulting from
that of W. Hence (Dyo(E,y)u)(&)=o(w(&))(PW*u) () =o(w(&))-
- (Dyu) (&) p-a.e. by (4.1) for system 1. This proves (4A) for system 2.

To prove (4B), we note that W¥y—=JII,-\HIT,y by (2.1), where
H =G and yc¥X,. Hence (II, W*y) (6) =H(0) J,(0)y for §cI". Accord-
ing to the construction of H(f) =G (6)-! given in the proof of Propo-
sition 3.3, we have H(0) J,(0)y =1lim J,(6)H,(0)y. It follows from
Proposition 4.4 for system 1 (where we set 4, (0) = H,, (0) y) that

(D) (€) = (D W*y) (§) =Lim (H, (w0 (£)) ¥, 1 (6)-
On the other hand
CH,((&)y, @.(8)> =<y, H,(0(8)* ¢ (6)>
—<y, H(w(@)* 91 (€)> =<y, 92 (€)>

by (3.6) and H(0)* =G (0)* (see Proposition 3.4). This proves (4.2) as
well as (4C) for system 2.
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5. Perturbation of unitary operators

In this section we apply the foregoing general results to construct
wave operators between two unitary operators in a Hilbert space $.
We begin with preliminary results concerning the resolvent of a

2m
unitary operator U in §. Let U= ¢'° E(d6) be the spectral decompo-
0

sition of U, where E is a spectral measure on the set B of all Borel
subsets of the unit circle I, which we identify with the interval [0,2 7).
Thus we have a spectral system (I3, B, m, §, E), where m is the Lebesgue
measure.

Let

RO =UU—=0)1r=01—-CU"?, |{]|=+1, (5.1)

be the “resolvent” of U. If we write ¢ =ré'®, ¢’ = A =71 ¢%, we have
by an easy computation

R —R({E)=01—|CHREQ)*R()=276,(E; 0), (52)
where
&,(0"; 6):217' 1—2rcc1>s(—(;—6) F2%0. 7S1, (5-3)

is the Poisson kernel and where we used the general notation «(E) =
fa(0)E (d6). Note that 6,-.= —9,.
According to FATOU’S theorem, we have

}iTrrll (6,(E; 0) u, v) =(d[d0) (E,.(0) u, v) (5.4)

for a.e. 0€[0,27) for each fixed pair u, ve 9.

Suppose now that we have two unitary operators U, j =1, 2, in the
same Hilbert space §. We use the obvious notations E;, E, ,., R;({),
etc. Set

GO =R R ()=(1 L Us") (1 ¢ U")*

=1L (UE—UF) Ry (0). R
Then
GEO)T=R (O Ry (0) =1+ (U —Ui¥) Ry (0)- (5.6)
Since R, () = R, ()G (L), we have by (5.2)
8,(Ey; 0) =G(0)* 0,(Ey; 0)G(Q), L=ré’, r+1.  (57)

Let {r,} be a sequence of positive numbers such that »,<1 and
7,—>1, n—> oo, and set

Fin (05 0, 9) =(8,,(E;; 6) , ). (5.8)

8%
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We see from (5.7) that
(050, 9) = £, (0; G5 (0) w, G (0)v), G (6) =G (ri*e””). (5.9)

It is now clear that we have all the formal tools necessary for the
application of the results of section 3. It is thus natural to assume that
there is a linear manifold ¥ = § and a Borel set I'< [0,2 n) satisfying
(some of) the following conditions, which roughly correspond to the
ones given in section 3, with $; =H,=9 and ¥, =X, = %.

(5A;) For each O¢l’, {;(0; », y) = lim (4,,(E;; 0) x, y) exists for all
x, y€X. (Then the limit is necessarily a nonnegative Hermitian form in

%,y and is a density function for (E;,.(")x, y) by (5.4). Thus f; is a
spectral form on I'X ¥ X ¥ for the spectral system 7.)

(5B,) X is a linear topological space with its own topology. For
each 0¢I’, x,y+— (6, (E;; 0)x, y) is equicontinuous on ¥%x ¥ for
varying #.

(5Cf) For each fcland n=1,2, ..., Q% (0) = (Us* —Uy*) R; (rF! &)
maps ¥ into itself, with the following propertles ( ) For each GEF and
xe¥X, {0 (0)x}, is a Cauchy sequence in ¥. (b) For each x¢¥ and
n=1, 2, ..., Qi () v is strongly measurable on I"as an ¥-valued function.

(5D;*) For each 0¢I, Q% (0): X—¥ is equicontinuous for varying ».
We can now state the main theorems of this section.

Theorem 5.1. Let U;= f e“’E (d0), 1 =1, 2, be unitary operators in 9.

Assume that there is a lmear manifold X = H, a Borel set I'< [0, 27‘6) and
a sequence ¥, 11 of positive numbers satisfying conditions (5A,), (5B,), and
(5Ci"). Then there is a partial isometry W+ in $ with the following prop-
erties.

(a) The initial set of W+ is & ,.(I") and the final set is contained in
Roacl). Here &; . (I') =E; ,,(I') 8 and ; is the smallest closed subspace
of 9 containing X and reducing E,.

(b) W has the intertwining property a(E)) W+ =W+« (E,) for ac[B].
In particular UyW+ =W+U,.
(¢c) For each ucgy ,,(I'), W+ u= lim W, u where

Wr =Wt (U, U) =(1 —rz)kgorzk URU*,  o<r<<1. (5.10)
Similarly, one obtains a partial isometry W= assuming (5C;) instead of
(8C). In (c) we have W~ u=UmW, u, where W,~ is given by (5.10) with
the sum taken over k= — oo to 0.
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Theorem 5.2. In Theorem 5.1 assume further (5C5), and (5D;") for
both § =1, 2. Then the final set of W+ is equal to $, ,,(I'). For veQ, ., (I),
we have (W)*v = Ym W, * (U,, U,). Stmilar results hold for W—.

Remark 5.3. Theorem 5.1, (c) shows that W™ is on &, ,,(I") equal to
a sort of strong Abel limat of the sequence {Uée Uy " as k— oo (taken along
a particular sequence 7, 11). It would be desirable to show that W+ =
s-lim UF U;=*, which is the definition of the wave operator in the ‘“time-
dependent theory”. But we have not been able to do this without
introducing further restrictions (see section 7). In any case (c) implies
that W is independent of the auxiliary space X, in the sense that two
W™’s constructed with two different ¥’s (but with a common {r,})
coincide on the intersection of their initial sets.

Remark 5.4. In most cases in application one need not take a
special sequence {,} but any sequence 7,11 will do, with the same f,.
In such a case W*u is the strong Abel limit of {Uf Uy *«} in the usual
sense.

Remark 5.5. The assumptions in the theorems given above involve
both U; and U,. This entails some difficulty in applications, for the
property of the “perturbed operator” U, is not well known in advance.
This is a defect common to all theorems of a similar type. The difficulty
can be overcome in some special cases, see Examples 6.1, 6.2; cf. also
[22] and [9].

We shall now prove Theorems 5.1 and 5.2. It suffices to consider W.
Except for (c) of Theorem 5.1 and the corresponding assertion in Theo-
rem 5.2, the results follow directly from Theorems 2.3 and 2.4. Note
that the assumptions in Theorem 5.1 imply not only (3A,), (3B,), and
(3C,) but also (3 A,); see (5.4) and the remark just after (3C,). It follows
from Proposition 3.2 that (2A) is true, so that Theorem 2.3 is applicable.
Similarly, the assumptions of Theorem 5.2 imply (34,), (3B;), (3C;), for
7 =1, 2, and (3D), so that Theorem 2.4 is applicable.

The remainder of this section is devoted to the proof of (c) of
Theorem 5.1.

Proposition 5.6. For any integer %, we have
\GwW =Wt U —o0, #71. (5.11)

Proof. A simple calculation gives U,W+Ui'=¢"2W* +1 —r2.
Hence |U,W,* —W, T U;|—>1 as #11; note that |[W, | =1. (5.11) follows
easily from this.

Proposition 5.7. To prove (c), it suffices to show that

Wt x,v)—> (Wt x,v), n—>occ, (5.12)
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for every x€X and v=pf(E,) E, ,.(I")y, where y<X and f¢[B] with
support on I

Proof. First we show that (5.12) implies
W, w) >0 w,w), uc®, wedy, ().  (5.13)

To this end it suffices to consider the case in which »=Ufx, xc¥,
k =integer, and w is of the form v stated above, for such vectors are
fundamental in @, and &, ,,(I"), respectively. But lim (W Ufx, v) =
lim (UFW " x,v) = lim (W" x, Us * v) = (W™ %, Uy *v) by Proposition 5.6
and (5.12); note that U; *v is of the same form as v.

Suppose now that u<Q, . (I') = &,. Since [W,*| <1 and [W | =|u],
we have |Wiu—WTuP<2 Re(W"u—W,u, W¥u). The right-hand
side of this inequality tends to zero as #—oo by (5.13) because
W*ueQy ,.(I'). Thus W, 4—W"u, as we wished to show.

In what follows we fix x, v, v, § as in Proposition 5.7.

Proposition 5.8. We have the following integral expressions:

Wt %, 0) = | b,(6) 40, (W, v) = f¢ (5.14)
where 0

¢, (0) =(G; (0) %, 8,,(Ey; 0)v) =f,,(0; G (0) , v),
¢ (0)=B(6) (G*(0)J.(6) %, J2(6)¥)s0

Proof. The expression for (Wt x, v) comes from

(5.15)

W (1= 3 AU
k=0
[t —reT) (1 —réUP) 1 a0

0

1—72
27

_1=7 [R2 (ré®)* R, (ré®) 46

2

~ f&,(Ez; 0)G(ré) df,
0

for Ry(0) = Ry ()G () and Ry (0)* Ry() = 25w(1 — 7318, (Ey; 0), =7”,
by (5.2).

The expression for (W*x, v) is obtained by noting that it is equal
to (WHEy,.(I') % B(Ey) Ey,.(Iy), where W+ =II]*GTII;, and
ILE, . (I x=]1% I,B(Ey) Ey o (I')y=PJ2y (see (2.1) and Theo-
rem 1.11).
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Proposition 5.9. There is a subsequence {n,} of {#} such that for a.e.
fixed €¢I, the linear form f,, (0;-,v) is equicontinuous on X for
varying k=1, 2, ....

Proof. Note that the assertion does nof follow directly from (5B,)
since v need not be in X. For the proof we use the Schwarz inequality

|fan (02, 0) —f2,(0; 27, 0) | < [2 (05 2 —2")E f3,(0; 0)3.

Since {f,,(0; -)} is equicontinuous on ¥ by (5B,), it suffices to show
that there is a subsequence {n,;} such that g,(0) =/,,(0; v) is bounded
for n=mn,, k=1,2, ..., for a.e. 0l

¢,(0) admits the Poisson integral expression

i g()ay
Qn(e)_ 27 _[1—21'7,005(9"“0)'1‘7’2’

0

where ¢(0) = (@/d0) (E,(0)v, v); note that (E,(6)v,v) is absolutely
continuous because v€9, ,,. Since ¢€L!(0,27), it follows that ¢,—¢
in L1 as #— co. Hence there is a subsequence {#;} such that g, (6) —¢(0)
a.e. In particular {g,,(0)} is bounded for a.e. 0.

Proposition 5.10. ¢, (0)—>¢ (0), k— oo, for a.e. Ol

Proof. {f,,(0; -, v)} is equicontinuous on ¥ by Proposition 5.9. On
the other hand, for each ze X,

klirgfznk(ﬂ;z, v) = (@/d0) (Eq,,.(0) 2, v) a.e. by (5.4)

F ) @a6) (Ez wl0)zy)  ae

I

B0)1:(6; 2 y) ae fel
B©O) (J2(0) 2 J2(0)¥) 20 ae Ocl.

Furthermore {G;} (0) x} is Cauchy in X for fixed 0 and J,(0) G;f (6) x—
G*(0) J,(0) x in %,(0); see (5C;*) and (3.1). Hence lim f,,, (6; G, (0) %, v) =
)

I

B10) (G (0) J(6) %, J2(0))ss by Lemma E of Appendix.

Proposition 5.11. The ¢, have uniformly equicontinuous integrals.
In other words, for any &> 0 there is d > 0 such that m(4) < § implies
[|¢,(0)|d6< e for all n. Furthermore, [|¢,(0)|d0—0, n— oo, where
Y/ o

I"=(02n) —T.

Proof. Since ¢g,—¢ in L1(0,2 ) as was shown in the proof of Pro-
position 5.9, {g,} has uniformly equicontinuous integrals (Vitali-Hahn-
Saks’s theorem) Thus for any &> 0 there is § >0 such that m(4)<<d
implies fqn df<e.
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By (5.15) we have ¢,(0) =f,,(0; G\ (0)%,v), so that [¢,(0)]2=<
fan(0; G5 (0) %) £2 (05 0) =1,,,(0, %) 4, () by (5.9). Hence

J16u(0)] 20 = [ [11,(63 %) 6]* [ [.(0) 2]’

(5.16)
|x|let i m(d)<é.

This proves the first assertion of the proposition.

The second assertion follows from (5.16) with 4 =1"=(0,27) —1I,
for then fq,,, dﬂ—f( . (0) —q(0)) 46 <], —q]2—>0; note that

g(0)= (d/d@) (E4(0)v, v) =0 on I because f is supported on I.

Completion of the proof of (c). Since ¢,,(0)—>¢(0) a.e. on I' (Pro-
position 5.10) and since the ¢, have uniformly equicontinuous integrals
(Proposition 5.11), it follows from the Vitali convergence theorem that
[ ¢,.(0) 40— [ ¢ (6) d6. Since [ ¢,;(0)d0->0= [ ¢(0) 40 (Proposition
r r r r

5.41), we have (W, x,v)— (W™ x,v) along the subsequence {,} [see
(5.14)]. But the whole argument could have started with {n} replaced
by any of its subsequences. Hence the convergence must take place for
the original sequence {xz}. This proves (5.12) and completes the proof
of (c).

6. Some applications

In what follows we denote by # (¥, 9)) the set of all continuous linear
operators on a linear topological space ¥ to another one ¥). In most
cases ¥, J) will be Banach spaces. In such a case we denote by || T|x_. g
the norm of T'€ % (%, ¥)).

I. Let X be a linear manifold in a Hilbert space $. We assume that
¥ is a normed space with its own norm. We denote by % the completion
of X. (We are not interested in the question whether some of the ideal
elements of ¥ can be identified with elements of §.)

Let I' be a subset of the unit circle, identified with the interval
[0,2 7). Let D*¥* ={{=7r¢""; a<<r**=<1, OcI'}, where a is a positive
number <1, so that I'< D*. Let U, j =1, 2, be unitary operators in §,
with the resolvents R; defined by (5.1). Consider the following conditions.

(6A;) The function [, x, y»»((Rj(C) R;(") %, y), defined for
|| <1, x, y€¥, has a continuation which is contlnuous on DT x X x %.

(6BiF) For |£] #=1,Q;(0) = (Us* —U*) R;({) maps ¥ into X continuously,
so that it can be extended to an operator Q; (¢) € # (X) = % (%, ¥). Further-
more, @7- (-) can be continued on D* as strongly continuous functions
with values in #(¥).
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It is easy to see that (6A;) implies (5A,) and (5B;), and that (6B})
implies (5C;*) and (5D;) for any sequence 7,11 (principle of uniform
boundedness). It follows, for example, that (6A,) and (6B;") imply the
existence of W™ with properties stated in Theorem 5.1, with (c) strength-
ened to WHu= 171?11 Wou, uc®y ,.(I') (see Remark 5.4).

Thus we have analogs of the results of [9], [26], and [27], which are
concerned with two selfadjoint rather than unitary operators. The
selfadjoint case can be treated in a similar way.

II. Let U, U, be unitary operators such that
U —Uf=A4AB, AcBR, 9), BecH(9 %), (6.1)

where R is a Banach space, which may coincide with . Let I'< [0,2 #),
7,11, and consider the following conditions.

(6C;) For each 0cT, nl_i)nc}o(é,n (E;; 0) Az, Au) exists for every z, ucQ.

(6DF) For each 0cl’, the sequence BR; (r=? 6% Ac#(R) has a
strong limit in B (&) as #— co.

We shall show that by an appropriate choice of ¥, (6C,) implies
(5A,) and (5B,), and that (6D;) implies (5C;*) and (5D;). Thus we can
construct wave operators W=+ with properties given by Theorem 5.1
or 5.2.

We choose ¥ =% (4) (range of 4) and make it into a normed space

with the norm .
Jlk = int Jels. (62

Since A¢Z (R, ), X is a Banach space isometrically isomorphic with
KN (4), where N(A4) is the null space of 4. We note that 4% (R, %)
too, with |4 |z x=1.

Assume now (6C)). If x=AzcX, y=AucX, where z, uc®, then
(6,,(E;; 0) %, y) = (6,,(E,; 0) Az, Au) is convergent as n-»oo; thus
(5A,) is true. Also we have, by the principle of uniform boundedness,
| (8,,(E;; 0) %, ¥)| =M (0)||x|x|v]x, where M ()<<co does not depend
on n. Hence the Hermitian form (4,,(E;; 0) %, y) is equicontinuous on
X x X for varying ». This proves (5B,).

Q;,(0) = (Us* —U*) R, (r,, ¢°) = A BR;(r, ¢'°) obviously maps ¥ into
itself. Assume now (6 D;") and let x = A z¢¥, 2€®. Then Q;,,(0) x = A u,,(0)
with u, (0)=BR;(r, ¢’ Az, and {Au,(0)} converges in X because
{u,(0)} converges in ® and 4<% (R, X). Moreover, since #u,(-) is con-
tinuous in §-norm (because R, (-) is analytic in §-norm and BeZ% (9, {))
Aw,(-) is continuous in ¥-norm and hence strongly measurable. This
proves (5C"). Again the principle of uniform boundedness implies that
Qi (0)|lx—x =M’ (0) <<oo with M’ (0) independent of n. Thus {Q;,(6)},
is equicontinuous on ¥ to X, which proves (5D;").
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Similarly it can be proved that (6D;7) implies (5C;") and (5D;").

Moreover, we have in this case
81 == 82 = 2 .

In fact, Usf &, = (U* +4 B) &, cUf* &, + A4 B, = &, since &, isinvariant
under U* and R(4) =X = ;. Furthermore, 4 B =Us* — U* =U;* — Ut
so that U;4 BU,=U; —U,, and

Uy @ =(U,—U, ABU) &, c U, +U, ABU, {, c &, + U, Ec &

because &, is invariant under U;. Thus &, is reduced by E,, being in-
variant under Us* and U,. Since &, o ¥, it follows that &, > &,. Similarly
one proves & < &,.

Finally we show that xLQ implies U, x = U,x and U* x = U* x. Let
1@ Then x1lX=%RN(4) and so A*x=0. Hence (U,—U)x=
B*A*x=0. Also U*xL1g, so that we may replace x by U* x in the
result just obtained. Thus x = U, U* x or U x =U5* .

We may disregard the subspace &+ of §, in which nothing happens.
In the subspace €, we have the local wave operators W+ which implement
the unitary equivalence of U, and U, restricted on &, ,, () =E,; ,, (I
and &, ,,(I')=E, ,.(I')¢, respectively, and which are given as the
Abel limits of UF U ® as k—>-- co. As will be shown in the following
section, we have W=+ :ks_-)h'inéo U} Uy on &,4.() if & is a Hilbert space,
in which case X is also a Hilbert space.

These results generalize those of [22], where & = § is assumed. Thus
it follows, for example, that W= exist and are complete, with I'= [0,2 x),
provided U; — U, belongs to the trace class. Also it can be proved that
W+ exist and are complete if U, — U, is “smooth” with respect to U,
on I'. Actually the corresponding results in [22] are mostly stated in the
case of two selfadjoint operators, but it is not difficult to give their
unitary versions.

Example 6.1. Lot =L2(R®). Let H, be the selfadjoint realization in
D of —A (negative Laplacian). Let q be a veal function such that
geLi (RY). (6.3)

Under these conditions it can be shown (see [16]) that there exists a
unique selfadjoint operator H,in § with the property that, for any
nonreal complex number z,

(Hy—2)? —(H, —2) = —[(Hy—2)7 4] B'(H, —2)"!

- A B, Y
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where A’, B’ are the operators of multiplication by |g|¥, |g|* sign g,
respectively, and where

B (H,—2)eB(9), (H,—n)r4'c[(H;—z2) A'1cB($), j=1,2.

It should be noted that Q,(z) = B'[(H; —2)14’] has finite Hilbert-
Schmidt norm, which is smaller than 1 if —Im 2* is sufficiently large.
(This is an example of smooth perturbation.)

We note further that H, is a selfadjoint realization in § of —A +¢
and coincides with the selfadjoint operator associated with the semi-
bounded, closed quadratic form [ [|grad u|2+q¢(x)|u|?] dx (see [17],
Chapter 6). B

Let U;= (H; —1) (H;+14)™ be the Cayley transform of H,, =1, 2.
From (6.4) we obtain

U —Ui*=4B, (6.5)
where
A=[(H,—9)14"), B=2¢{B'(Hy,—1)™". (6.6)

We can now verify conditions (6C;), (6D#), =1, 2, where &= $ and
I'is a certain open subset of Iy = [0,2 #) with m (I —I") =0. A straight-
forward calculation gives namely

BR,(0)A=C7((1—0:6)) 01(2) =0 (0)),
BR,(0)A=07(0x() (1 +0:() —01(9),

where = (z—1) (z-+17), Q,(z) is as given above, and Q,(z) =1 —
(1 4+01(2))™ Qy(2) is compact and analytic in z in the complex plane
cut along the nonnegative real axis and has continuous (in the Hilbert-
Schmidt norm) boundary values on the two edges of the positive real
axis. It follows (see [22]) that Q,(2) is compact and meromorphic (with
poles only on the negative real axis) in the cut plane and continuous up
to the boundary, except for a closed subset of the real axis with measure
zero. Removing this closed set, the poles, and the origin from the real
axis R, we obtain an open subset /" of RL Let I" be the image of I"”
under the map z—(. Then we see easily that (6D;*), /=1, 2, are satis-
fied. (6C;) can be verified in the same way noting that 4* = A’ (H,; 1)
has the same form as B.

It follows that the wave operators W=+ exist and satisfies the in-
variance principle. In particular W+ = slim ¢#Ha g=#H FT,  isunitarily
equivalent to* H,.

In this case we have ¥ =% (A4) = L¥(R?). The adjoint space X* is
however not large enough to contain the “eigenfunctions” of U, or H,

(6.7)

* It is not known whether H, has continuous singular spectrum, nor
whether it has positive (point) eigenvalues. In any case we have shown that
the singular spectrum is a closed subset of R' with measure zero.
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given by the plane waves ¢*'*. But ¥* > L%(R?) does contain all eigen-
functions of U; in the form of spherical waves (products of spherical
harmonics and radial functions), for they are O () as » — oc. According
to the results of section 4 (cf. Example 4.1), it follows that U, admits an
eigenfunction expansion, with the eigenfunctions in L® representing
distorted spherical waves *.

Remark 6.2. In Example 6.1 we can also use conditions (6A;),
(6 B7+). Without going into details we note that we can choose X =9 N %,
where £ =L?N L% with its natural topology, with any p such that
£>4p>1. (For the use of L! cf. HoEGH-KROHN [8]). p =& is the
simplest choice, but a smaller p gives a smaller ¥ and so a larger X* and
would be more convenient for eigenfunction expansions. Since ¥ = L8,
we see again that U, admits eigenfunction expansion in distorted spheri-
cal waves in LS. Since $ =1 is not permitted, however, the possibility
of the eigenfunction expansion for U, in distorted plane waves cannot
be proved in this way. But the fact that $ can be arbitrarily close to 1
makes such an expansion possible ** under a slightly stronger assumption
on ¢, namely,
geL*~*nLi+t* for some &£>0. (6.8)

Details of the proof of these results will be given in a subsequent publi-
cation.

7. Time limits and the invariance principle

The purpose of this section is to prove that the W=+ constructed
in Section 5 are on & ,.(I") equal to the strong limits of Uy U™* as
k—> 4 oo, under the following additional assumption.

(7A) X is a pre-Hilbert space (independent of the structure of the
Hilbert space ).
The result is an analog of the formula W*u= lim "2 ¢=#Hy for

t—>4-00
the selfadjoint case. Actually we can prove a stronger result, the
invariance of the wave operators.

Theorem 7.1. Let Uy, U, be unitary operators in © and assume that
conditions (5A,), (5B,), (5CH), (5Cy), and (TA) ave satisfied, so that the
wave operators W+ exist by Theovem 5.1. Let v be a real-valued function

* Eigenfunctions in our general theory are rather abstract objects. Thus
it is not clear whether the eigenfunctions we deduced for H, satisfy differen-
tial equations of the form (— 4 +¢) ¢ =4 ¢, although this can be proved
easily under somewhat stronger assumptions on ¢g. The general case will be
discussed in a later publication.

** See the preceding footnote.
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on [0, 27) such that

o [ 2x

2
lim > | [ e~ "*0—#0 ¢ (6)d0| =0 (7.1)

t—>00 E=0l0
for every we L2(0, 27). Then

lim 7 o= E) gy — Wy, ueQ , (I). (7.2)

t—>+00

Remark 7.2. Obviously v (0) =0 satisfies (7.1), so that (7.2) implies
W#*u =1lim UFU%u. More generally, it is known that (7.1) is satisfied
if 9 is piecewise smooth with the derivative ¢’ positive and of bounded
variation (for more precise statement see [15, 17]).

We now prove Theorem 7.1 in several steps.

Let £ be the completion of the pre-Hilbert space X; the ideal
elements of X are supposed to be outside §. We denote by (,)x and
| |l the inner product and norm in ¥. We continue to use (,) and ||
for the ones in $ without subscript.

Proposition 7.3. For each 6¢I’ there is a unique F,(0)c% (X, X)
such that

10 %, 9) = (E0) %, y)x= (% F0)y)x, » yeX. (7.3)

For each x¢¥, F,(-) » is weakly measurable on I'. If P is an orthogonal
projection of % onto a separable subspace, PF, (-) x is strongly measurable.

Proof. Obvious since the Hermitian form f(f; -, ) is continuous
on X X X for each § €l (Proposition 3.1) and since f,(-; #, v) is measurable
on I' for each x, y€X. PF,(-)x is weakly measurable and separably-
valued, hence strongly measurable.

Let x¢X be arbitrary but fixed. By (5Cf), Gf (0) x€X are strongly
measurable in Oel'. Hence there exists a separable, closed subspace
B <X such that GE(f)x€8 for ae. 6l and n=1,2,..... Let 3 be
the closure of 3 in ¥, and let P be the orthogonal projection of ¥ onto 3.

Since {G;} (0) x} is a Cauchy sequence in X for each 6T,
G°(0) x = lim [G} () x —G;; (6) x]€3 (7.4)

n—>o0

exists for a.e. B I". We set G®(0) x =0 if the limit is not in 8. G°(8) x€3
is strongly measurable in 6. In particular |G°(0)x|x is measurable
in §. We introduce the measurable sets

I, ={0¢I |

GO x|g=m}, m>0. (7.5)

Let another yc¥ be fixed. PF,(6)ye3 is strongly measurable in
6el’ by Proposition 7.3. Hence |P F,(6)y|x is measurable in 6. We
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introduce the measurable sets

6)y|]3.;§m}, m>0. (7.6)

Proposition 7.4. Let f¢[B] and v =f(E,) E, ,.(I')y. Assume further
that B is supported on I,,. Then for each z€3, || 41, =1/¢,

(RZ (C’) 2, U) = (Z, g(C: 'U))x: (77)

where

27
40 7
g(t;0) = [ 7w PE,(6)y d0€3. (7.8)
0
Proof. Since PF,(f)ycd is strongly measurable and bounded
on I, while § is supported on I, and bounded, the integral in (7.8)
makes sense and g(-;v) is a B-valued analytic function for |{|<S1
belonging to the Hardy class H% To prove (7.7), therefore, it suffices
to observe that
27
, 1
(Rq ()2 v)=f—1t,m (@/26) (Eq,q.(0)z,v)d0
0
because v€$, ,,, and that (d/d0) (E, ,.(0)z v)= ,8 6) (d/d@
(Es,ac(0)2, ¥) =B (0)12(0; 2, v) = (0) (2, K (6) ) 0) (2, PE(0)y)x-
Note that g(-; v) is determined by v, independently of the partlcular
expression v=Q(E)E, ,.(I'}y, as is easily seen from (7.7), which is
true for all z¢ 8.

Since g(-;v) is in the Hardy class, the boundary values g (0; v)

—hTrill g(ré'®; v) exist, with g+ (-; v)€L2(0, 2; B), in the sense of point-

wise convergence a.e. as well as in the sense of L2-convergence.

Proposition 7.5. If y satisfies (7.1), then
27 .
T lg®0; e o) |3d0 -0, {4 oco. (7.9)
0

Proof. Consider g*. Expanding the integrand in (7.8) into the power
series in { and going to the limit » 11, we see easily that

[e=498(6) P F, (0)

(7.10)

Replacing v by e #Edy in (7.10) is equivalent to multiplying f(0)
by ¢~#7©. Thus the required result follows from Lemma 7.6 below. In
the case of g~, we have an expression similar to (7.10), with e~**¢ replaced
by €*® and with summation ranging from 2=0 to oo, from which
the required result follows. Note that (7.1) is unchanged by replacing



Theory of Simple Scattering and Eigenfunction Expansions 127

—1 by ¢ and letting {— — oo, for this amounts to taking the complex
conjugate of the expression in | |.

Lemma 7.6. Let y satisfy (7.1). Then (7.1) is also true for w replaced
by any element of L*(0, 27; ®), where § is any Hilbert space, if | | is
replaced by | |-

Proof. It is known (see [17]) that (7.1) is true for all w€L2(0, 27x)
if it is true for all w in a fundamental subset of L?(0, 27). The same
result is seen to hold in the case of vector-valued functions. Thus it
suffices to prove (7.1) for w replaced by functions of the form ww, where
w€L?(0, 27) and w is a fixed vector. But this is obvious by (7.1) itself.

Proposition 7.7. Let v be asabove. Let u =a(E) Ey ., (") x€%, ,.(I")
where a.€ [B] is supported on [,,. Then

(W —1)u, v) —2~1~—foc )%, g% (0;0))d0.  (7.41)

44

Proof. Using the relation R, ({) = R,(()G(£), we have for ¢ =r¢'®,
r+1,0'=1[,
27 6, (Eq; 0) = Ry (0) — Ry (&)
=[Ry(0) — Ry (£")1G (0) + Ro () [G(2) =G (£)]
=27 6,(Ey; 0)G(0) + Ry ({) [G(0) —G (2]
Setting » =»¥! and using (7.7), we obtain
(8, (Ey; 0) %; v) = (8,,(E,; 0)GE (0) %, v)

R A2
L (G OG5 O) %, g0 e ) TP
note that d,~= —9,.

Let n— oo in (7.12). The left member tends to (d/d0) (E;, ,,(0) %, v)
a.e. The first term on the right tends a.e. to ¢+ (6), where ¢* is given
by the ¢ of (5.15) and ¢~ is defined in a similar way, at least along
a certain subsequence of {#} (Proposition 5.10). The third term tends
to 317 (G°(B) %, g% (0; v))x ace.

If we multiply the result by «(f) and integrate on (0, 2z), we
obtain (7.11). Note that ue$, M and (W*u, v) (Wi (Ey) %, v) =
(WEx, a(Ey)*v) = (WEx, a(Ey)*B(Ey)y) =[a(0)p* (0)40, as is seen
from Proposition 5.8 applied with ,3 replaced by ocﬁ

Proposition 7.8. Let #, v be as above. Then

(WE —1) 7By, ¢~ Edy) 50,  t—> oo, (7.13)
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Proof. In (7.11) replace u,v by e #Ey, ¢~ (Edy respectively.
Then« (8), 8 () should bereplaced by e ~#7® « (8),¢~#7® B(6), respectively.
In view of (7.9) and the Schwarz inequality, (7.13) follows easily if
one notices that [|a(6)[2|G°(0)%|$d0<C oo because [GO(0)x|x is
bounded on I, while « (f) is bounded and supported on I},

Proposition 7.9. (7.13) is true for any u€% ,.(I') and ve%, ,.(I').

Proof. Since all the operators in (7.13) are uniformly bounded, it
suffices to prove it for all », v of the form u=wa(E)E; ,,(I)x and
v=P(Ey) E, ,.(I')y, where x, ycX and «, f[B]. Here we may assume
further that «, § are supported on I,,, I, respectively, for some m >0,
for the measures of I'—I, and I'—1I, tend to zero as m—> cc. But
then (7.13) is true by proposition 7.8.

Now we can complete the proof of the theorem. Set W(t)=
ei?? Bl g~ iv(E) Since W is isometric on &, ,,(I") and W(f) is unitary,
we have for each ¢, ,.(I)

IWEu —Wtyu|>=2Re(WEu —W(t)u, WEu)
=2Re((W* —1) ey, o~ EIWEy) >0

as f— 4 oo, where the intertwining property of W+ and Proposition 7.9
are used (note that W*ueg, . (I").

Appendix

We collect here some lemmas on measure theory and linear topological
spaces, which were used in the text.

Lemma A. For {=1,2,...,m, let {1}, n,k=1,2, ..., be a double
sequence of mommegative veal functions om a o-finite measure space S.
Iflim sup @1, (s) = ¢, (s) for a.e. s€ S for each | and n and if lim @i, (s) =0

—> 00 n—>00
for a.e. s€S7 for each j, there exist sequences {n,}, {k,} of positive integers
such that Plgréo @)y, (5) =0 for ae. s€S7 for all j=1,2, ..., m.

The proof depends on elementary properties of the measure and

may be omitted.

Corollary B. For each j=1,2,...,m, let {fi,} be a double sequence
of functions on a o-finite measure space ST to a metric space ¥
If klim fi.(s) =11 (s) exists for a.e. s€S’ for each j and n and if lim fi (s) =
f(s) exists for a.e. s€S™ for each i, then there are sequences {n,}, {ky} of
positive integers such that }Eﬁ’o Frpn () = 7 (s) for ae. seS' for all j.

Proof. Denoting by d’ the metric in ¥°, we set ¢i, (s) =d/(fi, (), 7 (s)),
&% (s) =d¥(f},(s), f/(s)) and apply Lemma A.



Theory of Simple Scattering and Eigenfunction Expansions 129

Lemma C. Let X, 9) be linear topological spaces. Let {A,} be an
equicontinuous sequence of linear operators on X to ) such that im A, x =0
for each xeX. If {x,} is a Cauchy sequence in X, then lim A, x,=0.

Proof. Let ¥ be an arbitrary neighborhood of 0 in ). Since the
A, are equicontinuous, there is a neighborhood U of 0 in ¥ such that
AN<®B for all n. Since {x,} is Cauchy, there is p such that
m, n =p implies x, —x,cU. Since lim 4,x,=0 as n—>oo, there is
g =p such that » =g implies A4,%,€8. If n =g¢, we have then
A,x,=A, (%, —x,) +4,%,68+B. Since for any neighborhood W of
0 in Y there is one B such that B+ B < W, the lemma was proved.

Lemma D. Let X be a lLinear topological space, and let {f,} be an
equicontinuous sequence of mnonmegative Hermitian forms on X X X.
Furthermore, let Lim f,(x, v) =f(x, y) exist for each x,ycX. Then f is
continuous on X X X. If {x,}, {v,} are Cauchy sequences in X, then

{2 (%, v,)} and {f(x,,y,)} are Cauchy and f,(%,, ¥,) —f(%s, ¥u) =0

Proof. It is obvious that f is a continuous, nonnegative Hermitian
form on ¥ x ¥. We write f(x)=/(x, ) =0, g(¥)=/(x)* and similarly
define g,. g is continuous on X and, in virtue of the Minkowsky inequality
lg(x) —g(y)| <g(x—y), g is uniformly continuous on X. It follows
that if {x,} is a Cauchy sequence in ¥, {g(x,)} is a Cauchy sequence
of nonnegative numbers.

Since {g,} is equicontinuous, there is for any & >0 a neighborhood
U of 0 in ¥ such that x€ll implies g, (x) <& for all #. In view of the
Minkowsky inequality for g,, then, x —yell implies |g, (%) —g,(¥)]| Z¢
for all # and hence |g(x) —g(v)| =& too. Since {x,} is Cauchy, there
is p such that #» = implies x,—x,cl. Hence |g,(x,) —g,.(%,)| =¢
and |g(x,) —g(x,)| =¢ for n2p, so that |g,(x)—g(x,)| =2&+
| g, (%,) —g(x,)|. Since g, (%,) —g(x,)—>0 as m—>oo, it follows that
lim sup | g, (¥,) —g(,)| =2e. This shows that g, (x,) —g(x,) 0.

Since {g(x,)} is Cauchy as noted above, it follows that {g,(x,)} is
also Cauchy. In particular these sequences are bounded. Hence
Also 1, (x,)=g¢g,(x,)? and f(x,) =g(x,)? form Cauchy sequences. This
proves the lemma when y, = x,. The general case can be dealt with
by polarization.

Lemma E. Let %, X be linear topological spaces and let [ X —>% be
a continwous linear operator. Let {x,} be a Cauchy sequence in X and

let lim Jx,=%c¥. Let {f,} be an equicontinuous sequence of linear
H—>00

forms on X and | a continuous linear form on ¥ such that lim f, (%)=
f (J %) for each x€¥. Then lim f, (x,) =F (%).

9 Functional Analysis
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Proof. We have [ (%) —7,(%,) =f (8 —J %,) +8,(,), where g,(z) =
F(J %) —f, (%), x€X. But f(¥—Jx,)—>0 since ¥—Jx,—~0 and J is
continuous. Also g,(x,)—0 since {g,} is equicontinuous, g, (*)—0 for
each x€¥, and {x,} is Cauchy (see Lemma C).
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Induced Representations of Locally Compact
Groups and Applications

By GEORGE W. MACKEY

Harvard University, Cambridge

1. Introduction

Roughly the first half of this paper is an introductory exposition of
some of the main ideas of the theory of induced representations with
special emphasis on the influence of the work of M. H. StoNE. The
second half deals with applications and with certain extensions and
refinements of known results demanded by these applications.

Specifically it is shown in Section 9 that it is possible to obtain
very concrete and explicit information about the structure of an induced
representation when the group G is a semi direct product N(S)H with
N commutative and the subgroup G, is of the form Ny(S)H, with
N, €N and H,< H. As explained in Section 10 this result has appli-
cations to the study of the ,,energy bands” of solid state physics. In
Section 11 similar results are obtained; (a) about the restriction of an
irreducible representation of N(S)H to N,(s)H, and (b) about the
tensor product of two irreducible representations of N(S)H. These
differ from the analogous results in [19] in that our decomposition is
now into ¢rreducible representations. These new results are corollaries
of the theorem of Section 9 and the results of [19]. Some physical
applicat ons of the tensor product result are briefly indicated.

Sections 12 and 13 are again expository and explain briefly how
the theory of the first eight sections can be generalized so as to apply
to projective representations. Section 14 contains a theorem about the
structure of induced projective representations of commutative groups
which specializes to one needed in a variant of CARTIER’S recent approach
to the theory of theta functions [6]. The section begins with an account
of this variant of CARTIER’s theory. The final section describes certain
aspects of the relationship between induced projective representations
and the theory of automorphic forms with emphasis on the close
parallel between this theory and the theory of theta functions.
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2. Some basic definitions

Let S be a space in which a ¢ field of ,,Borel sets” has been singled
out and let u be a (countably additive) measure defined on all Borel
sets. We assume the Borel structure of S to be such that the Hilbert
space F2(S, u) is separable. Now suppose that a separable locally
compact group G ,,acts” on S in the sense that for each x€G, s—sx is
a one to one map of S onto S and (sx;) ¥, =sx, %, for all s€S and all
%; and x, in G. We suppose that s, x—sx is a Borel function and that
u is G invariant in the sense that u(E x) =pu(E) for all x in G and all
Borel subsets E of S. Then for each x¢G we obtain a unitary operator
U, acting in the Hilbert space £2(S, u) by setting U, (f) (s) =f(s#). It can
be shown that x—U, is a homomorphism of G into the group of all
unitary operators in #2(S, g) and that x— U, (f) is a continuous function
from G to £23(S, u) for all f in £3(S, u). As such U is what is called
a (strongly continuous) unitary representation of G.

We may also assign an operator in £%(S, u) to each Borel subset
E of S. We denote by F; the projection operator which takes each f
in #2(S, u) into the function f* which is zero in S —FE and coincides
with f in E. The mapping E —F; from Borel sets into projections is a
countably additive homomorphism of the Boolean algebra of all Borel
subsets of S into a Boolean algebra of projection operators. Specifically,
it has the properties:

) Bnr=5 b
(i) =1, B,=0
(ili) P, ug,u -+ =Fp, +Pp,+ - -

wherever E, F and the E; are Borel subsets of S and E;NE;=0 for
7==1. As such it is what we shall call a projection valued measure.

The unitary representation U of G and the projection valued measure
P on S satisfy a simple and obvious identity which will be fundamental
in what follows. It is

U;'E; U, = By, (1)

for all x in G and all Borel subsets E of S. By a system of imprimitivity
for an arbitrary unitary representation U of G we shall mean a pro-
jection valued measure P defined on a G space S which satisfies (1).
Neither U nor P need be of the concrete form described above.

3. Unitary group representations and Stone’s theorem

The first person to have made a serious study of the infinite
dimensional unitary representations of a non compact locally compact
group seems to have been M. H. StoNE. In a note [34] published in
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1930 he announced a theorem — now known as STONE’s theorem — which
sets up a natural one-to-one correspondence between the unitary
representations of the additive group of the real line and the projection
valued measures on the real line. If P is a projection valued measure
and f is a vector in the underlying Hilbert space then E—(B;(f), f)
is a real valued measure o; and one may form | e*td os(¢) for all x. The
correspondence in question is uniquely characterized by the fact that
(U.(f), ) = [¢**da,(?) is an identity in x for all f. Here U is the unitary
representation corresponding to the projection valued measure P.

Since the celebrated spectral theorem®* sets up a similar corre-
spondence between self-adjoint operators and projection valued measures
on the line, one has also a natural one-to-one correspondence between
unitary representations of the real line U and self-adjoint operators H.
This correspondence is such that U,=e¢~*# and reduces most problems
about unitary representations of the additive group of the real line to
problems about self-adjoint operators. In particular, the problem of
classifying all possible unitary representations of the additive group of
the real line is reduced to the corresponding problem about self-adjoint
operators. Hence, it is completely solved by the Hahn-Hellinger spectral
multiplicity theory as abstracted and generalized** to unbounded
operators in Chapter VII of STONE’s now classic treatise [35].

This early work of Stone had several important applications almost
immediately and in addition was influential in more than one way in
the later development of the theory of unitary group representations.
Two of these applications are to quantum mechanics and are mentioned
in the paper [34]. First of all it follows from general considerations
that the time evolution of a quantum mechanical system is given by
a unitary representation of the line and STONE’S theorem provides a
rigorous proof that the corresponding differential equation (SCHRO-

. 0 . . .
DINGER’S equation) must take the form % = —¢ Hywhere H isasuitable

self-adjoint operator. Secondly, STONE’S theorem makes it possible
to replace the HEISENBERG commutation relations for the self-adjoint
operators defining the position and momentum observables by analogous
commutation relations for the corresponding unitary representations
of the real line. In this form it is possible to prove rigorously that these
commutation relations have a unique irreducible solution. That this
is so was announced in [34] and proved later by voN NEUMANN in [26].
It is often called the STONE-vON NEUMANN uniqueness theorem. We
shall have more to say about this result below.

* Stone himself gave one of the earlier proofs of this theorem. Cf. Chap-
ter V of [35].
** See HarLmos [10] for a recent treatment.
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A third important application of STONE’s theorem was made by
KooPMAN in 1931 [12]. He made the (then novel) observation that a
constant energy hyper-surface in the phase space of a classical
dynamical system may be taken as the S in the general construction
of Section 2. The additive group of the real line acts on the constant
energy hypersurface through the time development of the system and
the Liouville measure is invariant under the action. Thus one obtains
a unitary representation of the additive group of the real line and hence
via STONE’s theorem a classification of dynamical systems. A few
months later this application of STONE’s theorem by Koorman led
directly to the ergodic theorems of vOoN NEUMANN [27] and BIRKHOFF [4]
and thus to the creation of the subject of ergodic theory.

In 1943 and 1944, NEUMARK [29], AMBROSE [1] and GODEMENT [9]
all independently discovered that STONE’s theorem could be generalized
to arbitrary separable* locally compact commutative groups G. Intro-
ducing the so called dual group G, that is, the locally compact commu-
tative group of all continuous homomorphisms of G into the group K
of all complex numbers of modulus one, they showed that there is a
natural one-to-one correspondence between the unitary representations
U of G and the projection valued measures P on G such that
(G0, /)=y (x)doy(y) where a, is the measure E—(B(f),f), #<G,
E is an arbitrary Borel subset of G and f is an arbitrary element in the
appropriate Hilbert space. Since the continuous homomorphisms of
the additive group of the line into K are just the functions x-—>¢f*#
for real ¢ it is clear that this theorem reduces to STONE’s when G is the
additive group of the line. Not long afterwards, it was recognized that
the HAHEN-HELLINGER theory, as generalized by STONE, could be applied
to give a complete classification of the unitary representations of an
arbitrary separable locally compact commutative group G. Indeed, by
the theorem of NEUMARK, AMBROSE, and GODEMENT cited above, it
suffices to classify the projection valued measures on G and in this
latter problem, the group structure of G is irrelevant. The analysis
for the case in which G is the additive group of the real line extends
word for word to the general case. Actually, whenever G is not compact,
there exists a one-to-one Borel preserving map of G on the additive
group R* of the real line — so that one can in fact deduce a classification
of projection valued measures in G from that of projection valued
measures in R*. Of course, the classification problem is trivial when G
is compact.

* They actually treated the non separable case but we shall be interested
only in the separable result.
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The elements of G of course correspond one-to-one to the one-
dimensional unitary representations of G and hence to those unitary
representations of G which are ¢rreducible in the sense of there being
no proper closed invariant subspaces of the underlying Hilbert space.
One-dimensional representations are obviously irreducible and for
commutative groups it is not difficult to show that every irreducible
unitary representation is one-dimensional. In stating that the generalized
Hahn-Hellinger theory classifies the unitary representations of G we
are of course tacitly assuming that G is known; ie., we classify all
unitary representations assuming that the irreducible ones are known.

While the problem of finding G is easily solved for most of the
interesting commutative groups G the analogous problem of finding
all (equivalence classes of) irreducible unitary representations is one
of the main problems of the theory when G is non-commutative. On the
other hand, more or less independently of solving this difficult problem,
one can ask to what extent one can find an analogue of the Hahn-
Hellinger theory which classifies all unitary representations once the
irreducible ones have been found. It is a useful, interesting, and rather
surprising fact that an almost perfect analogue exists — provided that
G belongs to the important but by no means exhaustive class of
separable locally compact groups known as the type I groups. We shall
not give details, but content ourselves with the remark that it is based
upon the von Neumann direct integral theory [28] as applied to group
representations by MAUTNER [25] and upon a natural Borel structure
in the space G of all equivalence classes of irreducible unitary represen-
tations of G. A description will be found in [7], [20], [21], and [23].

4. The Stone-von Neumann uniqueness theorem

Let us look more closely at the STONE-vON NEUMANN uniqueness
theorem. In the one-dimensional case, it says that (up to unitary
equivalence) there is just one pair U, V of unitary representations of
the real line which satisfies the identity

U V.=V, U,e" (2)

for all real ¢ and s, and is irreducible in the sense that the underlying
Hilbert space admits no proper closed subspaces which are invariant
under all U; and V,. Actually, as shown by voN NEUMANN, every
solution of (2") is a discrete direct sum of irreducible solutions. Now,
for any fixed s, #—¢** is a character of the additive group of the real
line and as s varies, we get every character. This suggests that (2')
may be generalized to

UtT/;Cst Uy @ (2)
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for all £¢G and all %e@ where G is a locally compact commutative
group, G is its dual group, and U and V are unitary representations
of G and G respectively. Indeed, when G is the additive group of an
n-dimensional vector space, the most general member of G is

tl’ tZ e tn_>g7:(t131+"‘+tnsn)

where s, ...s, is an n-tuple of real numbers and the n-dimensional
version of the Stone-von Neumann theorem says that (2) has a unique
irreducible solution for this choice of G.

It is of course natural to wonder whether (2) has a unique irreducible
solution for any locally compact commutative group G. This question
occured to me in 1948 when I read [34] for the first time and I was
pleased to discover that certain techniques I had learned from gener-
alizing the results of [8] and studying the typescript of [28] were
directly applicable and yielded a proof of uniqueness [16] for any
separable G. These techniques used the Hahn-Hellinger theory in an
essential way as well as the Neumark-Ambrose-Godement generalization
of StoNg’s theorem. The latter theorem of course makes it possible

to replace the representation 7 of G by a projection valued measure
on G. On the other hand, the Pontryagin-von Kampen duality theorem

allows us to identify G with G and thus to replace V by a projection
valued measure P on G. Moreover, an easy calculation shows that U
and V satisfy the identity (2) if and only if U and P satisfy

U,BU;* =By (3)
for all ¥ in G and all Borel subsets E of G.

But (3) is just (1) of Section 2 in the special case in which S =g,
G is commutative and the action of G on S (=G) is right multiplication.
In other words, to say that U and V satisfy (2) is the same as to say
that P is a system of imprimitivity for U based on G and the
(generalized) Stone-von Neumann uniquess theorem may be reformulated
to read as follows: With S and G as above, there is to within unitary
equivalence a unique irreducible pair U, P where U is a unitary
representation of G and P is a system of imprimitivity for U based
on G. So stated, the theorem is meaningful for any separable* locally
compact group G whether commutative or not, and this much more
general theorem turns out to be true [16].

Thus, the Stone-von Neumann uniqueness theorem which seems
quite special in its original formulation is in fact just the specialization
to the real line of a general theorem about arbitrary locally compact
groups.

* See Loowmis [15] for an extension to the non separable case.
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5. The imprimitivity theorem and induced representations

When formulated in terms of systems of imprimitivity, the Stone-
von Neumann uniqueness theorem continues to be meaningful not only
when we cease to assume commutativity for G but also when we drop
the assumption that S=G. Given a separable locally compact group G
and a Borel space S on which G acts as in Section 2, one can ask about
the possible pairs U, P where U is a unitary representation of G and P
is a system of imprimitivity for U based on S and whether any two such
pairs are necessarily unitarily equivalent. In the special case in which
the action of G on S is transitive, these questions can be answered
rather completely. Let s, be a fixed origin in S and let H be the subgroup
consisting of all x in G with s;x =s,. Then x—s,x sets up a one-to-one
correspondence between S and the set G/H of all right A cosets in G.
Moreover, the action of G on S is carried by this correspondence into
the action of G on G/H defined by the equation

(Hy)x=H(yx).

Finally, whenever S satisfies mild regularity conditions, it can be
shown that H is closed and that x—ssy,« is a Borel isomorphism. In
other words, we may assume that S is a coset space G/H. For each
fixed G and S=G/H, the imprimitivity theorem [17], [20], [22] sets up
a natural one-to-one correspondence between the equivalence classes
of pairs U, P which satisfy (1) and the equivalence classes of unitary
representations of the subgroup H. This correspondence commutes
with the taking of direct sums and hence preserves irreducibility. Thus,
when S=G/H, there are as many inequivalent pairs satisfying (1) as
there are inequivalent irreducible unitary representations of H. The
case in which S=G is of course that in which H = {e} so that there is
a unique irreducible unitary representation of H. The imprimitivity
theorem thus implies the non-commutative generalized Stone-von
Neumann uniqueness theorem, and explains why it usually fails when
S=G.

The construction of the pair U, P associated with a given unitary
representation L of H is a more or less natural generalization of the
construction given in Section 2. If G acts transitively on S in Section 2,
then we may identify S with G/H for some closed subgroup H of G
and functions on S may be identified with functions on G which satisfy
the identity

F(Ex)=1(x) 4

for all £¢H and all x¢G. Given a unitary representation L of H let
us replace complex valued functions on G by functions on G with values
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in the Hilbert space (L) in which the operators L, act. Then it is
natural to replace the identity (4) by

fEx)=L¢(f(x)) (5)

Given a Borel function satisfying (5) let us consider the real valued
function

x> (f(x), f(x))
obtained by taking its scalar product with itself. We have
(fEx), 1(E2) = (Ls (F(0), Le(F () = (F(#), £(%))

by the unitarity of the L,. Hence x—>(f(x), f(#)) is a constant on the
right H cosets and so may be identified with a function on S=G/H.
Hence we may consider its integral over S with respect to x and ask
whether or not it is finite. We define &~ to be the space of all Borel
functions from G to 5# (L) which satisfy (5) and have

G/[{(f(x), H(x))dp<oo.

Identifying functions equal almost everywhere we obtain a Hilbert
space with

IHr=[ (f(x), { (%)) dp.
G/H

For each fixed y let UyL () (x) =f(xv). Then UyL is a unitary operator
in this Hilbert space and y—>U} is a unitary representation of G. It
clearly reduces to the U of Section 2 when L is the one-dimensional
identity of H. To obtain a system of imprimitivity for U* which reduces
to the P of Section 2, we need only define PF to be the projection
operator f— @ f where E’ is the inverse image in G of the Borel subset
E of S and ¢ is the characteristic function of E’. Our construction
seems to depend upon the measure y but in fact does not. If G/H has
an invariant measure at all this measure is unique up to a multiplicative
constant, and this constant does not affect the equivalence class
of U, PL,

Actually the pair U%, PX may be constructed whether or not G/H
admits an invariant measure. Let » be any finite measure in G having
the same null sets as Haar measure and let # (E) =v»(E") for each Borel
subset E of S=G/H. Here, as above, E’ is the inverse image of E in G.
Then # is a measure in S which is quasi-invariant in the sense that ¥
and E->%(Ey), have the same null sets for all y. Let x—g,(x) be the
density or Radon-Nikodym derivative of the y translate of # with
respect to #. Then we may use # as a substitute for 4 in defining the
pair U%, PF provided only that we restore the unitariness of Uy by
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changing the definition to

Uy f) (%) = Ve, (%)

It is not difficult to show that changing » changes U~, P” to a pair
which is unitarily equivalent to the original. Thus the unitary equivalent
class of U%, Pt is uniquely determined by L — in fact by its unitary
equivalence class. We call U™ the unitary representation of G induced
by the unitary rvepresentation L of H and we call P' the system of
imprimitivity canonically associated with U~.

In these terms, the imprimitivity theorem may be formulated as
follows: given the closed subgroup H of the separable locally compact
group G and given a pair consisting of a unitary representation U of G
and a system of imprimitivity P for it based on S=G/H there exists
a unitary representation L of H and a unitary operator W such that
WUW1=UL and WEB,W-1=PF for all x¢G and all Borel subsets
E of S. L is uniquely determined up to unitary equivalence. A useful
subsidiary result states that the ring of all bounded linear operators
which commutes with all UF and all P¥ is isomorphic to the ring of all
bounded linear operators which commutes with all L,. Thus the pair
UL, PF is irreducible if and only if L is irreducible.

6. Multiplier representations as induced representations

Let G, S and y be as in Section 2 and let a be a Borel function from
SX G to the complex numbers of modulus one which satisfies the
cocycle identity

a(s, %y x5) = a(s, %) a(sxy, %,). (6)

Define U} (f) (s) =a(s, x)f(sx). Then each Uy is a unitary operator
and x— U} is a unitary representation of G. Indeed, apart from almost
everywhere considerations (6) is a necessary and sufficient condition

that
& Ug, =UsUZ.

Following BARGMANN [2] we shall call U® a multiplier representation.
When a(s, x) =1 we recover the U of Section 2. On the other hand,
defining F; just as in Section 2, we find that for any 4, P is a system of
imprimitivity for U” based on S.

Now consider the special case in which S=G/H for some closed
subgroup H of G. By the imprimitivity theorem, the pair U”, P must
be equivalent to the pair U%, PL for some unitary representation L
of H and L can depend only on the cocycle a. To see what L is, notice
that if sy=He then

a(sg, & &) =a(so, &) a(se &1, &) =a(sy, &) a(so, &)
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whenever &, and &, ¢ H. Thus é —>a(sg, &) is a character y, of H. Moreover

a(sy, &%) =a(sy, £)a(so, %) = ya(€)a (s, %)
for all £ H and all x€G. Consider now the representation U#% induced
by x,. If f is in 5#(U%), the space of U*s, then f(éx)=y,(&)f(x) for
all £€H, £eG so that f(Ex)/a(sy, £x) is constant on the right H cosets
and may be identified with a Borel function in S. It is easy to see
that /—f where f(x)=f(x)/(a(s,, %)) defines a unitary map of
L2%(S, u) on # (U%) and that this unitary map sets up an equivalence
between the pair U%, P and U#*s, P%s,

Since one can show that every y arises from some a one sees that
the systems U P where U” is a multiplier representation, coincide
(modulo unitary equivalence) with the systems UL, P where L varies
over the one-dimensional unitary representations of H. When S =G/H
does not have an invariant measure, one can still identify representations
induced by one-dimensional representations with multiplier represen-
tations but now a will take on values which are not on |z| =1. Indeed,
the Radon-Nikodym derivative needed to compensate for the non-
invariance of g will satisfy (6) and what we must use is the product
of its square root with a cocycle taking values on |z| =1.

It is of course not difficult to generalize the notion of multiplier
representation so that the above considerations apply to arbitrary
induced representations U, When L is not one-dimensional #2(S, u)
must be replaced by Z2(S, u, 5#,) where 5, is a Hilbert space whose
dimension is equal to that of the space of L and 4 must be replaced
by a Borel function from S X G to the unitary operators in £, We
leave further details to the reader.

7. The imprimitivity theorem and quantum mechanics

We have been led to the imprimitivity theorem by starting with
the Stone-von Neumann uniqueness theorem and generalizing three
times. The end result seems far removed from the very special case
which inspired it. However, the connection is actually rather close.
If one seeks a deeper meaning for the Heisenberg commutation relations
one finds that they are a consequence of the assumption that the laws
of physics are invariant under the group & of all isometries of physical
space. Indeed the formulation of this invariance leads one in a natural
way to postulate that the position observables of a particle in quantum
mechanics are defined by a projection valued measure P in physical
space S and that this projection valued measure is a system of
imprimitivity for the unitary representation* U of & which implements

* Strictly speaking one must allow ‘' projective’’ unitary representations.
However we shall postpone our discussion of this refinement to Section 12.



142 G. W. MACKEY:

the invariance. Here F; is the self-adjoint operator corresponding to
the “observable’” which is one when the particle is in the set E and
zero when it is not. Given any ‘‘coordinate” in the sense of a real
valued continuous function f on space the self-adjoint operator associated
with the corresponding observable is that whose projection valued
measure i A —F- ). Thus P determines the operator assigned to the
position observables. To say that P is a system of imprimitivity for U
is just to say that the transform by U, of F; is the P assigned to the x
translate of E. Surely this is just what one means by Euclidean invariance.

Use of the imprimitivity theorem now leads to a classification of
all possibilities for the position and momentum observables and (in the
case of Euclidean space) to the conclusion that the Heisenberg com-
mutation relations necessarily hold for the operators describing the
position and momentum observables. However, one gets much more.
One finds what the analogue of the Heisenberg commutation relations
should be when space is not Euclidean and one is led in a natural way
to the concept of spin. For further details, see [23], [34], and [37].

8. The irreducible unitary representations
of semi-direct products

As indicated toward the end of Section 2, there is an extension of
the Hahn-Hellinger theory which allows one to reduce the problem of
classifying the unitary representations of a type I separable locally
compact group G to the problem of classifying the srreducible unitary
representations of G. This latter problem is more or less trivial for the
interesting commutative groups but can be very difficult when G is
non-commutative — even when G is finite. In this section we shall
indicate briefly how the imprimitivity theorem can be applied to yield
a solution to the problem for a special but important class of examples.

Let the group G admit a commutative closed normal subgroup N
and let G also contain a closed subgroup H such that NnH ={e}
and NH =G. Then H is isomorphic to G/N and every element in G
is uniquely a product #A where neN and A€ H. One says that G is a
semi-direct product of N and H. Clearly

(g ) (ng o) =1y By 1y gt Py By =y oy, (1g) By Dy

where «;, is the automorphism #—>h #nk of N. Thus G is completely
known when we know N, H and the homomorphism %->a, of H into
the group of automorphisms of N. As examples, we mention the group
of all permutations on three objects, the group of all transformations
of the real line of the form x—>ax b where a==0, the group & of all
isometries of physical space, and the inhomogeneous Lorentz group. In
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the first two examples, N and H are both commutative. & is a semi-
direct product of a three-dimensional vector group and a compact
group and the last example is a semi-direct product of a four-dimensional
vector group and the homogeneous Lorentz group.

Let V be any unitary representation of G where G is a semi-direct
productof Nand H.Let 4,=V,,, B,=V,,. ThenV,, =4, B, so that Vis
completely determined by the representations 4 and B of N and H
respectively. A simple computation shows that nh—A4, B, defines a
representation of G if and only if B;'4,B),= A4, for all & and n.
This identity is very like the identity defining a system of imprimitivity.
Moreover, it reduces to the latter if we use the Neumark-Ambrose-
Godement generalization of STONE’S theorem to describe 4 by the
corresponding projection valued measure P4 on N. In this connection
we note of course that each automorphism o, of N has a dual off which
is an automorphism of N. Specifically, [y¢]af is the character
n—-y (oc,, (n)). Clearly N becomes an H space if we define [y] &= [y] af
and the identity is easily seen to be equivalent to the statement that
P4 is a system of imprimitivity for B based in N.

In order to apply the imprimitivity theorem we must have a transitive
system of imprimitivity and H does not usually act transitively on N.
On the other hand, H restricted to any “orbit” of H in N does act
transitively and under appropriate circumstances we may concentrate
on the restriction of P4 to an orbit. We define the orbit 7(y) of xeﬁ

to be the set of all [y]A with AcH and let N denote the space of all
orbits. Let us define a subset F of N to be a Borel set if z~1(F) is a

Borel subset of N and let us say that N has a countably separated
Borel structure if there exist countably many Borel sets which separate
points. This condition holds in particular whenever there exists a
Borel subset of N which meets each orbit just once. Whenever it does
hold we shall say that G is a regular semi-direct product of N and H.
The importance of this condition is that it implies that Pz\irt =0 for
some unique orbit @ whenever V is irreducible. Thus every irreducible
unitary representation of a regular semi-direct product is described
by a pair 4, B where P4 is a transitive system of imprimitivity for B
based on an orbit of N under H.

We refer the reader to the published literature [17], [19], [20] for
further details and content ourselves with a statement of the theorem
that results when one applies the imprimitivity theorem as indicated.

Theorem. Lot G be a semi-divect product of N and H where N is
normal and commutative and N and H are separable and locally compact.



144 G. W. MACKEY:

For each 161\7 let H, denote the subgroup of all he H for which [y] h= y.
Then H, is closed and for each irveducible unitary vepresentation L of
Hy,n,h—y(n) L, is a unitary representation XL of the subgroup NH,.
Form the induced representation U*L of G. Let C be a set which meets each
H orbit in N once and only once. Then

(a) UL is irreducible for all y and L.

(b) As y varies over C and L varies over the inequivalent irreducible
representations of H, we get inequivalent irreducible vepresentations of G
and we get one equivalent to every U*L whether or not y lies in C.

(c) If G is a regular semi-divect product then every trreducible repre-
sentation of G is equivalent to some U*L,

When G is the group of all transformations of the additive group
of the real line of the form x —a x -+ b where a > 0 then N is the additive
group of the real line and the action of H on N is such that we may
take C to be the set consisting of —1, 0 and 1. Correspondingly H, is
{e}, H and {e}. The representations associated with 0 and H are just
the one-dimensional representations of H “lifted” to G. There is just
one irreducible unitary representation associated with —1, {¢} and
just one associated with 1, {¢} because {e} has just one irreducible
unitary representation. They are infinite dimensional representations
induced by one-dimensional representations of N. To within equivalence,
there are no other irreducible unitary representations of G. These
results about G are a reformulation of the main results of the paper [8]
of GELFAND and NEUMARK referred to in Section 4.

When G is the inhomogeneous Lorentz group the orbit structure
of N under H is more complicated and there are four distinct possibilities
for H,. It is isomorphic either to the homogenous Lorentz group, to
the homogeneous Lorentz group in three-dimensional space time, to the
Euclidean group in the plane or to the rotation group in three space.
The Euclidean group in the plane is a semi-direct product of two
commutative groups and its irreducible unitary representations are
determinable by a second application of our theorem. Since the
representations of the rotation group in three space are easily deduced
from the classical theory of spherical harmonics our theorem reduces to
the problem of classifying the irreducible unitary representations of the
inhomogeneous Lorentz group to the corresponding problem for the
homogeneous Lorentz group in three and four dimensional space time.
Actually these representations for which H, is a homogeneous Lorentz
group are in a certain sense ‘‘physically uninteresting”. Thus our
theorem provides a complete classification of the ‘ physically interest-
ing”’ irreducible unitary representations of the inhomogeneous Lorentz
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group. These consequences of our theorem for the inhomogeneous
Lorentz group are a reformulation of the main results of a celebrated
paper of WIGNER [38]. WIGNER was actually the first person to analyze
the irreducible unitary representations of a group having infinite-
dimensional irreducible unitary representations *.

9. On the structure of certain induced representations

We saw in the last section that the irreducible unitary representations
of many groups can be put into the form U” where L is an irreducible
representation of a suitable subgroup. On the other hand U certainly
need not be irreducible when L is, and in fact there are a number of
problems in mathematics and mathematical physics whose resolution
depends upon analyzing a representation of the form U’ into its
irreducible constituents. In this section we shall show that a very
complete solution to the problem may be given in the special case in
which the group is a semi-direct product N(s)H, the subgroup from
which L is induced is of the form N,(s)H, where N, and H, are closed
subgroups of N and H respectively and certain auxiliary conditions
are satisfied.

Let G, N, H, N,, H, be as just indicated and let G, = N,(s)H,. Let
x4 be any member of N o and let H, , be the closed subgroup of all
he Hyfor which [y]h = y. Let L be any irreducible unitary representation
of H,. Then n,h—x(n) L, is an irreducible unitary representation
of NyH, , and so is the representation U*" of G, which it induces.
Moreover, whenever G, is a regular semi-direct product of N, and H,
we know from the theory of Section 8 that every irreducible unitary
representation of G, is of the form U*L. Let W =UU*L denote the
unitary representation of G induced by the irreducible unitary
representation U*L of G,.

Theorem. Let Nn-L denote the annihilator of Ny in N and let NOJ- z
denote the Z\/:;L coset of all feN which agree on Ny with 5. For each fENO'L %
let H; denote the closed subgroup of all he H with [flh={ and consider
the vepresentation L' of H; induced by the restriction of L to H, ,nH;.
Let W! denote the representation of G induced by n, h—>f(n)L;. Then
Ni- ¥ 15 tnvartant under H, ., and Wik WU for all heH, . If there
are only countably many H0 o orbits in NaLx then W is a dwect sum of
the W where we choose one f; from each HO orbit which is not of measure
zero with vespect to Haar measure in NO ye More generally suppose that
the space O, of all H, , orbits in Nit % is ,,countably separated” in the
sense that there are countably many subsets of O, whose inverse images

* WIGNER actually considered projective representations as well. However
as explained in Section 12 our theory extends to the projective case.

10 Functional Analysis
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in N3 % are Borel sets and which separate the points of O,. Then W is

a divect integral over O, of representations W where W' is equivalent
to W for all f in the orbit,

Finally for each f let L' = [ M*dv (1) be a decomposition into irreduc-
ibles of L". Then Wf:foMldv(l) and each U™ is irreducible.

Remark. This theorem allows us to decompose W = UU*L into
irreducibles whenever we know how to decompose the representations
L" of H, into irreducibles. As with the theory of Section 8 we do not
actually solve our problem but instead reduce it to one about closed
subgroups of H.

Since this theorem does not appear in the literature we present a
proof. Our representation W is the representation of G induced by a
representation of G, which is in turn induced by the representation
xL of the subgroup N, H, , of G, Thus by the theorem on inducing
in stages ([19] Theorem 4.1) Wis equivalent to the representation of G
induced by the representation y L of N, H, .

As our next step we apply the stages theorem again using NH, ,
as intermediate subgroup instead of G,. Let V be the representation
of NH, , induced by yL. Then W is the representation of G induced
by V and any decomposition of V' will be reflected in a corresponding
decomposition of W. We shall find a decomposition of V and then
study the representations of G which the components induce. To find
this decomposition we first restrict V back to N. The spectral theorem
(Section 3) assigns a projection valued measure P on N to this restriction
which is a system of imprimitivity for V with respect to a certain
action of N(8)H, , on N. This action is obtained from the semi-direct
product action of H,, on N by transfering to N as described in
Section 8 and then “lifting” to N(8)H, ,. On the other hand by the

“restriction theorem’ (Theorem 12.1 of [19]) V restricted back to N
is a direct 1ntegra1 of characters in a certain NJ- coset in N; namely
the coset No x described in the statement of the theorem. It follows
that our projection valued measure P must be concentrated in NaLx
Now, by hypothesis, the space of all H, , orbits in Ni- y is countably
separated. Hence this is true of the space of all N(8)H,, ., orbits since
N acts trivially. Thus, just as in the proof of Theorem 12.1 of [19],
V is a direct integral over the space O, of H, , orbits in N %. The
contribution of the orbit containing f has the restriction of P to this
orbit as a system of imprimitivity and this system of imprimitivity is
transitive. This contribution is induced by a representation of the
subgroup of NH, , leaving f fixed. This subgroup is clearly NH, ;
where H, ;is the closed subgroup of H, consisting of all » with {f]A=/.
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Of course Hy ;=H;nHy=H;nH, , and it is easy to see that the
inducing representation is just fI' where L' is the restriction of L
to Hy ;.

We have now decomposed V as a direct integral of representations
of the form U™ where f is a character of N, L! is the restriction of L
from H, , to H, ; and the inducing is from NH, ; to NH, ,. Because
of the fact that inducing “ commutes’” with the taking of direct integrals
we have correspondingly a decomposition of W as a direct integral
of representations of the form UL where now the inducing is from
NH, ;to NH.

Our next task is to decompose the representation U’*. To do this
we apply the stages theorem once again, this time using NH,; as the
intermediate subgroup. It follow at once from the definitions concerned
that the representation of N H, induced by fL’ is fL” where L" is the
representation of H; induced by the representation L’ of H, ;=
H;nH, ,. Suppose that L" = [ M*dv(A) where the M* are irreducible.
Then the representation of G induced by fL’ is [UfM*as(®) and by the
theory of 8. each U/M* is irreducible since M is an irreducible
representation of H,. This completes the proof.

10. An application to solid state physics

In studying the quantum mechanics of a solid body it seems to be
a useful first approximation to assume that the nuclei are fixed point
charges and that the electrons move independently of one another in
the potential field produced by these fixed charges. The fixed positions
form a pattern capable of unlimited replication and in the limiting
case of an infinite number of particles this pattern is invariant under
the operations of a certain discrete subgroup I’ of the Euclidean
group &. This discrete subgroup is such that the coset space &/I" is
compact and is what is known as a space group.

Under the above simplifying assumptions the main problem to be
solved is that of determining the eigenvalues of the Hamiltonian
operator H for a single electron moving in the indicated potential field.
Moreover it turns out to be convenient to concentrate attention on the
limiting case in which there are an infinite number of particles and
the pattern is completely filled. In this limit the operator H has a
continuous spectrum but its determination in suitable terms tells us
all we need to know about the eigenvalues of H in the physically more
realistic finite case.

Ignoring any influence of electron spin our problem then is thus:
Let the Euclidean group & act on physical space E2 in the usual fashion
and let v be a real valued function defined on E® which is invariant

10*
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under the action of the space group I'< &. Determine the spectrum of
the operator H:

y %y
Xt T o T e )+m/’

y)» __h2 (32w 82
2m

where m is the mass of the electron and 2xz% is PLANCK’S constant.
The domain of H must of course be properly specified as a subspace
of #%(E3) in such a manner that it is self-adjoint.

Let U be the unitary representation of & defined by the natural
action of & on E® and let I’y denote the commutative group of all
translations in I". Then U, H = HU_ for all « in I" and hence in particular
for all « in I7. Let (U)'7 denote the restriction of U to I and let P

denote the projection valued measure in ﬁT associated with (U)f'? by
the spectral theorem. Then H commutes with all B; so the direct integral
decomposition of H(U) = #?(E3) defined by P is invariant under H.
In other words we have a direct integral decomposition of
H= [H*dv(y) which is parametrized by the characters y of I7.
It turns out (for reasons which will become clearer below) that each
H* has a pure point spectrum and is described by a set of eigenvalues.
Clearly then the (continuous) spectrum of H will be completely described
by giving the eigenvalues of H* for each y. Strictly speaking H* is
only defined for almost all y — at least according to the analysis we
have sketched. However, a closer look, exploiting the fact that H is
a differential operator, makes it possible to define H* for every y as a

definite differential operator. Now I is a compact, connected topological
group isomorphic to a three dimensional torus. Thus we may speak
of continuous dependence on y and it turns out that the eigenvalues
of the H* vary continuously with y. Letting E, (y) S E,(y) = ... de-
note the eigenvalues of H%, we see that we may describe the spectrum
of H by a countable family of continuous real valued functions defined

on the compact connected group I7. The spectrum as a point set is
just the union of the ranges of the £; and hence the union of a countable
number of compact connected sets. In most interesting cases this union
is not connected and in fact has infinitely many connected components.
Thus there exists a sequence x;<Cx,<x3<C... of real numbers such
that x is in the spectrum if and only if x is in one of the closed intervals
%gj41 = ¥ = %y;. In other words the spectrum has a “band” structure.
The physicists refer to the problem of finding the functions
x—>E;(x), E5(x), ... as “energy band theory”.

If we replace the commutative group I by the full group I" (which
usually will not be commutative) we may repeat much of the above
argument obtaining operators H® parametrized by the irreducible
representatives L of I". It is not difficult to see that each H™ is a
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direct sum of a finite number of the H* and that each eigenvalue in
HE occurs with a multiplicity which is divisible by the dimension of L.
A detailed study of the H™ and their decomposition into H* thus yields
information about relationships among the E;(y) attributable to the
action of the symmetry group I'/I;. Knowledge of such relationships
is of course of considerable help in actually finding the E; and approxi-
mation thereto for a given v.

Now the decomposition of the H. into H*’s depends only on the
restriction of L to I'; and not on ». Moreover as v changes continuously
to zero through the values €¢v(0 < ¢ =1), it will usually happen that
the spectrum of the HL and H* nove continuously into that for v =0.
Thus we may parameterize the eigenvalues of the H- and H* by those
of Hf and H§. Moreover if we know explicitly the eigenvalues of the
H and Hf we will know the eigenvalue structure of the H* and H” as
far as the parameters of these eigenvalues are concerned.

The point of interest to us can now be stated as follows: The problem
of determining the eigenvalues of the Hy" (and H§) can be completely
reduced to (a part of) the problem of finding the structure of the induced
representations UL and U* of &. To describe this reduction we observe
first that H, U,= U, H, for all «€&. Now it is well known and easily
proved that U is multiplicity free and hence uniquely a direct integral
of inequivalent irreducible representations U* It follows that H, is
correspondingly a direct integral of constant operators C(A)I where
C(M)T acts in the “space” of U Actually the U* may be parametrized
in a natural way by the positive real numbers and if 4 is the parameter
then C(A) is a constant times A? [in physical terms C(4) is the energy
of a free particle whose linear moment vector has length 4]. Thus the
spectral values of H, correspond one to one to certain irreducible
unitary representations of & and it is possible to prove the following
theorem.

Theorem. For each irveducible unitary vepresentation L of I' the
induced vepresentation U™ is a discrete divect sum of irveducibles and the
number of times 1t contains U* is the multiplicity of C(1) in HY divided
by dim (L). Of course a parallel statement velates Hf and U*.

The theorem of Section 9 allows us to compute U* in all cases and
to compute U* whenever I" is a so-called ‘‘symmorphic” space group.
Roughly one third of the possible space groups are symmorphic. It
would probably not be difficult to extend the theorem of Section 9
so that it applies to the general case.

For the physical literature on group theoretical aspects of the energy
band problem the reader is referred to the reprints collected in [11]
especially the classic paper of BOUCKAERT, SMOLUCHOWSKI and WIGNER.
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11. Restrictions and tensor products

There is a certain duality between forming the representation UL of
a separable locally compact group G induced by a unitary representation
L of a closed subgroup A and forming a unitary representation of H
from a unitary representation M of G by considering only the M, for x€H,
i.e. by “restricting M to H”. Indeed for finite groups a classical theorem
of FROBENTUS says that when L and M are irreducible the multiplicity
with which U contains M is equal to the multiplicity with which L
is contained in the restriction of M to H. This suggests that we seek a
“dual” of the theorem of Section 9 which tells us how to decompose
the restrictions to G, = N,(s) H,, of the irreducible unitary representations
of G=N(s)H. A first step in the proof of such a theorem is provided by
the author’s “‘restriction theorem’ mentioned in Section 9. This
theorem tells us how to decompose the restriction of an induced
representation to a subgroup into a direct sum or direct integral of
other induced representations. Of course these summands in general
need not be irreducible. In the case at hand however the subgroups
are such that an easy special case of the theorem of Section 9 applies.
[We have to induce from subgroups of N,(5)H, of the form N,(s)H,
where Hy<H, and thus the orbit space has only one element.] In
other words we may obtain our desired dual of the theorem of Section 9
as a corollary of the restriction theorem of [19] and the theorem of
Section 9 itself. We will content ourselves with stating the result. The
reader should have no difficulty in verifying that this result is a conse-
quence of the argument just indicated.

Let G be a semi-direct product N(s)H where N and H are separable
and locally compact and N is commutative. Let IV, and H, be closed
subgroups of N and H respectively such that N, is invariant under
n—>h(n) for all hcH,. Let f be any member of N and let H; be the
subgroup of all # for which [f]h=/f. Let M be any irreducible unitary
representation of H, and let V' denote the (irreducible) representation
of G induced by the representation #, h—f(n)M, of N()H, The
theorem we are about to state gives the reduction into irreducibles of
the restriction V' of V to Gy= N,(3) H,.

Theorem. Suppose that Hy, and H; are regularly velated subgroups
of H in the sense that the space of all H,: H, double cosets is countably
separated. Then V' is a divect integral over these double cosets (with
respect to the tmage of the Haar measure class) and the contribution of
the double coset containing h may be computed as follows: Let M* denote
the representation of Hypyy =h 2 H h which takes h™Eh into M,. Restrict
M" to H naOHy and then induce to H, , where y is the restriction of
[flh to Ny and H, , is the subgroup of all hcH, with [y]h=y. Let
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JL*dv(2) denote a reduction of this induced representation into irre-
ducibles. Then for all L the representations nh—>y(n) Lt of N, H,
induce irveducible vepresentations U*L of Gy= Ny(8)Hy and [U*L* dv(2)
is the desired contribution of the double coset containing h.

This theorem like its dual does not actually solve the reduction
problem. It reduces it to questions about the subgroup H which often
have easy answers. We note also that wherever G=N(G)H is a
regular semi-direct product the representations ¥ include all irreducible
unitary representations of G.

Let L and M be irreducible unitary representations of the separable
locally compact group G. Then their (outer) tensor product L X M is
an irreducible unitary representation of G X G. If we restrict L X M
to the diagonal G of G X G consisting of all x, y with x=y and note
that G is naturally isomorphic to G we obtain a unitary representation
L®M of G which is usually reducible. It is called the (inner) tensor
product of L and M.

One of the basic problems about any G is that of determining the
reductions of the tensor products L ® M of its irreducible unitary
representations. Now suppose that G=N(s)H where H and N are as
above. If the semi-direct product is regular then the theory of Section 8
gives us all irreducible unitary representations of G in terms of the
irreducible unitary representations of the subgroups H, of H. In view
of what has gone before it is natural to seek to reduce the problem of
finding the (inner) tensor products of the irreducible unitary represen-
tations of G to problems about the subgroup H. A theorem doing just
this can be obtained as a corollary of the theorem stated above. Indeed
we have already seen that reducing an inner tensor product can be
looked upon as a special case of reducing a restriction to a subgroup
(from G XG to 6) Moreover in the special case in which G=N()H
the restriction problem which arises is one to which our earlier theorem
applies. We leave the details to the reader and, as above, content our-
selves with stating the result.

Let G=N(5)H where N is commutative and N and H are separable
and locally compact. Let y; and y, be characters of N and for =1, 2
let H, be the closed subgroup of H consisting of all AcH with
[x;1h=y;. Let L' and L? be irreducible unitary representations of
H, and H,, respectively and let y; L7 be the representation nk—y, (%) L
of N(3)H#%. By the theory of Section 8 the induced representations
U%™ and U#% are irreducible and if G is a regular semi-direct product
every pair of irreducible unitary representations of G may be so obtained.

Theorem. Suppose that H, and H, are rvegularly rvelated in the
sense explained above. Then the (inmer) tensor product Unt' @ Unl is
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a divect integral over the H, :H, double cosets (with respect to the Haar
measure class) and the contribution of the double coset containing h may
be computed as follows: Let ys= [y, 1h and let yy= 1y, %s. Let M7 be
the restriction of L to H, nH, <H, . Form the (inner) tensor product
MI@M? and then the induced representation UM ®M of H, . Let
[ W*dw (4) be a decomposition of UM OM* a5 q direct integral of irreducible
representations. Then the induced vepresentations U W will be irveducible
unitary representations of G and [U*W*dw(A) will be the contribution
to Unl* @ U%L* of the double coset containing h.

This theorem on tensor products has applications to physics. A free
relativistic particle is intrinsically associated with an irreducible unitary
representation of the inhomogeneous Lorentz group. Accordingly
certain questions about the kinematics of relativistic two particle
interactions require knowledge of the decomposition of the (inner)
tensor products of the corresponding representations. Our theorem
provides these decompostitions which however have already been
determined by other methods [14], [31]. There are also questions in
the theory of the solid state whose resolution can be made to depend
upon decomposing the (inner) tensor product of two irreducible unitary
representations of the appropriate space group.

When the space group is symmorphic our theorem applies and it
would probably not be difficult to adopt it to the most general space
group. Again though, the problem has been more or less solved in the
physical literature. See [5] and the papers cited therein.

12. Induced projective representations

We have already mentioned that physical applications require that
the notion of unitary representation be generalized somewhat. This is
because many unitary operators in physics actually appear as operators
implementing automorphisms of the lattice of all closed subspaces of the
underlying Hilbert space. Clearly a unitary operator is determined by
the lattice automorphism which it defines only up to a multiplicitive
constant of modulus one. Thus if we have a homomorphism of a group G
into the group of automorphisms and attempt to describe it by a mapping
of G into unitary operators we will have an arbitrary choice to make at
each group element x. Once we have made it and have a mapping
x—>W, we cannot conclude that W,, =W, W, since the choices ““may not
match”. We can conclude only that W, and W, ¥, define the same
automorphism i.e. that W, = o (x, y) W, W, where for each x and y, ¢(x, )
is a complex number of modulus one. Of course we can try to get rid
of the multiplier ¢ by making our arbitrary choices in a sufficiently
clever way. However it turns out that this is not always possible and
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we must learn to deal with unitary operator valued functions on a
group which satisfy identities of the form W, =0 (x, y) W, W,. They are
called projective representations or ray representations.

Projective representations force themselves on our attention in
another way also. It is natural to attempt to extend the theory of
Section 8 to the case in which the normal subgroup N is not necessarily
commutative and there need exist no subgroup H. Such an extension
is in fact possible and is worked out in detail in [22]. By analogy one
would expect a theory allowing one to describe the irreducible unitary
representations of G in terms of those of the normal subgroup N and
certain closed subgroups of the quotient group G/N. In fact this is
almost what one gets but there is an important change. Given a relevant
subgroup of G/N the corresponding irreducible unitary representations
of G may be parameterized not by the ordinary irreducible unitary
representations of G/N but by those irreducible projective representations
having a fixed non trivial multiplier o.

It is easy to show that any function ¢ on G XG which occurs as
a projective multiplier must satisfy (A) o(x, ¥)o(xy, 2) =0 (%, ¥2)o (v, 2)
and hence must be what the homological algebraists call a two-cocycle.
Conversely if ¢ is any Borel function from G X G to the complex numbers
of modulus one which satisfies this identity it can be shown that there
exists a unitary operator valued function x— W, such that: (B) ¥, =
o(x, y) W, W, for all x and ¥ in G and such that (C) x— (W (), ) is a
Borel function for all ¢ and y in the underlying Hilbert space. It is
customary to normalize by always choosing W, to be the identity and
then we have the additional condition (D) o(x, 1) =01, x) =1.

Given any function ¢ from GxG to the complex numbers of
modulus 1 which satisfies (A} and (D) we define a ¢ representation of &G
to be a unitary operator valued function on G which satisfies (B) and (C).
For each fixed ¢ there is a theory of the ¢ representations of G which
is almost completely parallel to the theory of ordinary representations.
We refer to [22] for details but remark that one even has an analogue
of inducing and that the obvious analogue of the imprimitivity theorem
is true.

The definition of inducing for ¢ representations is easy to give and
we do so as we shall need the notion in what follows. Note first that a
multiplier ¢ for a group G is also a multiplier for every closed sub-
group H. Let ¢ be such a multiplier and let L be any o representation
of H. To define the ¢ representation of G induced by L we repeat the
definition given in Section 5 with two changes. We replace the identity
}Ex) =Lef(x) by f(Ex) =Lef()o(& x) and the identity (UFf)(») =

f(yx) by (UEf) (y) = %. Notice that ¢ may be identically one in
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certain subgroups H. When this happens ordinary representations of H
can induce projective representations of G. Of course ¢ is always one
at the identity so we may always define the o representation of G
induced by the identity representation of §e§. For obvious reasons
it is called the ¢ regular representation of G.

Let W by a ¢ representation and let g be an arbitrary Borel function
from G to the complex numbers of modulus one such that g(e) =1.
Then if W!=g(x)W,, W' will be a projective representation with
multiplier ¢ where o'(x, ¥) = [g(xv)/g(%)g(y)] o(x, ). Clearly, multi-
plication by g sets up a one-to-one correspondence between ¢ represen-
tations and ¢! representations which preserve all essential properties.
Thus there is little need to distinguish between two multipliers when
one can be obtained from the other by multiplication by a function
of the form x, y—g(xvy)/g(x)g(y). Such pairs of multipliers are said
to be similar or equivalent. From the standpoint of homological algebra
similar multipliers are of course just cohomologous cocycles.

In two of the groups of greatest interest in physics, namely the
Euclidean group and the inhomogeneous Lorentz group, there are to
within equivalence just two multipliers one of which is the identity.
Thus the theory of ordinary representations takes care of half the
cases. The other half may be taken care of by making the small modi-
fication necessary to include ¢ representations. When there are just
two multipliers it is easy to show that the one not equivalent to the
identity is equivalent to a multiplier ¢ which takes on only the values
one and minus one. Thus if W is a o representation we have
W,,= £ W, W,. Assigning both I, and —W, to x we obtain a so called
two valued representation.

13. Projective representations and the Stone-von Neumann
theorem

Let G be a separable locally compact commutative group and let G
be its dual. Let U and V be unitary representations of G and G
respectively and let U and V satisfy the identity:

UV,=x@)V,U, of Section 4
Let W, ,=U,V, for all ¢, y in the product group 4 =G X G. Then

I/V(tlh) (tzh): U;l 177(1 (Jta V;Ca = (]tl (]tz V T/;zz xl (tZ)

X1

= ljtl ts V;fl % X1 (t2) = I/I/(tlxl) (taxs) 41 (t2) .

Thus W is a projective representation of 4 whose multiplier ¢ is def-
ined by the equation o (fy, y1; fe, %) = 11 (fs). Conversely given any o
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representation W of A (with the ¢ just defined) we verify at once that
W, ,=UYV, where U and V are the restrictions of W to Gxe and
e X G respectively, and U and V satisfy the identity in question. Thus
the first generalization of the Stone-von Neumann uniqueness theorem
may be reinterpreted as stating that for the particular ¢ defined above
the commutative group GxG has to within equivalence just one
irreducible ¢ representation. It follows in particular that changing from
one ¢ to another can have quite profound effects on the representation
theory of a group. The ordinary representations of GxG are all one
dimensional and there are as many inequivalent ones as there are
elements of G X G.

The theory of Section 8 carries over to ¢ representations without
essential change whenever 6 =1 on the normal subgroup N. Applying
it with N =G X ¢ we arrive once more at the uniqueness theorem as
well as the additional information that our unique irreducible ¢
representation is equivalent to the o representation of G X G induced
by the identity representation of G X e. More generally let I" be a closed
subgroup of G and let I be the group of all xé@ which reduce to
1 on I". Then I" x I is a closed subgroup of G x G on which c=1 and
we may speak of the o representation of G x G induced by the identity
representation of I' x I' L It follows from the theory of projective
representations developed in [22] that this ¢ representation is also
irreducible and hence equivalent to W. Though Weil does not use this
language or point of view the facts just outlined about the uniqueness
of W and the different ways of realizing it play a significant role in his
recent paper [36]. (Cf. the author’s review MR 29, No. 2324.)

14. Projective representations and Cartier’s treatment
of theta functions

Let V be a finite dimensional complex vector space and let I" be a
closed subgroup of the additive group of ¥V which is isomorphic to a
direct product of a finite number of replicas of the integers and is such
that V/I" is compact. Let H be a positive definite Hermitean inner
product in V and, assuming it exists,* let ¥ be a function from I" to
the complex numbers of modulus one such that

2 (v Hye) = () 7 ys) e~ Hlr ) (7)
for all y,, y,€l". Here # denotes “‘imaginary part of’. By definition
a theta function is a holomorphic function f on V which satisfies the

* Tt is not difficult to show that a y satisfying (7) exists if and only
if J (H) is integer valued on I'X I
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identity
H(y, )
®| —5~ +Hy, )

o) =16 22 | )
for all v in V and all yeI'. The quotient of two such (with the same H
and y) is a meromorphic function on ¥ invariant under I and hence
a meromorphic function on the compact quotient space V/I'. This is
how one constructs meromorphic functions on V/I" when they exist
and a central question that arises is as to the dimension of the vector
space of all theta functions for a given H, I"and .

Inspired by WEIL’S paper [36], CARTIER [6] has recently shown
how the (known) answer to this question may be derived from the
Stone-von Neumann theorem and certain auxiliary considerations
involving distributions. We outline here a closely related alternative
treatment which exploits the theory of projective representations as
such and avoids the use of distributions.

In this paragraph we describe the central idea. A more detailed
account follows. Let o (v;,v,) = e~ % (H1,%)  Then ¢ is multiplicative
in each variable and so is multiplier for V. Moreover (7), says that g
is a one dimensional o representation of I'. Hence we may construct
the o representation U* of V' induced by y as well as the ¢ regular
representation of V. We may realize the latter concretely in such a
fashion that it has an irreducible subspace consisting entirely of
holomorphic functions and conclude from this that every bounded
linear operator from 5(U%) to this irreducible subspace is defined by

H{vy, va)
a “kernel”. This kernelis of the form v, , v, —>A’(v; — v,) e™HEn g™ " 2
for a holomorphic complex valued function 4’ on ¥ and the condition
that the operator defined by this kernel should intertwine U* with
the o regular representation is precisely that it should satisfy the
identity (8) defining the theta functions. In this way one shows that
the dimension of the space of theta functions is equal to the dimension
of the indicated space of intertwining operators and hence to the
multiplicity with which U” contains the irreducible in question. Actually
it is easy to see that ¥ has (to within equivalence) a unique irreducible
o representation so that the determination of the desired dimension
is completely equivalent to the problem of determining the structure
of U*. This structure can be determined by applying the general theory
of induced ¢ representations. Note that the mere existence of a one
dimensional ¢ representation of I' implies that ¢ restricted to I" is
equivalent to the multiplier which is identically one. As indicated
above this need not be true for every pair H, I  and when it is not
there are no #’s and no theta functions.
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We begin with some general facts about intertwining operators for
induced projective representations. Let G be a finite group and let ¢
be a projective multiplier for G. Let L and M be ¢ representations of
the subgroups H; and H, of G respectively. Let UL and U™ be the o
representations of G induced by L and M. Finally let R (U, UY)
denote the vector space of all linear operators from the space s#(U™)
of UM to the space s#(U%) of UL for which TUY =UEFT for all x.
R(U™, U%) is the space of all intertwining operators. We have then the:

Theorem. There is a vector space isomorphism of R(UM, UL) with the
space of all functions x—A (x) from G to the Wnear operators from H (M)
to S (L) which satisfy the identity

A xn) =0, x)L; A(x)M,o(x,n) for all x€G, 9)
EeH,, neH,.

The member T, of R(UM, UY) maps fe (UM) into f, where

0(Hy) ¢ 4G 1)
b0 ="56) 2, olx v

Actually a short calculation shows that:

AxrmnN™) fmy) _ Axy i)
a(xmy)?) T ey
for all e Hy so that we may sum over the vight cosets and remove the factor
0(Hy)
0(G) -

For the special case in which =1 this theorem is proved in [18].
The adaptation of the argument given there is straightforward and
will be left to the reader.

When G is not finite one can still form intertwining operators from
solutions of (9), at least when G/H, admits an invariant measure. One
simply integrates with respect to this invariant measure instead of
summing over the cosets. However one must restrict to those 4’s for
which the integrals converge and lead to functions in G with finite
# (UF) norm. Moreover, this is no guarantee that every intertwining
operator may be constructed from a suitable 4 — essentially because
not every bounded linear operator from L2(G/H,) to L%(G/H,) need be
an integral operator. On the other hand when auxiliary circumstances
allow us to confine attention to integral operators it is not hard to
show that our kernel will define an intertwining operator if and only
if (9) is satisfied.

Returning to our main problem let us see what (9) reduces to if we let
L be the one dimensional identity representation of §0§§ V and let
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M = yI where y is a o character of I. Our function 4 on V is then

complex valued and (9) becomes (10) A(v+v)=x(y) A @) e 7 (H)

This is similar to but not identical with the identity (8) defining
_ nH(v, v)

theta functions. However let g(v) =¢ 2 . A simple calculation

shows that:

_ _mH(y,)

glv+y)=g@e 2 ,—aRH@Y)

where R denotes “real part of”. Hence if A1=A/[g then A satisfies
(10) if and only if A? satisfies (8).

Of course we can write the formula for the intertwining operator
defined by 7, in terms of the function A1 If T, (f) =/, then

- A'lv—v)g{v—u)f(v)dy,
fA (v) - G(y, _ 7)1)
vir
Moreover, it turns out to be advantageous to do so. Indeed writing
g (v —v)fo (v, —v,) in terms of H we find that

glv—uv)o(v, —v) =g (v) g (v,) e
so that
fa(v) =g(v)VI{WE”H(”“”)A’(v —v)) g (v) } (vy) ;.

Since v—¢~"H.7%) js holomorphic this suggests that f,/g will be holo-

morphic wherever A?! is holomorphic and that one should look at the

[=>Ug(fg) . .
operators Y A simple computation shows that
UL (fg) — 3 H{z, %) ¢~ mH(%, 9)

g —=f1 where f1(v) =f(v+x)e

Since v ¢~ ™) js holomorphic we see that f! is holomorphic wherever
{ is and hence that the functions f in H(U") for which f/g is holomorphic
form an invariant subspace. That such exist is clear since for any
“polynomial” P on V, Pg is in £2(V). Actually it is not hard to show
that the f for which f/g is holomorphic form a closed invariant subspace
equal to the closure of the space of all Pg where P is a polynomial.

Let W denote the subrepresentation of U™ defined by this closed
invariant subspace. The mapping f—>f/g allows us to realize it in the
space of all holomorphic functions which are square summable with
respect to the measure g2 dv. Now it is well known and easily verified
that in such a space of holomorphic functions the ‘evaluation
functionals” %z—/%(v,) are all continuous in the Hilbert space topology.
Hence if T is a bounded linear operator from another Hilbert space to
this one, ¢—T(¢)(ve) is a continuous linear functional on this other
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Hilbert space. Thus there exists y,, in this Hilbert space such that
T(g) (vo) = (¢, ,,)- Applying these considerations to the case at hand
one shows without difficulty that any intertwining operator from H(U¥%)
to UL whose range lies in (W) must be defined by a kernel A!
satisfying (8) as indicated above. It is now routine to show that A!
must be holomorphic and hence a theta function. On the other hand
it is straightforward to verify that for every theta function A! the

A —v)glv—v)d

Uy . . .
! jsindeed an inter-
(v, —v)

mapping f—f where f4:(v) = /
vir

twining operator for U* and W. Thus we prove the

Theorem. The dimension of the space of all intertwining operators
for U% and W is equal to the dimension of the space of all theta functions
belonging to H, I" and y.

To complete the program we must show that W is irreducible, that
V has a unique equivalence class of irreducible ¢ representations and
we must determine the multiplicity with which the unique irreducible
occurs in U*. Note first that #H(v,, v,) is an anti symmetric non
degenerate real bilinear form on V and by elementary linear algebra
is equivalent to any other such. It follows easily that ¢ is equivalent
to a ¢’ arising from the set up of the Stone-von Neumann theorem.
The desired uniqueness is thus a consequence of the Stone-von Neumann
theorem. That W is irreducible can be proved in several ways. We
shall content ourselves with the remark that it is so related to the
““holomorphic function representation” of the Heisenberg commutation
relations, recently studied by SeGAL and BARGMANN [3], [32] that
its irreducibility is an immediate consequence of their work.

We deduce the required dimension from the following more general

Theorem. Let G be a separable locally compact commutative group such
that x— x21is onto and let o be an anti-symmetric isomorphism of G with ts
dual G. Formthe projective muliiplier o defined by the equation o (x,v) =1, (¥)
where f,=a(x) and suppose « such that G has a unique equivalence class
of trrveducible o representations. Let I' be any closed subgroup of G such
that o vestricted to I' 1s equivalent to the multiplier which s identically
one. Let I'' 21" be the closed subgroup of all xeG for which o (x)(y) =
w(p) (%) for all yel'. Let y be any o chavacter of I' and let n be the
cardinal wumber of I'YI". Then if n is finite it is a square and U%, the
o representation of G induced by y s the direct sum of Yn replicas of the
unique tyreducible o representation of G. On the other hand if n is infinite
then U%1is the divect sum of countably many replicas of the unique ivyeducible
o vepresentation of G.
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Proof. We apply the general theory of [22] to analyze the irreducible
o representations of G using I' as normal subgroup. By hypothe51s
I is just the set of all ¢ characters and the action of xeG on xEP °
takes it into the product with 5 of the character y —oa(y) (x)/a (%) (y) =
o (%72) (). Thus there is just one orbit in I' and for all 4 the subgroup
of G leaving y fixed is I'.. Moreover, it follows from Theorem 8.2 of [22]
that for each y there exists a Borel function g from I™ to the complex
o(r, e el) 4

X
v(y, %1, Ve ¥) =v(x, y) for all y,el’,y,el" and such t%g.ty)g M =x)
for all yeI'. Let »° be the multiplier on I'/I" such thatv(x, y) =°(Z%, 7)
where Z denotes the canonical image of x in I'Y/I" and similarly for .
It then follows from Theorem 8.3 of [22] that for each fixed y we
obtain a one-to-one map of the equivalence class of irreducible 1/»°
representations of I/l onto the equivalence classes of irreducible ¢
representations of G as follows. Given the irreducible 1/»° representation
L of I'JI" “lift” it to an irreducible 1/ representation L' of I and
let L) =p(x)L.. Then L” will be an irreducible o representation of I
and we may form U’ the ¢ representation of G induced by L".
Theorem 8.3 of [22] asserts that U™" is irreducible and that the map
L—U" is one-to-one and onto between equivalence classes. Since G
has a unique equivalence class of ¢ representations it follows that I'/I"
has a unique equivalence class of 1/»° representations. Now it follows
readily from the definition concerned that the ¢ representation of I™
induced by y is x—g{(x) M, where M, is the regular 1/y, representation
of I'YI" lifted to a 1/v representation of I™. Hence by the theorem on
inducing in stages U* contains the unique irreducible ¢ representation
of G just as many times as the regular 1/y, representation of I/’
contains the unique irreducible 1/», representation of ["/I". When I*/I"
is finite we have only to apply the Frobenius reciprocity theorem for
projective representations of finite groups to conclude that the 1/v,
regular representation contains every 1/y, irreducible a number of
times equal to its dimension and hence that 0(I"/I") =d? where d is
the dimension in question. More generally let A be any separable locally
compact commutative group and let w be a projective multiplier for 4
such that there is a unique equivalence class of irreducible w represen-
tations. In 4 X 4 consider the multiplier w' defined by the equation

0’ (%y, Vi, X, Vo) = % Let A be the diagonal of 4 x 4; that is

the subgroup of all %, y with x=1y. Restricted to this subgroup o’ is
identically one. Hence we may consider U’ the @’ representation of
A XA induced by the one dimensional identity representation of A.
Now an immediate computation shows that U], and U], commute

numbers of modulus one such that if »(x, y)=

-2
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for all x and y, that y— U] » is the o regular representation and that
x—> U,{’e is the 1/w regular representation. Thus if the w regular repre-
sentation contains its unique irreducible constituent only a finite
number of times then the U], generate a finite dimensional algebra
of operators and the 1/w regular representation must have finite
dimensional irreducible constituents. But x—V,_, is a 1/w represen-
tation whenever x—V, is an w representation. Thus there can be no
finite dimensional 1/w irreducible representation unless A4 is finite and
we conclude that whenever A is infinite the w regular representation
must contain its unique irreducible constituent infinitely many times.
This completes the proof of the theorem.

15. Induced projective representations and automorphic forms

A meromorphic function on V periodic with respect to I"is of course
just a meromorphic function on the compact complex manifold V/I". In
the special case of one complex dimension we may describe the most
general compact complex manifold (compact Riemann surface) in a
closely related fashion and construct the most general meromorphic
function on such a surface as a quotient of holomorphic functions which
have properties analogous to those of theta functions. These functions
are called automorphic forms and we wish to conclude by giving some
brief indications concerning the extent to which one can develop a
theory of these analogous to that of Section 14.

Every Riemann surface (compact or not) has a simply connected
covering surface which is conformally equivalent to either the whole
complex plane, the upper half plane or the complex plane compactified
by a point at co. We shall consider only the second case here. (The
first leads back to the theory of theta functions — and the third is less
interesting.) Let G then denote the group of all automorphisms of V as
a Riemann surface. These automorphisms are just the transformation

— j;is where «, b, ¢ and d are real and ad —bc >0 and it is clear
that we may restrict 4, b, ¢, d so that ad —bc=1. Indeed G may be
identified with the quotient of SL(2, R) by its two element center. Then
the fundamental group of our surface may be identified with a closed
subgroup I" of G in such a way that the surface is obtained from V by
identifying two points whenever one is carried into the other by an
element of G. Thus the meromorphic functions on the surface may be
identified with the meromorphic functions on V which are invariant
under the action of G — the so called automorphic functions on V.

In defining automorphic forms on V as analogues of theta functions
we note that in the theta function situation the vector space V plays

11 Functional Analysis
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the role of both G and the upper half plane — the additive group of V
acting on itself via the group operation. We note also that the positive
definite inner product H is completely determined by the function
H(vy, v,)

H(vy,9) + 2

vy, v—>3"( )zB(vl, v) and that B satisfies the identity

B (v, v, v) = B(v5, v +2;) B (1, v) 0 (vy, v)

and is holomorphic in v for each fixed v;. Its analogue for automorphic
forms is a complex valued function J on G X ¥V which is holomorphic as
a function of v for each fixed « in G and satisfies an identity of the form

J oy 0, v) = J (g, 7’)](“2: ('U)al)o‘(“l: tp)

where ¢ is a projective multiplier for G. We define such a function
J 7 for each real » as follows. For each aeG choose a representative

(a Z)ES L(2, R) such that ¢=0 and let L(«, v) be that determination
¢

of log(cv-d) for which L(x,1)=1log)c®+d® 440 where 0<6< .
Then (cv +d)" =¢"L»?) for every integer #» and we define (cv-+d)’ =
e’L®?) for every real number . Finally we set J " («, v) = (cv +d)".
When 7 is an even integer it is straightforward to verify that
T (o oz, v) =J " (0g,0) J " (0tg, (v)og). More generally the left side is
equal to the right side multiplied by a factor which depends only on a,
and a, and is of absolute value one. We denote it by o,(«;, o). An
easy calculation shows that ¢, is a projective multiplier for all real 7
and that o,.,, =0, for all integers #. Actually it can be shown that
o, and o,, are inequivalent whenever 7; —#, is not an even integer and
that every multiplier for G is equivalent to some g,.

Suppose now that I" admits ¢, characters and let y be any one of
these. Then an automorphic form of dimension » and ““ multiplier system”’
% is by definition a meromorphic function f on the upper half plane ¥V
such that

@) =T, 0) 1 () ()
for all vV and all yel.

In the theory of theta functions our group G=7V had a unique
equivalence class of irreducible ¢ representations and the dimension of
the space of all theta functions turned out to be equal to the multiplicity
of occurence of this unique irreducible in the o representation U*
induced by the ¢ character 4. In the present instance we may define
U* exactly as before but for every 7 the group G has infinitely many
inequivalent irreducible o, representations. On the other hand for
each ¢, there are infinitely many values of s for which ¢, =0, and these
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values are in one-to-one correspondence in a natural way with those
equivalence classes of irreducible ¢, representations of G which appear
as discrete direct summands of the ¢, regular representation. Thus
giving a real number s amounts to giving a multiplier ¢, and a particular
equivalence class of irreducible o, representations. It turns out that
there is a natural isomorphism between the space of all (entire) auto-
morphic forms of dimension s and multiplier system 5 and the space
of all intertwining operators for U* and the irreducible o, representation
with index s.

Specifically for each real 7 let #” denote the Hilbert space of all
complex valued functions on the upper half plane which are square
summable with respect to the measure y~®*"dxdy. For each
a€SL(2, R) and each fe #” let W/ (f) (v)=F((v)«) J~7(e, v). Then a rou-
tine computation shows that each W is unitary and that «—W, is a ¢,
representation of G. When 7 is an even integer W’ is an ordinary repre-
sentation and is clearly a ‘““multiplier representation” in the sense
discussed in Section 6. (Note that we have used the word ““multiplier”
for two rather different objects. One is a one cocycle and the other
is a two cocycle.) Since the action of G on V is transitive these multiplier
representations must be the representations of G induced by characters
of the subgroup K of G leaving a point of V fixed. If we choose this
point to be the complex unit ¢ we find that K is the image in G of the
commutative subgroup of all members of SL(2, R} of the form

cosf sinf ) )

. . It is now easy to verify that W is the representation of G
(~—sm0 cos 0)
induced by the character § —¢~*"%. Moreover it is clear that as # varies over
the even integers these characters vary over all of the characters of K.
Now for r=—2, —4, —6, ... the space " contains non zero holo-
morphic functions and these functions clearly form an invariant sub-
space. Actually it is known that this subspace is closed and irreducible
and hence defines an irreducible subrepresentation W"® of W’. The
irreducible representations W29, W% W59 are of course members of
the well known discrete series of BARGMANN [2]. As far as automorphic
forms of negative even dimension are concerned the analogue of the
theorem relating U* to the space of theta functions states the following.
For any character 4 of I' (in particular y=1) and any negative even
integer # there is a natural isomorphism between the space of all entire
automorphic forms of character y and dimension 7 and the space
R(U*, W% of all intertwining operators for U* and the irreducible
representation W"° of G.

When 7 is a real number other than an even integer the multiplier
o,%1 and I" need not admit any g, characters. When it does we may

1%
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proceed much as above. The map 0->¢“*2%? is a ¢, character
of K for all integers 2 and we get all ¢, characters of K in this way.
Moreover W+2# is the o, representation of G induced by the character
6 t2M0 gand whenever 7-+2k< —1; that is, whenever % is
an integer less than —(r4+1)/2 we may define a holomorphic sub-
representation W’ t2%0 of WW7+2  Finally for every real #<< —1 one
finds that there exists an isomorphism between the space of all entire
automorphic forms of dimension » and multiplier system y and the
space R(U* W"° of all intertwining operators for the induced o,
representation U* and the irreducible ¢, representation W °.

Once again we find ourselves confronted with the problem of finding
the structure of an induced representation. However whether or not
we have a trivial multiplier this problem is much more difficult than
the analogue which is solved by the final theorem of Section 14. This
is because we have replaced a commutative group by a semi simple
Lie group. We refer the reader to [13] and Section 4 of [33] for further
details.

Looking at automorphic forms as intertwining operators for induced
representations is useful in interpreting certain concepts. For example
if 7, and T, are both intertwining operators for U* and W"° then
T; T, is in the commuting algebra of the irreducible representation W”°
and hence is a constant ¢ times the identity. Clearly T3, T,—c (17, 7))
is a positive definite Hermitean inner product in the space of inter-
twining operators and we thus define such an inner product in the
corresponding space of automorphic forms. This is of course just the
celebrated inner product introduced in 1940 by PETERSsON [30]. Also
if 7; is a member of the commuting algebra of U* and 7, is an inter-
twining operator for U* and W"° then 7, 7; is an intertwining operator
for U* and W”°. In this way the space of automorphic forms becomes
an R module where R is the commuting algebra of U% In the special
case in which y=1 it follows from the general theory of induced
representations that there is a member of the commuting algebra of U*
canonically associated with every I':I" double coset which contains
only a finite number of right and left I" cosets. Thus each such I':I"
double coset defines a linear operator in the space of automorphic
forms. These are the well known Hecke operators.

The considerations of this section of course barely scratch the
surface of the rich interrelationship that exists between the theory of
automorphic forms and the theory of induced representations. One can
consider non compact Riemann surfaces, higher dimensional ¢, repre-
sentations of I', non holomorphic automorphic forms, complex manifolds
of higher dimension etc. etc. The whole subject is in a state of rapid
development and we shall not attempt to describe it further here.
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Convolution Operators in Spaces of Nuclearly
Entire Functions on a Banach Space*

By LEororDO NACHBIN **
University of Rochester, Rochester, New York

We shall be concerned with the theorem stated below. Its proof
depends on the two propositions indicated afterwards.

Let us start by explaining some of the pertinent notation and ter-
minology. For additional information on the background material, we
refer the reader to the bibliography quoted at the end of this article.

We shall be dealing with a complex Banach space E. For each
positive integer m =0, 1, ..., Z("E) will denote the Banach space of
all continuous m-homogeneous complex-valued polynomials on E.
Moreover, ## (E) will represent the vector space of all complex-valued
functions on E which are holomorphic on the entire E. For each f €3¢ (E),
we have its Taylor series at the origin

i) ()

i NE

f(x)=
for every xcE, and the corresponding differentials of order m =0, 1, ...
a" {(0)e P ("E).

If E’ indicates the dual Banach space to E, we shall have that
p"eP ("E) for every @cE’. We shall denote by #("E) the vector
subspace of & ("E) generated by all ¢” when ¢ runs over E’. It consists
of those elements of & (”E) each of which may be represented as a
finite sum

er+ -+,

where the ¢; belong to E’ for each j=1, ..., 7. An element of &#("E)
is said to be of finite type in case it lies in &;("E).
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** On leave from the Centro Brasileiro de Pesquisas Fisicas and the
Instituto de Matemética Pura e Aplicada, Universidade do Brasil, Rio de
Janeiro, Guanabara, Brasil.
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The Banach space &y ("E) of all nuclear m-homogeneous complex-
valued polynomials on E is characterized by the following requirements:

(1) Py (™E) is a vector subspace of &# ("E);

(2) #y("E) is a Banach space with respect to a norm denoted by
||y and called the nuclear norm; it is to be distinguished from the
current norm on & ("E) which is denoted simply by |-||;

(3) Z;("E) is contained and dense in £y (™E) with respect to the
nuclear norm and the inclusion mapping of %y ("E) into & (™E) is
continuous from the nuclear norm to the current one;

(4) For each PeZ;(™E), its nuclear norm |P|y is equal to the
infimum of the sums

I+ -+l

for all possible representations

P—gp+ - +op,

where the ¢; belong to E” for each j=1,...,7.

A nuclear complex-valued polynomial on E is by definition a com-
plex-valued polynomial on E all of whose homogeneous components are
nuclear in the above sense.

A nuclear complex-valued exponential-polynomial on E is defined
to be a function on E of the form Pe®, where P is a nuclear complex-
valued polynomial on E and ¢€E".

In order to introduce the locally convex space £y (E) of all nuclearly
entire complex-valued functions on E, let us make the following pre-
liminary considerations.

For every norm « on E which is equivalent to the one originally
given on the same vector space, and every subset X of E, we shall say
for short that & is X-centered if X is contained in the open ball with
respect to a of center at 0 and radius equal to 1.

We shall define f¢5# (E) to be nuclearly entire in case we have
d™ [(0) € Py ("E)

for each m =0, 1, ..., and, corresponding to every compact subset K
of E, there exists an equivalent norm « on E which is K-centered and
is such that

Nl

1
m!

8710 < oo

m=0

here and in the sequel ||y, stands for the nuclear norm of a nuclear
homogeneous complex-valued polynomial on E when this vector space
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is endowed with « rather than its originally given norm. We shall denote
by 2%y (E) the vector subspace of 5 (E) of all nuclearly entire complex-
valued functions on E.

For the purpose of describing the natural locally convex topology
on # (E) that we shall use, let us introduce the following concepts.

A seminorm $ on the vector space #y(E) is said to be nuclearly
ported by a compact subset K of E provided that, corresponding to
every equivalent norm « on E which is. K-centered, there exists some
real number ¢(a) > 0 for which the following estimate

0

ph=cl@- >

m=0

holds true for an arbitrary fe#y(E). We notice, as it is standard in
similar situations of seminorms ported by compact subsets, that the
right-hand side of the above estimate is not necessarily always finite.
However, once fe#y(E) and the compact subset K of E are given,
there exists some equivalent norm « on E for which the mentioned
right-hand side turns out to be finite; for such a choice of « the indicated
estimate will give us an information on p(f), hence on the seminorm .

The locally convex topology £,y on #y (E) that we shall use is the
one defined by all seminorms on J# (E) each of which is nuclearly
ported by some compact subset of E.

A convolution operator 0 in 5} (E) is defined to be a continuous
linear mapping of H#y (E) into itself commuting with all translations
in E, that is 0 7,=7, 0 for all {cE; here the translation mapping
1, of H#(E) onto itself is defined by (t,f) (¥)=/F(x —1) for all xcE
and an arbitrary fe#y (E), where {c E. Such a convolution operator is
actually a constant coefficient linear differential operator of finite or
infinite order acting in 5 (E).

Theorem. The vector subspace O1(0) on which a convolution operator
0 in Hy(E) does vanish is the closure of its vector subspace generated by
the nuclear exponential-polynomials that it contains.

As it is standard in this type of an approximation result, the proof
of the theorem is reduced via the Hahn-Banach theorem to two propo-
sitions: one of them concerns a characterization of Borel transforms of
all the elements in the dual space #y (E) to #y(E); and the other one
refers to a division property between such Borel transforms. We pass
now to a description of these propositions.

If Tes#y(E), that is T is a continuous linear form on % (E), its
Borel transform 7 is the complex-valued function on E’ defined by

A~

T(g) =T()
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for every @cE’. The mapping TT is linear and one-to-one. In order
to characterize its image set, we shall introduce the following concepts.

Let « be a seminorm on the vector space E. Denote by E, the com-
pletion of the normed space associated to E when this vector space
is seminormed by «. We shall say that « is compact in case the natural
linear mapping E —E, is compact. This means that the closed ball in E
with respect to the norm originally given in E of center at 0 and radius
equal to 1 is totally bounded with respect to «; that is, given any &> 0,
there are x4, ..., x,€E such that, for every x¢E for which |x|=1, we
can find some j=1, ..., r satisfying «(x; —x) <e.

An entire function fes#’(E) is said to be of compact exponential
type in case there exists a compact seminorm « on E such that, for
every ¢>0 we can find a real number ¢(g) =0 for which the following
estimate

1@ =cle) - exp [o(x) +e - |]]
holds true for every x¢E.

In case, however, instead of having an entire function on E, we are
dealing with an entire function on E’, as it will be precisely our case, we
will have the following more stringent notion besides the already ac-
quired one of an entire function of compact exponential type on E’.
Letting o denote now a seminorm on E’, denote by E,, the completion
of the normed space associated to E’ when this vector space is semi-
normed by «. In case the natural linear mapping E’ —E,, is continuous,
that is « is continuous, we may consider the continuous linear transpose
mapping (E,)'—E”, which is actually one-to-one in our case, where
(E.)" stands for the dual Banach space to E, and E” represents the
double dual Banach space to E. We shall say that « is E-compact if
not only o is compact, that is E'—E,, is compact, hence continuous, but
in addition the transpose mapping (E,)'—E’" which is necessarily
compact does map (E,)’ into the natural image of E in E”; that is,
@ being any w«-continuous linear form on E’, there is a necessarily
unique x€E such that @(g) =@ (x) for every pcE".

An entire function Fes# (E’) is said to be of E-compact exponential
type in case there exists an E-compact seminorm « on E’ such that, for
every £>0 we can find a real number ¢(¢) =0 for which the following
estimate

|F(9)[ =c(e) - exp [a(g) + - e gl
holds true for every gcE’.

Proposition 1. 4 complex-valued function F on E’ is the Borel trans-
form T of some continuous linear form T on 3y (E) if and only if F is an
entive function of E-compact exponential type on E'.
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Proposition 2. F,, Fy and Fy being entive complex-valued functions
on E’ such that F;=F, F, and F, is not tdentically zero, then Iy will be
of E-compact exponential type along with I, and F,.

GupTA’s previous work was concerned with results analogous to the
preceding theorem and propositions for convolution operators in the
Frechet space of all nuclearly entire complex-valued functions of bounded
type #y,(E). The results indicated in the present note were obtained
from the bounded nuclear case by a sort of an inductive limit process.

There are other natural possible candidates for the concepts of
nuclearly entire functions and of nuclearly entire functions of bounded
type. It is not yet known whether they are equivalent to the definitions
given here or in GUPTA’S work, and whether results similar to those
we proved for the considered versions of #, (E) and of 3£}, (E) can also
be established for such alternative concepts.

The same kind of a theory should be developped for the spaces
H# (E) of all entire complex-valued functions on E, and 3£, (E) of all
entire complex-valued functions of bounded type on E, that is for the
current holomorphy type.

Once these various cases are settled, there will be hope of esta-
blishing a similar theory by means of the concept of a holomorphy
type @ to collect £ (E) and 5 (E) into 5 (E), and to collect 55, (E)
and 34, (E) into 5, (E).

Finally, through the use of weights on FE, it should become possible
to collect 5% (E) and 5, ,(E) into a single type of a locally convex
space of entire complex-valued functions on E leading to a synthesis
of these various aspects of the theory.

Detailed proofs of the above mentioned results will appear elsewhere
in a joint paper with GupTA.

References

1. GROTHENDIECK, A.: Produits tensoriels topologiques et espaces nucléaires.
Mem. Am. Math. Soc. 16, 1—140 (1955).

2. Gupra, C. P.: Malgrange theorem for nuclearly entire functions of bounded
type on a Banach space. Notas de Matemaética. Inst. Mat. Pura e Apl.
(Rio de Janeiro) 37, 1—50 (1968).

3. HGRMANDER, L.: Linear partial differential operators. Berlin-Géttingen-
Heidelberg: Springer 1963.

4. MALGRANGE, B.: Existence et approximation des solutions des équations
aux dérivées partielles et des équations de convolution. Ann. Inst.
Fourier 6, 271—355 (1955—1956).

5. NacuBIN, L.: Topology on spaces of holomorphic mappings. Berlin-
Heidelberg-New York: Springer 1969.

6. ScHwWARTZ, L.: Théorie des distributions, tomes 1&2. Paris: Hermann
1950—1951.

7. TREVES, F.: Linear partial differential equations with constant coefficients.
New York-London-Paris: Gordon & Breach .1966.



Operants: A Functional Calculus for
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Abstract

Quantum theory has stimulated the study of functions of non-
commuting operators, giving rise in particular to the Weyl calculus for
functions of the momentum and position operators and the Feynman
calculus of time-ordered integrals. Here we describe a general functional
calculus for non-commuting operators on a Banach space and examine
the calculus in the simplest cases. For finite matrices the theory has an
interesting connection with symmetric hyperbolic systems with constant
coefficients.

1. Introduction

Operants are new mathematical objects which we introduce in order
to study the functional calculus of non-commuting operators. The word
“operant”’ is used to suggest the potentiality of operating. The ad-
vantage of operants is that the ordinary commutative functional calculus
may be applied to them quite freely. Operators are obtained from
operants by applying a certain linear mapping J , which is a kind of
integration process.

There is essentially only one functional calculus for non-commuting
operators. Let 4,, ..., 4, be operators and suppose we wish to define
a mapping

frof(dys oo 4,) (1)

from polynomials f in # variables to operators, which is linear in f, and
such that if f is a polynomial $ in one variable composed with a linear
function:

flzg, ..o, z)=p(@ 2+ ... +4a,%,), (2)
then

fAy, ..., A)=p(@ A+ ... +a,4,).
* Research supported by NSF Grant GP-7309.
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These two simple requirements determine the mapping, since over a field
of characteristic zero every polynomial is a sum of polynomials of the
form (2). For example,

Hia=3(mt2)?—t4—%2,
so that if f(z;, 25) =2 2, then
f(Alr Az) :%(Al +Az)2 ——%Ai—%Aﬁ:—zl—(Al Az +4, Al)'

In general, (1) may be computed by writing / in symmetric form and
then substituting the operators for the variables. For functions f more
general than polynomials, (1) may be defined by a limiting process, and
this is one of the main topics of this paper.

The operational calculus which we have outlined suffers from the
unavoidable defect that it is not multiplicative in f. For example, if
g2y ,25) =2y, M2y, %) =2, and f =gh then f(4,,4,) =g(4,, Ap) h (4, As) —
that is, 3 (4,4, +A4,A,) = A, A, — if and only if 4, and A, commute.
To circumvent this difficulty we associate to each operator 4 an operant
A, multiply operants by means of a formal commutative multiplication,
and recover operators from operants by means of a linear mapping 4~
such that

Ay, ., A) =T {4y, ..., 4,).

Any operant « such that J af =0 for all operants f is identified with 0.
This rather trivial construction leads even in the simplest cases to
complicated and interesting commutative algebras of operants.

We also consider operators 4,, ..., 4, depending on a real time
parameter ¢ and construct an operant algebra and a linear mapping J~
which is time-ordered integration. In this way we make rigorous the
functional calculus of FEYNMAN [2].

2. The complete symmetric tensor algebra

Let " be a normed linear space and let %= &, (¥") be the symmetric
tensor algebra over #”. We shall find it convenient not to identify ¥~
with a subset of %, and we represent the canonical injection of ¥~ into
% by

A 4.

(The reason for this is that in the applications ¥~ will be a space of
operators and the notation A B would be ambiguous.) Thus every
element o of % is a finite sum

a=a+X A0 47 (3)
7
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where a is in € and each 4Y) is in ¥". We give %, the norm
el =int{j ] +Z148] - 148} @

where the infimum is over all representations of « of the form (3). It is
easy to see that [aB|<|a||B] for all «, 8 in &, so that & is a com-
mutative normed algebra. Consequently its completion = & (¥") is a
commutative Banach algebra. We call & the complete symmetric tensor
algebra over ¥".

By the spectrum of a commutative Banach algebra we mean the
Gelfand maximal ideal space, which may be identified with the set of
multiplicative linear functionals not identically zero, in the weak*
topology. This basic construction was first conceived by StoNE for
Boolean algebras and commutative self-adjoint operator algebras on
Hilbert space.

We let #7* be the Banach space of all continuous linear functionals
on ¥ and recall that its unit ball is compact in the weak* topology
(the topology induced by the completion of ¥7).

Theorem 1. Let & be the complete symmetric tensor algebra over the
normed linear space ¥". There is a homeomorphism ¢ ¢, of the spectrum
of & onto the unit ball of ¥"* such that

¢ (A) = ¢y (4) (5)
for all A in ¥

Proof. If ¢, is in the unit ball of ¥"* we define ¢ on the image of
¥ in & by (5). Then ¢, has a unique multiplicative linear extension ¢
to . By (4), |¢]| =1, so that ¢ has a unique continuous multiplicative
linear extension (again denoted by ¢) to &. Conversely, any element
¢ of the spectrum of &% is of norm =1 (this is true for any commutative
Banach algebra), so its restriction to the image of ¥” in & is of norm
<1. But it is easy to see that | 4| =] 4| for all 4 in ¥, so that ¢, de-
fined by (5) is of norm =1. If ¢,~ ¢ in the spectrum of & then
¢,0(A) = Py (A4) for all 4 in ¥, and consequently for all 4 in the com-
pletion of ¥” since the ¢,, are uniformly bounded in norm. Therefore
the mapping ¢ — ¢, is continuous, and since it is a bijective mapping
of one compact Hausdorff space onto another it is a homeomorphism.
This concludes the proof.

Theorem 1 will be used in the sequel. The next theorem is included
only to show that the functional calculus for & gives nothing of interest
(in contrast to the functional calculus to be developed for the algebra
of operants).
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Theorem 2. Let & be the complete symmetric tensor algebra over the
normed linear space ¥, let A be in V', and let

6) =L,

be a power series which is absolutely comvergent for |z| <|A|. Define

f(4) by
A =3
Then
1A =2 || |4]- 6)

Proof. By (4), [A*|<|A|". Let ¢, be in the unit ball of ¥™* with
$o(A) =|4]. (Such a ¢, exists by the Hahn-Banach theorem.) Then,
if ¢ is the corresponding element of the spectrum of %,

¢(d)=¢d)=|4

and since ||¢| =1 this implies that |4"|=||4 |*. The space &, is a graded
vector space, and by (4) it is easy to see that the norm of an element
of ¥, is the sum of the norms of its homogeneous components. Hence
for each N,

n
»

N ~
H > a, A
n=0

N
= Sl l4F,
from which (6) follows.

3. Definition of operants
We denote the unit of any Banach algebra with unit by 1.

Theorem 3. Let G be a Banach algebva with unit, ¥~ a linear subspace
of € containing 1, & the complete symmetric tensor algebra over V. There
1S @ unique continuous linear mapping

T S —>C
such that for all A in V" and polynomials p of one variable,
Th(A)=p(4). (7)

For all win &, |To|<|a|. For all 4y, ..., 4, in ¥,

~ ~ 1
n

where the summation extends over all permutations m of 1, ..., n.
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Proof. The right hand side of (8) is symmetric and multilinear in
44, ..., 4,. Hence there is a unique linear mapping J : #—% such
that (8) holds and Ja=a for all a in C. By (4), |7 «| <|«| for all « in
F,, so that 7 extends by continuity to & For this mapping 7, (7)
clearly holds. This proves the existence of .

The uniqueness of J follows from the well-known fact that every
polynomial in % variables over a field of characteristic zero is a sum of
polynomials in one variable composed with linear functions. In fact, one
has the easily verified identity

gzi—ni; (=1 Z (2, 4+ ... +2)",

1'1< el gy
in which the variables z; need not be distinct. This completes the proof.
Given 7~ as in Theorem 3, we define #'=A4"(¥") by

N ={acS: Taf=0 for all §in &}.

It is immediate that 4" is a closed ideal in & and that Z is 0 on A",
We define &/ =24(7") by

A=L|N
Then &/ is a commutative Banach algebra and J induces a linear
mapping (again denoted by )

T A%
such that |[Fa|<|«| for all « in & Elements of s are called operants
over V.

If A is in ¥ then we shall use the symbol 4 to denote either the
image of 4 in & or in &, it being made clear from the context which
is meant. The mapping Al—»ﬁ of ¥ into &7 is injective; in fact, it is
isometric since by (4), |4 and also || 4] = [[TA” <|4].

By assumption the umt 10of ¥ isin ¥, so 1is in & The element
1—1 of ¥ is not 0 (since 1 is homogeneous of degree 0 in ¥, and 1 is

homogeneous of degree 1 in ). However, it is clear from (8) that
1—1 is in A7 Consequently, 1 =1 in &/

4. Time-ordered integration and the Feynman calculus

FeEvNMAN [2] discovered a beautiful operator calculus in which the
basic idea is that the order of operation of operators is indicated by a
time parameter rather than by the position of the operators in an
expression. This idea has been quite useful in formal developments
related to quantum electrodynamics. For a discussion of the calculus
we refer to [2]; here we show how the notions involved can be made
rigorous.
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Let % be a Banach algebra with unit. By L% (R) we mean the Banach
space of all Bochner integrable functions from R to % (modulo functions
equal a.e. to 0) with the norm

41=J 14 @) a.

Theorem 4. Let € be a Banach algebra with unit, let V" be a linear
subspace of Ly (R), and let & be the complete symmetric tensor algebra
over V. There is a unique continuous linear mapping.

T L€
such that 1 =1 and for all A,,..., A, in ¥,
TAy.. . Ay=[ - [Ayylla)  Anintay) dty ... dE, 9)

where for each n-tuple of distinct veal numbers ¢y, ..., t,, 7 is the permuta-
tion of 1, ..., n such that

tn(l) > > tn(n) .
For all win &, | T a| <.

Proof. Almost every m-tuple consists of distinct 4, ...,4,, so the
integral in (9) is well-defined. It is symmetric and multilinear in
Ay, ..., 4,, so there is a unique linear mapping J : $—% such that (9)
holds and J1 =1. By (4), [T a|<|«| for all « in &, so I extends by
continuity to &. This concludes the proof.

Again, we let
N ={aeS: T af=0 for all § in &}.

This is a closed ideal in % on which .7 is 0, so that 9 induces a linear
mapping of norm =1 on the quotient Banach algebra &/ =.%/4". Ele-
ments of &/ are called operants over ¥~ and 7 1is called time-ordered
integration.

5. Spectral properties of operants

Let #” be a linear subspace, containing 1, of the Banach algebra %.
The operant algebra &7 is by definition a quotient of &, so the spectrum
of o/ which we denote by o (&), is the subset of the spectrum of &
consisting of those elements which vanish on.#". By Theorem 1 we may
identify o (&) with a subset of the unit ball of #™*. Since 1=1 in </,
any ¢ in o (&) satisifies ¢ (1) =1. We call a linear functional ¢ of norm
=1 on ¥  such that ¢ (1) =1 a state of ¥ By the Hahn-Banach theorem
a state of ¥ has an extension which is a state of € (and in case ¥ is a
%* algebra a state is automatically real on self-adjoint elements and
positive on positive elements). Thus o (%7) is a subset of the space of
states on ¥ in the weak* topology.

12 Functional Analysis
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If ¥'=%=L(Z) is the algebra of all bounded operators on the
Banach space & we refer to operants over ¥~ as operants over %.

Theorem 5. Let of be the algebra of operanis over a Banach space Z.

For each u in & and w* in X* such that |u*|=|u|= (u*, u) =1 there
s a unigue element ¢, in o (&) such that
¢ (d) = (w*, Au) (10)

for all A in L(Z).

Proof. For each such # and #* the functional ¢,: 4~ (u*, Au) is a
state on L(%), so we need only show that ¢, is 0 on 4.
Define E in L(%Z) by
Ev=(u* v)u.

Then E is an idempotent of norm 1. We clain that for all « in &,

lim 7 E™a (11)
m—r00
exists in L(%Z). The mapping a7 E”« is norm decreasing, so we need
only prove this for a of the form

a=A4,...4,, (12)
since these span a dense set in <. But as m— oo, all but an arbitrarily
small proportion of the (m +n)! terms in the expansion by (8) of
g E"’/L.../L have at least one factor of E before and after each 4,.
Therefore

lim JE"A4,...4,=T (EA,E)~---(EA, E)~
m—>o0
= (u*, Ay u)---(u*, 4, u)E.
Thus for all & of the form (12), and consequently for all « in

3 g Fm
&, () =”}1_I}1w(u*, (T E™a) u).
But if « is in A", T E™a=0 so that ¢, is 0 on .4". This concludes the
proof.

If A is in L(%Z) we define its numerical range W (A) to be the set
of all complex numbers of the form (u* Au) where |u*|=|u|=
(w*, uy =1. This agrees with the usual notion [5] in case £ is a Hilbert
space. (We choose the inner product in a Hilbert space to be linear in
the second variable.)

Theorem 6. Let o be the algebra of operants over a Banach space & .
For all A in L(Z),
le*l|= sup [e*]. (13)

wEW (4)
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Proof. By subtracting a real number from 4 we may assume without
loss of generality that W (4) is contained in the left half-plane, so that
the right hand side of (13) is =< 1. Semigroup theory implies then that
|¢4| <1 for ¢ =0. (Since 4 is bounded a short direct proof of this fact
may also be given.)

As in any Banach algebra with unit,

ed = lim<1 +%~)n

n—00

Since 1 =1 in & and the mapping 4~ 4 is isometric,
A A
[+l

4 4 =
But 1 —1—%:574_0 (%) and |en | <1. Therefore |1 -+ %Il <1 +o(%)

and so ][67‘ | =1. This proves the inequality =< in (13).
On the other hand, if w is in W (A4) then by Theorem 5 there is a ¢
in ¢ () such that ¢ (d) =w, and consequently

o= (%) | =] D] =] ]
This concludes the proof.

Notice that we have shown that for any element of &/ of the form el
for A in L(%) the norm and spectral radius coincide.

By Theorem 2, in the Banach algebra & we would have |¢? | = ¢4l
Theorem 6 gives a much more useful result. For example, if H is any
bounded self-adjoint operator on a Hilbert space and ¢ is real, | ¢t [=1.
This estimate does not depend in any way on the norm of H. By
STONE’s theorem, any strongly continuous one-parameter group of
unitary operators is of the form ¢*# for H a possibly unbounded self-
adjoint operator, and this suggests the possibility of defining operants
¢ for such H. Also, the analogue of Theorem 6 holds for the time-
dependent operants of § 4. These facts enable one to construct a theory
of operants corresponding to unbounded operators in such a way as to
make rigorous most of the manipulations of the Feynman calculus [2].
We shall not do this here, but proceed instead with the discussion of the
spectral properties of operants in the bounded time-independent case.

Theorem 7. Let o/ be the algebra of operants over a Banach space X.
For all A in L(%), the spectrum of A contains the closure W(A) of the
numerical range of A and 1s contained in the convex hull of W(A). If &
is a Hilbert space the spectrum of A is W(A).

12*
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Proof. The spectrum ¢ () of A is the set of all numbers of the form
¢ (A) where ¢ is in ¢ (). By Theorem 5, o(A) contains W (4) and
since it is closed it contains W(A4). Now let A be outside the convex
hull of W(A4). Without loss of generality we may assume that W(4) is
contained in the left half-plane and 4> 0. By Theorem 6,

o o
[ =2 gy

=]

converges, and so it converges to (A —A)-1. Thus ¢ (4) is contained in the
convex hull of W(4).

The last statement of the theorem follows from the theorem of
StoNE [5, p. 131] [6] that W(A) is convex if A is an operator on Hilbert
space.

6. The Weyl calculus

Let A=(4,, ..., 4,) be an n-tuple of bounded self-adjoint operators
on the Hilbert space 5#, let ¥~ be the linear subspace of L(5#) spanned
by them and 1, and let &/(¥") be the operant algebra over ¥ By
Theorem 6, if A=(4,,..., 4,) is in R" then |[6“'7‘||=1, where 1A=
MA, +---+2,4,. Consequently, if f is any function on R* with inte-
grable Fourier transform j, the inverse Fourier integral

~

1 N
H(4)= Wff’” 4f(2)
converges in &Z(7"). The mapping defined for such f by

fro 1) = T1A) = G [¢44T0) d2=(R, 1),

where R is the inverse Fourier transform of ¢4, is called the Weyl
calculus. It was introduced by HErRMANN WEYL {8; § 45] in connection
with the quantization problem of defining f(P, Q) where P and Q are the
(unbounded) momentum and position operators. It has been studied in
this context by IRVING SEGAL [4] and others, and in the general case of
self-adjoint operators by MicHAEL TAYLOR [7] and ROBERT F. V. ANDER-
soN [1]. The theory of operants is a convenient framework for studying
the Weyl calculus.

Theorem 8. With A as above, let R be the L(#)-valued distribution
which is the tnverse Fourier transform of ¢4 on R". The spectrum of
Ay, A, in (V) is the support of R. If W is any linear subspace of
L(5#) containing ¥ then the spectrum of A,, ..., A, in L (W) contains the
support of R.

Proof. We denote the support of R by supp R and the spectrum
of 4, ..., 4, in L (#) by oy (4). As we remarked at the beginning of
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§ 5, the state ¢ in o((#) is real on self-adjoint operators, so that
o4 (4) is contained in R”.

Now suppose that x in R” is in supp R but is not in oy-(4). Then
there is an fin & (the space of C* functions on R" with compact support)
vanishing on ¢y-(4) such that f(4) =(R, f) is not 0, so that f(A) %0
We may then find a g in & vanishing on oy (ﬁ) such that g is 1 on the
support of f. Then g™ f=/f so that

lF@l=1E"HDI<]e @11/ (A)]. (14)

Since the Fourier transform g of g is integrable, we have that for any ¢
ino (L)),

1 i1- A\ ~
b (e(D) = u [ 6D 20 22
1 i) 5 -
= g | 4P () dd=¢(9(A) =o.
Thus g (A) is in the radical of &7 (#"), and by the spectral radius formula

g ([ —o.

This implies that |g(4)™|<1 for some m, and by (14) this means that
f(A)=0, a contradiction. Therefore supp R0y (4 )

Since ¥” is the span of 4,, ..., 4, and 1, it follows that Ay, .. A,
and 1 generate «Z(¥"). Suppose that x in R" is in o~ (4) but not in supp R.
Then there is an f in & such that f(x)g=0 but (R, fp) =0 for all poly-
nomials p. Therefore Zf(4) p(4) =0 for all polynomials p; that is,
T f(A) a=0 for a dense set of « in &7(¥") and hence for all « in &7(¥").
Consequently, f(4) =0. But x is in ay-(d), so there is a ¢ in o (Z(¥))
such that ¢ (4) =, and as we have already seen, ¢ (f(4)) =f(¢ (4)) =
f(x) =0, so that f(4) =0, a contradiction. Therefore supp R =0y (4).
This completes the proof.

Consider the hyperbolic system

o P 2
= =A. Vu_( Vo o +An87,,)“ (15)

where 4 is an n-tuple of self-adjoint matrices. By performing a Fourier
transformation in the space variables we see that the fundamental
solution of (15) is the inverse Fourier transform of ¢'*4‘ Thus the
support of the fundamental solution of (15) is the cone in R"*! through
the spectrum of &7(¥7). This connection with symmetric hyperbolic
systems was pointed out by L. HSRMANDER (see [1]).

For results on the Weyl calculus we refer to TAYLOR [7] and ANDER-
SON [1]. We shall describe briefly one result of ANDERSON as it gives the
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structure of the operant algebra for the simplest of all non-commutative
Banach algebras: L(s#°) where 5 is a two-dimensional Hilbert space.

Let o0y, 03, 63 be the Pauli matrices:
1 0)
=\, _,)

01 014
A=\1 o) T\io)

Together with 1, these form a basis for L(s#) (where 5 is a two-dimen-
sional Hilbert space with a given orthonormal basis). Anderson shows
that the L(s#)-valued distribution R, the inverse Fourier transform of
¢, is given by

(R, 1) =(m(1+7 55 +0- 7))

where 72 =12+ x% +x; on R® and u is normalized surface measure on
the unit sphere X of R3. If # is any unit vector in 3¢,

(,00u), (u,00u), (4,03u)

are the components of a point on 2. Thus the spectrum of the operant
algebra s over J# is the set of all pure states of L(#) (those of the form
A (u, Au)) and not their convex combinations. This example also
shows that the ideal A" is highly non-trivial: for any smooth f which
vanishes together with its gradient on X, f(¢) =0 in 7. The ideal A" is
generated by 1 —1 and by «? where

o ~2 ~2 o~
a«=1—0;—0;—03.

Notice that o == 0 since o= —2, but for any polynomial § in G,, 6,, 5
if we multiply «? by g, write the result in symmetric form, and sub-
stitute the matrices for the variables we get the zero matrix.

7. Operants over a finite-dimensional Hilbert space

Let 5# be an n-dimensional Hilbert space, &7 the algebra of operants
over . We shall find the spectrum of &/ and the mapping 7 explicitly,
generalizing the result of ANDERsON for the case #=2.

We let L(#)* be the dual space to L(5#), X in L(3#)* the set of all
linear functionals on L(3#) of the form A4+ (#, A %) where % is a unit
vector in &, u the unitarily invariant positive measure on 2 normalized
so that u (&) =1, ¥, the real vector space of all self-adjoint elements of
L(s#) and ¥y its real dual, so that #j is all elements of L(s#)* which are
real on ¥75.

The symmetric tensor algebra % (L(#)) may be identified with the
algebra of polynomial functions on L(#)*, and elements of &= (L(:#))
are functions on L(##)*. Let R be the inverse Fourier transform of the
L(s#)-valued function on ¥, given by 4 +»¢*4. Then R is an L(s#)-valued
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distribution on #7 , for all & in & we have Ja = (R, «), and the support
of R is the spectrum of &7, by Theorem 8. We shall show that this
support is X' and shall exhibit R explicitly. The method we use is due
to ANDERSON [1].

The gradient I on ¥ takes complex-valued functions on ¥5 into
L(s#)-valued functions on v, . If €, .--,¢, is a basis for &, so that
elements A of L(5#) are represented by matrices (a;;) with respect to this
basis, then x;; defined by x,;;(4) =a,; are a basis for L(s#)*, and Vis
the matrix with entries 9/9x;,. We let I’* be the k-th matrix power of V.
It is the inverse Fourier transform of multiplication by (14)* on ¥4.

Theorem 9. Let R be the tnverse Fourier transform of the funciion
e on ¥y. The support of R, and the spectrum of s, is X. Explicitly,

- N L n4j-+m 7 _____i.___
R‘giiﬂ,EQ“‘“+”*J@JW—*—1+W! (16)
% ‘.bn—k—j—l V) (V- 2)"u

where ¢o(V) =1 and ¢;(V) is the sum of the principal minors of order j
of V, for 1 =1, ..., n.

Proof. The relations

81?1:8'0 ot g AT

: (17)
=gyt dyt o F g AT
determine unique functions g,, ..., g,_, of 7, 4, ..., 4, provided the
A’s are distinct. We may solve for the g, by Cramer’s rule; in particular,
ety .. At MA .. eh
go=| ! = (=1t e . (18)
AL WY A A2, et
D D
12,...8"4
1= ; (19)
124,...¢%n

D

where D is the Vandermonde determinant

1A ... 271
D=II(h—2)=|:

i<i 12,.. 11
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If we differentiate the numerator on the right hand side of (18) we
obtain a determinant which is the same as the numerator of (19) except
that the i-th row is multiplied by ;. Let ¢; by the j-th elementary
symmetric function of 4,, ..., 4,:

Then we have by the above argument that

%o — (=1 b, g (20)

Now let
0 7]
X — o + ... +Tln'
If we apply X to both sides of (17) we find that
re =Xg o+ Xg M+ +Xg,y AT
+&+28 A+ 40

for k=1, ..., n. Therefore

r8=Xg+&

rer=Xg +2¢,

7’g.n—2 :Xgn—Z + (% - 1) 8n—1

7’gn,—lz‘){gn—l’
so that
1
=11 r—X) go. (21)
Easy inductions show that ¢,_,=Fk! X* ¢, and
y —X)k
(0 e =G ks (22)
By (21) for k=n—1,
O8n—y O 1
oy ar (m—1)! (r —X)*~ "o

1 1 w1 080
= s g
and by (21), (20), and (22) this is equal to

( )"—1 Xy -1
8n— 2+ ( ) (7‘-—- ) ¢ngn 1=8n— 2+¢1gn 1

Therefore

gnl

En—2= — 1 8n1-
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If we apply 9/8r again we find in the same way that

Pgn— 8g
En—3= 3221 — 5 + b2 8umr
and by induction on » —Z,

n—k—1 . o
Er= 'Zo (—ayrrhritt ¢n—k—f—1§ﬁgn—1r (23)
7=

where ¢, =1.

Let A=(4, ..., 4,). By (17), the functions g, have the homogeneity
property that

g, ) =r"g(1,7 2).
vi(d)=g:(1,74)

=N+ B G A) + - +yaa (DG

for =1, ..., n. Then g,_,(r,5A) =7""1y,_,(r 1), so that by (23), the
Leibnitz formula for the derivative of a product, and the fact that

Let

so that

0
3—,,%:—1(71) =2 Vyn—l (7'}.) )
we have

n 1

=3 -

—1
2, it L IM)Z( )—-“n—f—yitm)

(4~ V)ynl()

If A is any matrix we let ¢;(4) be the sum of the principal minors
of order j of 4 (so that ¢, (4) = tr 4 and ¢, (4) = det 4) and ¢, (4) =1.
We let y,(4) be the functions such that

¢4 =yy(4) +y1(4) GA) + -+ +yu_a(4) G4

Then we may substitute 4 for A in (24). Now we claim that

1 N
(n_1)!.u(A)=?’n—1(A)- (25)
If we show this, and use the fact that the inverse Fourier transformof 4 -V

is — V- x, then (16) follows at once from (24) with A4 substituted for 4.
The Fourier transform of u is

1(A)=[e "4 du(x).
Let us find & (4) under the assumption that A is ¢ times the diagonal

matrix with distinct entries 4,, ..., 4,. By definition of y we then have
that

(24)

'a fe‘—’(“rA“) d»v ngM[Wl’ dy( )
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where v is normalized surface measure on the unit sphere S of 5#.
The mapping
g: (g, ., u) > (|3 ..o, | 0,]2)
of C" into R” maps S onto the simplex T in R" of all positive (w,,...,w,)

with sum 1. If we use polar coordinates | ], 8, for each complex variable
u, then Lebesgue measure on C” is

|uy|d|uy| @0,y ... |u,|d|u,|d0,,
and so the measure on R, induced by the mapping ¢ is a constant times
dlug|®...d|u,|2.

Under the mapping ¢ a shell of constant thickness about S goes onto
a slab of constant thickness about I. Consequently the measure on the
simplex T induced by the mapping ¢ applied to » is normalized Lebesgue
measure on 7 ; that is, the measure

(n—1)dw,...dw,_,.
Therefore

1 ~ :
(n‘—1)—!‘u(A):f6£17wi dwl...dwn_l. (26)
T

Denote the right hand side of (26) by @,(4,, ..., 4,). Explicit inte-
gration of the last variable w,_; shows that

Aoy Ppegy Apy) — @Ay, oo, Ap—s, A
@( e, ”)_ n 1(1 n 2}.’:&_1)}%_1 n(l n—2g n) . (27)

Now A has entries —i4,, ..., —¢4, so v,_;(4)=g,_1(1, 1), which is
given by (19) with » =1. If we expand the numerator of (19) along the
last column we find that g,_,(1, 1) satisfies the same recursion relation
(27) as @,. Hence to prove that @,(2)=g,_,(1, Z) it sufﬁces to prove
this for # =1, and it is immediate that @, (4,) =g,(1, 4,) = ¢*. Thus (25)
holds for diagonal 4 with distinct entries. Since both sides of (25) are
continuous and unitarily invariant, (25) holds for all 4 in ¥#. This
proves (16).

Obviously supp R<{ZX. By Theorem 8, supp R=0c (%) and by
Theorem 5, X'Co(sZ). Therefore supp R=oc (&) =2. This concludes
the proof.

As a corollary, the support of the fundamental solution of the
hyperbolic system

]
r=A4-Vu (28)

is the cone in R**+1 through X. This result is due to GARDING [3], who
used Riesz integrals rather than Fourier transforms to solve (28). If 4
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is an n-tuple of self-adjoint matrices, define the numerical range W (A4)
to be the subset of R” of all points with coordinates of the form

(w, Ay ), ..., (u, A, u)

where # is a unit vector. Then the support of the fundamental solution
of (15) is contained in the cone in R*** through the numerical range of 4.
The numerical range of 4 is the spectrum of 4 in the operant algebra
over the underlying finite-dimensional Hilbert space but the spectrum
of 4 in the operant algebra over the span 7~ of 4 and 1 may be smaller.
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Local Non-linear Functions of Quantum Fields

By IRVING SEGAL*

Brandeis University and Massachusetts Institute of Technology

1. Introduction

I think it is good that one of us is treating a topic that impinges
explicitly on relations with theoretical physics, because the complemen-
tarity between mathematics as a pure discipline and mathematics as a
universal distillation from the experiential universe is one of the striking
features in some of MARSHALL STONE’S line of work. In addition to this
primary consideration, there is the general one that the Sovereign
Nation of Mathematics — so to speak — is now surely sufficiently
secure and vital that it befits it to explore relations with other Nations,
such as Physics. The subject of quantum fields has seemed particularly
appropriate in these connections. Purely mathematically, it provides a
proving ground for the development and testing of methods for dealing
with some of the most novel and exciting problems of contemporary
analysis, — to name only some of these, the problems of highly singular
perturbations, - falling outside the scope of conventional theories of
operators in Hilbert space and generalized functions, of which some of
the work of FELDMAN [1] and NELSON [8] is representative; the devel-
opment of real and complex analysis for functions on infinite-dimensional
spaces, of which some of the work of Gross [5], SHALE [16], and myself
[10] is representative; and the problem, not only of analysis but of
meaning, of the application of non-linear operations to weak functions
(e.g., the raising of a Schwartzian distribution to a power) (cf. e.g. [5],
[11] and [14]). On the other hand, in relation to potential commerce
with the Nation of Physics, one has in quantum fields probably the most
sophisticated and far-reaching idea of contemporary theoretical physics.

2. What is a quantum field?

The term ‘““quantum field” means many things, not all of them
tangible, to many people; as a consequence it seems desirable, in the
mathematical treatment, to use more neutral terminology. What we

* Research conducted in part during the tenure of a Guggenheim Fellow-

ship and in part with the support of the Office of Scientific Research
(U.S.A.F.).
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shall call a “quantum process”’ can" be regarded ‘as a mathematical
abstraction from a modal, often heuristic, usage of the term ““quantum
field”.

Let M be a given set, and P a given real linear vector space con-
sisting of functions, or linear equivalence classes of functions, from M
to a given real linear vector space L. (For brevity, and/or a suggestion
of the role of these concepts in concrete instances, M may be called the
underlying geometrical manifold; P, the probe space (after the discussion
of the role of probes in field measurements in a well-known paper of
Bour and RoSENFELD); and L, the spin space). An operational process
in M with probe space P is defined as an equivalence class of linear
mappings @ from P into the set of all closed densely defined linear
operators in a Hilbert space H, where the linearity is relative to the
strong operations in the partial algebra of all closed densely defined
operators in H; the strong sum of two such operators is the closure of
the usual sum, and is defined to exist only when this closure exists and
is densely defined; and similarly for strong multiplication by real
numbers. The equivalence relation in question is as follows: two such
processes, @ and @, with corresponding Hilbert spaces H and H' are
equivalent if and only if there exists a unitary transformation U of H
onto H' such that for all xeP, U@ (x) U= (x). The notion of
weak operational process is defined in the same way, relative to a given
dense linear domain D in H, except that the values @ (x) are bilinear
forms on D x D. Any member of the equivalence class defining a process
may be called a concrete process.

A gquantum process is an operational process with an additional
important element of structure called a “vacuum vector”’. More specifi-
cally, a quantum process in M with probe space P is an equivalence
class of structures (@, H, v) such that (P, H) is a concrete operational
process, and v is a unit vector in H which is cyclic for the ring of opera-
tors determined by the @ (x); two such structures are defined as equiv-
alent in case there exists a unitary operator U which has the same
property as earlier, and in addition the property that Uv=v. It will
suffice to define the foregoing ring of operators (where I use the term
“ring” in the original sense of MURRAY and voN NEUMANN) for the
more general case of a weak operational process. Specifically, the ring
of operators generated by any given set of bilinear forms on domains
D X D, where the D are given dense domains in H, is the set of all
bounded linear operators on H which commute with all unitary operators
which leave invariant the forms in question.

The (direct product) combinations of essentially three distinct
types of quantum processes provide mathematical representations of
most of the quantum fields considered in heuristic practice; and these



190 I. SecaL:

three types are also distinguished in a mathematically natural fashion.
They are as follows.

(1) The abelian process, characterized as that for which the operator
ring R determined by the @(x) is abelian. A (strict, i.e. non-weak)
abelian process is mathematically essentially the same as a generalized
stochastic process.

(2) The next simplest assumption to that of the essential commu-
tativity of the ®(x) is that any commutator of any two of the @ (x)
is essentially a scalar operator, not necessarily zero. Non-trivial operators
of this type cannot be bounded, and in order to suppress irrelevant
pathology connected with unbounded operators as well as for other
purposes, it is advantageous to express the assumption in the form
applicable to a self-adjoint process, i.e. one such that each @(x) is
self-adjoint :

W (x) W(y) = P4EN W (x ),

where W(x) =¢'?®, and A(x, y) is a (necessarily) antisymmetric real
bilinear form in the vectors ¥ and y in P. This may be called a
symmetric process; when the form 4(- , -) is non-singular (as in Theorem 2
below) or effectively non-singular (as in Theorem 1 below) it is then
totally distinct from the abelian process. It follows from Stone’s theorem
and the linearity of @(-) that

[P(x), P(y)] =i d(x,9) I;

the latter relation is an abstract mathematical form of what are called
the ““canonical commutation relations’’ in much of the physical litera-
ture, and the physically associated quantum field is often referred to as
“satisfying Bose-Einstein statistics”, etc.

(3) Another generalization of the abelian case is that in which the
anti-commutator of any two of the @(x) is a scalar operator:

D(x) P(y) +P(y) P(x)=S(% 1),

where S(x, y) is a (necessarily) symmetric real bilinear form in the
vectors x and ¥ in P. Such a process may be called anti-symmetric. In the
physical literature, the indicated relations are referred to as the ‘“canon-
ical anti-commutation relations”, and an associated quantum field is
said to satisfy ““Fermi-Dirac statistics”’, etc.

The algebraic differences between the anti-symmetric and symmetric
processes are parallel to those between the orthogonal and symplectic
groups, but are involved also with analytical complications, arising
from the unboundedness of the operators @(x) in the symmetric
case. In the most important case in which the symmetric form S(-, *)
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is positive definite, the process operators @ (x) are bounded. There is
nevertheless a remarkable analogy between the results, if not all of the
methods, for the anti-symmetric case and the symmetric case. Since
in the time at my disposal I can at most give a suggestion of the essen-
tial ideas, I shall confine the further treatment to the symmetric
case, which is the most generally familiar one.

3. What is a linear field?

As an illustrative example, and for its intrinsic interest, let me
describe the simplest nontrivial quantum field which arises in theoretical
physics, the so-called ‘“‘neutral scalar free field”. First, let me give an
intrinsic characterization based on mathematical versions of conven-
tional theoretical physical postulates) Let M denote 4-dimensional
space-time; let P denote the space of all infinitely differentiable real-
valued functions on M of compact support. Let T denote the linear
differential operator [] —m2, where [1= —(0/0)2+4, and m is a
real constant, acting on functions on space-time; and let D denote
the (Schwartz-)} distribution solution of the equation 7D =0 having
the Cauchy data at time ¢=0:D(x, 0) =0; (8/0%) D (%, £)| ;mo =0 (%),
where ¥ denotes the space variable. (Alternatively, D is the difference of
the elementary solutions for the differential operator 7" which are
supported respectively by the forward and backward cones.) This
definition of D may seem slightly ad hoc, but D (x —y) may be charac-
terized as essentially the unique non-zero generalized function F of x
and y which satisfies the differential equation TF =0 as a function
of x, is anti-symmetric in x and y (and so satisfies the equation also as
a function of ), is invarjant under the Poincaré group (as is the opera-
tor T), and satisfies a very mild regularity condition. Let 4 denote the
(degenerate) anti-symmetric bilinear form on P given by the equation

A(f, &) =JID(x—y) [(x) g(y) dx dy.

(A may be directly characterized as the unique anti-symmetric form on
P which is invariant under the Poincaré group, satisfies the equation
A(Tf, g =0 for arbitrary f and g in P, and is a continuous function of
f and g in a certain weak topology.)

Theorem 1. There exists a unique structure (D, H,v,I') such that
(D, H,v) is a symmetric quantum process over (m, P, A) and I' is a
continuous one-parameter unitary group on H, such that:

(1) D satisfies the differential equation, in the sense that

O(Tfy=0, [ arbitraryin P;



192 1. SEGAL:

(2) I'(®)v=1 for all i, the infinitesimal generator of I" given by Stone’s
theorem ts non-negative, and I' intertwines appropriately with @ in the
sense that

I'ey o) I')*=2(f),

where [, (%,1) =f(X, t+1t) (this means that T'(f) acts as the temporal
displacement operator, and that the energy is positive);

(3) The mapping f—exp (i D(f)) is continuous in a certain velatively
weak sense, from P to the unitary operators on H.

I remark that the same is true if I" is required to be a continuous
unitary representation of the orthochronous Poincaré group (or of the
full Poincaré group, if anti-unitary operators are admitted); the posi-
tivity condition then applies only to all time-like displacements, i.e.
displacements conjugate within the Poincaré group to the indicated
temporal displacement. But this Poincaré invariance is simply a corollary
to the theorem in the light of the invariance of the operator T'; the
theorem really applies equally well to an extensive class of temporally-
invariant operators which are not Poincaré-invariant, or even act in
totally different spaces from conventional euclidean space.

Adopting distribution notation, the theorem states mainly that,
apart from regularity features of an anticipated type, there are unique
operators ¢ (%) for xe M (actually, of course ¢ (%) is not a well-defined
operator, but only its average [¢(x)f(x)dx=®(f)), and a cyclic
vector v in the Hilbert space H on which these operators act, such that

(O —m?) ¢ (%) =0;
[¢(x), ¢(M)]=iD(x—y);

v defines a state which is both temporally invariant and of positive
energy.

The last condition means that if FF is any bounded function of a
finite number of the @ (f), and if F* denotes the corresponding function
of the @(f,), then (F'v,v>=(Fv,v); and if G is any similar bounded
function, then <(F*Gv, v) as a function of ¢ has positive spectrum (i.e.
its Fourier transform vanishes for negative values of the dual variable
to £, the so-called “frequency”). The one-parameter unitary group
I'() described earlier can be constructed from such a system (@, H, v),
and will have the earlier indicated properties.

The structure (@, H,v,I') can be explicitly described in three
essentially different known representations, all unitarily equivalent,
but providing diagonalizations of differing sets of operators. The most
natural representation in connection with the treatment of non-linear
local interactions is that in which. the (mutually commuting) operators
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¢ (%, 1), the time £, being fixed, are simultaneously diagonalized;
because these operators determine a maximal abelian algebra of opera-
tors on H, this representation is essentially unique. At various times I
have called it the “real wave representation’’, because it makes explicit
the wave properties of the free field, complementarily to its particle
properties, clearly visible in the first representation given for free
fields, developed in non-relativisitic form by Coox, following the heu-
ristic work of Fock; I have also called it the “renormalized Schrodinger
representation”, because it involves an infinite-dimensional analog to
the familiar Schrodinger representation for operators satisfying the
canonical commutation relations, in which the only formal change is a
gross alteration of the euclidean volume element which can be described
as a renormalization. Now it is not immediately obvious from Theorem 1
that it is legitimate to consider the free field at a fixed time, even after
smoothing in space, for it asserts the existence of a bona fide operator
@ (f) only when f is a quite regular function of both space and time, i.e.
after smoothing in space-time. This is however the case, and the only
reasons for stating the theorem in terms of space-time averages is that
this is very frequently done in the literature, and makes properties of
relativistic invariance more manifest; and that the relation between
the space-time averages and the space averages at fixed times is in
non-linear cases a very sticky point, which should benefit therefore by
illustration in the comparatively simple case of a free field.

Rather than merely restate the Theorem in terms of space averages
of the quantum process ¢ (x) at fixed times, I shall take advantage of
the opportunity to give a much more general theorem, which serves also
to indicate how relatively little the geometrical structure of Minkowski
space has to do with the general idea of quantization; the state of the
underlying ““classical”’ system at a fixed time need not be specified by
functions on space (the “Cauchy data”) for the equation Typ=0,
where o is an ordinary real-valued function, but by vectors in general
Hilbert spaces. It is only with the consideration of non-linear inter-
actions that multiplicative properties of these Hilbert spaces, arising
from representations of them in terms of numerical function spaces,
become really material.

Theorem 2. Let B denote a non-negative self-adjoint operator on a
veal Hilbert space G, having only O in its null space. Let H denote the
Hilbert space completion of D@ Dy—1, where C = B, and Dy for any
operator T indicates the domain of T as a Hilbert space, velative to the
inner product: {x, vy =<Tx, Ty), and (-, - denotes the inner product
n G. Let A denote the (non-singular) anti-symmetric form

AL Dgr, [:Dgy) =<Ch, Cr gy —<Cf,y, Cr g

13 Functional Analysis
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on H. Let 0(-) denote the continuous one-parameter unitary group on H
whose matrix relative to the indicated decomposition is

sin (¢ B
o(t)=( cos 1) SR
—Bsin (tB) cos (¢B)

Then there exists a uwique symmetric quantum process (v, K, v)
and positive-generator one-parameter unitary grouwp I'(t) on K, with probe
space H and relative to the given form A, such that I'(t)v=v,

T'e)ypER IO =y(00) 2);

and denoting p(0(t) (0©1)) as D(f, 1) and p(0() (D0)) as D (g, 1), the
following relations hold:

(0at) D(f, t) = D (f, ) weakly on a dense domain (feDz A Dp—1);

[D(F,0), D (g, )] =<f, &); [DP(f, 1), Dlg, )] =0=[D(f, 1), D(g, #)] (on
dense domains; indeed the Weyl relations hold ) ;

the differential equation u'" (t) +B2u(f)=0 is satisfied by @(f, 1)
as a distribution, i.e. the equation

(0/o0)* D(f, t) + P (B*f, 1) =0

holds weakly on a dense domain.

This result would for example ennable one to give a conceptually
simple and mathematically rigorous meaning to the so-called quanti-
zation of MAXWELL’S equation; or of such general equations as those of
the form [J¢ =V (x) D +F(4) D, where V(x) is an arbitrary bounded
measurable function on space, and F(4) denotes an arbitrary non-
negative self-adjoint function of the laplacian. In all these cases, the
quantum process ¢ (%, £), as an operator-valued distribution in space,
at a fixed time ¢, or in space-time, exists in a highly regular sense, and
satisfies the prescribed differential equations and commutation relations
in strong senses. The actual operators @ (f,#) and @ (g, f) may be ex-
pressed quite explicitly as simple operators in the space L,(H') of all
square-integrable functionals over the space H' in H consisting of pairs
f@®g such that f= 0, relative to a certain weak probability measure in
H' known as the isonormal distribution (cf. [4]). In this representation
the @(f,¢) are diagonalized, i.e. consist of multiplication operators,
while the @ (g, #) are essentially generators of vector displacements,
through vectors related to g, in H'.

The difference in appearance between the A-forms involved in
Theorems 1 and 2 is largely due to the degeneracy of the form A in
Theorem 1 and its non-degeneracy in Theorem 2. If in Theorem 4, the
probe space P is replaced by its quotient space P’ modulo the null-space
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P, of all vectors z such that A(x, 2) =0 for all x¢P, little is lost, in as
much as @(f) = @(f') if f=j modulo P,. The resulting space P’ is, in
the special case considered in Theorem 4, naturally isomorphic to a
dense subspace of the probe space H of Theorem 2.

4. What is a non-linear field?

The theory of quantum processes associated with a given suitable
linear partial differential equation is quite well founded and fairly well
developed, but the situation is altogether different as soon as a local
non-linearity is involved. The fundamental belief that the dynamics of
physical fields are appropriately described by local partial differential
equations has led to the study of such equations from a quantum point
of view; and, as is well known, in the case of an equation postulated to
describe the interaction between photons and electrons, to significant
empirical confirmation. The problem of giving a definite mathematical
meaning to such so-called ‘“quantized’ non-linear partial differential
equations has however resisted solution until recently.

The difficulty is that a non-linear operation on a weakly-defined
process is involved. Consider for example the differential equation
[0¢ =79 (), where p(¢) is a polynomial in ¢; as long as ¢ is a generalized
function, the right-hand side has no a priori meaning. On the other
hand, close investigation shows that even in the simplest non-trivial
cases, such as the neutral scalar field described earlier, the quantum
process ¢ is not a strict process, in the sense that there is no bona fide
function ¢ (%) such that @ (f)=[¢ (x) f(x) d%; although it becomes
quite close to a strict process as the number of space dimensions de-
creases to one. For a strict process, of course, there is no difficulty in
defining a local non-linear function, e.g. the square; but this definition
cannot be made directly in terms of the process-average @, in a fashion
which is applicable to weak processes. In the case of the hypothetical
so-called ““interacting” process satisfying the indicated non-linear
equation there is every reason to believe that the regularity properties
would be at best not improved.

In the case of a symmetric process there is however a method
for introducing a notion of quasi-power which is not applicable to an
ordinary distribution or general type of operational process. In order
for this method to be applicable to the definition of the right-hand
member of an evolutionary partial differential equation, it appears to
be necessary that it deal with the quasi-power at a fixed time; that is
to say, smoothing in space does not essentially change the meaning of
the equation, but smoothing in time destroys, apparently, this meaning.
There is no known way to transform a non-linear equation of evolution
which is local in the time into one which is expressed in terms of tem-

13*
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poral averages of the solution. Conversely, if the non-linear term can
be given mathematical meaning as a generalized function in space at
any fixed time, the differential equation in question acquires a definite
meaning and appears accessible to mathematical analysis as a Cauchy
problem, although a relatively sophisticated one.

Before indicating the nature of this definition for powers of a
symmetric quantum process at a fixed time, let me remark parenthetica-
lly that although the idea of quantum fields at fixed times has always
been, and is currently, extensively used, the question of whether they
are physically or mathematically meaningful has been somewhat
controversial. In a reaction against the purely formal treatment of non-
linear functions of quantum fields, axiomatic schools developed around
15 years ago which insisted on space-time smoothing and the consequent
abandonment of the canonical commutation relations for interacting
fields, as well as, of course, of local non-linear partial differential equa-
tions as a means of describing the dynamics of quantum fields. My
own mathematical work on quantum fields has emphasized the utilization
of fields at fixed times, and in the past few years some of the axiomatic
people having been moving in this direction. Nevertheless, the subject
remains a disputed one, and in the absence of a solid mathematical
foundation (or for that matter, of experimental methods for measurement
of interacting quantum fields at fixed times), it was not resoluble. As
we shall see, the non-linear functions of the field at a fixed time are well-
defined in a conceptually simple mathematical sense, but are in general
rather singular objects from a differential equation or generalized func-
tion standpoint.

For simplicity, let us start with the case of squares of fields; the
cases of higher powers will be similar. Recalling the canonical commuta-
tion relations for a field ¢ at a fixed time ¢:

(6 8, p(#, 9] =0=[d (% 1), $ (¥, ] =0;
[p (%, 1), §(&, )] =id(F—%),

we may note that ¢ (%, )2, although undefined, has simple explicit
formal commutation relations with the ¢ (x, #):

[ (7, 02 ¢ (2, 0]=0, [(¥, 0% ¢(F H]=2i¢ (V) (¥ —7).

If we regard ¢ (v, #)%, or more precisely, its space-averaged form, say
DD (f, t) = [¢p(¥,£)2 f(¥) dy, as an unknown quantity Z described by
the space-smoothed forms of these equations, we obtain two mathe-
matically rather unexceptionable equations:

[Z, @(f,]=0, [Z,®(gY)]=2iD(fg1);
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unbounded operators are involved here, so that these equations are to
hold only on suitably dense domains. Now the @ (f, ) and @ (g, #) form
an essentially irreducible set of operators, so that these putative equa-
tions, if they have a solution at all, should have a unique solution modulo
additive scalar operators. In this way the heuristic question as to the
existence of a mathematically meaningful square of the field may be
reduced, in a fashion which is by the standards of theoretical physics
quite conservative, to a definite and conceptually simple mathematical
problem.

It is preferable for the usual reasons to replace the foregoing relations
by one involving bounded operators, and this is indeed possible. Setting
U(f) =e'®H0, V(g) =¢' @, and W(¢) = ¢*4, an argument of the formal
type appropriate at this level shows that

W UN W) 2= (0,
W) V() Wie)* = exp G (s, ) — 25D (12, A)-
=U(—2sfg) V() /1%,

The putative transformation of the U(f) and V(g) by W(s) is known as a
canonical transformation; evidently this transformation is well-defined,
independently of whether W(s) exists or not; when a unitary operator
playing the role of W(s) in the foregoing equation does exist, the trans-
formation is said to be unitarily implementable. Necessary and sufficient
conditions for this to be the case were treated more than a decade ago,
and the present case falls nicely under the general theory, which serves
also to indicate the distinctive role played by Hilbert space, not only
as a representation space for the process operators, but also in connection
with the underlying probe space.

To summarize briefly, if N is any complex Hilbert space, a “Weyl
system’ over N is a continuous mapping z—W (z) from N to the unitary
operators on a Hilbert space K such that W (z) W(z') = ¢#2Im &2 (2 1-2"),
for arbitrary z and 2’ in N. The “free Weyl system”, closely related to
the free processes described earlier but invariantly attached to the
Hilbert space N, may be described briefly as the pair (W, v}, where W
is a Weyl system and v is a vector in N which is cyclic for the W (z) and
such that (W(z) v, v> =exp [—|z|?/4]. If T is a symplectic transforma-
tion on N, i.e. a continuous real-linear transformation which leaves
invariant the anti-symmetric form Im<{z, 2’>, and W is any Weyl
system over N, then it is easily seen that if W is defined by the equation
Wy (2) =W(Tz), then Wy is also a Wey!l system. The unitary implement-
ability question raised above is precisely a special case of the question
of the unitary implementability of the canonical transformation
W (2) =Wy (2); i.e. the question of when there exists a unitary operator S
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such that SW(2)S-1=W(Tz). Such questions have now been exten-
sively studied in the case of the free processes, and according to a
result in SHALE’s Chicago thesis, there exists such an operator S if and
only if T*T =1+ H, where H is a Hilbert-Schmidt operator. In the
present context, T is easily computable as an integral operator, and the
usual square-integrability criterion for a Schmidt class integral operator
shows that: a unitary operator W(s) of the indicated type exists, for
sufficiently smooth functions f and g (say of class C* and of compact
support) if and only if the number of space dimensions is 1. Since
essentially only formal algebra was involved in the foregoing reduction,
this eliminates any reasonable possibility that the square of the free
field might exist as a well-defined strong operational process in space,
at a fixed time, except when the number of space dimensions is 1.

In the case when the number of space dimensions #» =1, we could go
on and establish that W(s) defined a projective one-parameter group
and obtain the square of the field asits generator. But a different meth-
od is better suited to the treatment of cubes and higher powers.
I shall indicate this method and describe some implications for the case
n =1, following which I shall indicate the modifications needed to deal
with the case #» =13 (or other higher values of #).

5. Local polynomials in free quantum fields

In order to construct explicitly cubes, higher powers, and other
polynomials in quantum processes, one needs a systematic procedure
for avoiding the infinite terms which arise if one proceeds too rashly
towards this end. The algebraic basis for this procedure emerges from
the considerations involved in the foregoing treatment of squares, and
may be briefly indicated as follows.

Let P be a real linear vector space on which is given a non-degenerate
anti-symmetric bilinear form A; let E denote the essentially unique
algebra generated by P and a unit e such that [x, y] =A(x, y) ¢, for all
x and y in P; let F denote a given linear functional on E. If z, ..., z,
are any given elements of P, their ‘“normal product’ relative to F,
denoted :z z,, ..., %,: , is defined recursively by the equations (assuming
that F (¢) == 0)

[2y..2,0,2]= D1z . .. 8. 2, (2, 2],
F(izy...2:)=0, :er=e.

It can be shown that such normal products exist and are unique. The
method of proof leads to the introduction of what may be called quanti-
zed differential forms, similar somewhat to conventional differential
forms except that operators rather than functions form the 0-forms,
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and useful for rationalizing some of the objects connected with quantum
fields which relate to operators in a fashion analogous to the way in
which differential forms relate to functions; but details will have to
be omitted.

Now let us return to the problem of dealing with powers of the
neutral scalar field, at a fixed time. The finite linear combinations of the
@ (f,t) and D (g, 1), ¢t being held fixed, form a real linear vector space
P such that the commutator of any two elements is a scalar. The vector
v previously indicated is in the domain of any polynomial T in the
elements in P, and serves to define a linear functional F(T) = (T, v).
The cited result then leads to a definition for the normal product
2 ...%,:, where the 2, are in L. This ennables one to define the »’th
power, say @" (f) of the process @ (-, ¢), by the equation

O () = lim [+ 1 ¢ (5, 8) § (20, ) .- D (0, )¢ 01— ) ... 8 (0 — )
f(x,) dxydxy ... dx,;

the integrand may appear singular at first glance, but may be given a
meaning in a straightforward way, and it may be shown, partly by
general theory of the normal products, and partly by computation,
that the limit indicated actually exists, in any of various appropriate
senses. The simplest is that of the convergence in L, (H’) of the functio-
nals, multiplication by which represent, in the real wave representation,
the operators involved in the foregoing equation. The point of the
normal product is that without it the limit either doesn’t exist or is
infinite almost everywhere (cf. [14]).

The powers attained can be characterized in a fashion similar to
squares. More specifically,

U(H DV (m) U(f)r = DY (1)

is a reflection of the circumstance that all the ¢*®"-% commute (¢ fixed),
while the equation

V(f) O (h) V(f) = (closure of) D) () +7 B (Fh) +- ---
—%QWHWM+W+UMWEI

is based formally simply on the binomial theorem, adapted to normal
products, although the analytical justification requires some technical
sophistication. In particular, the fact that the unbounded self-adjoint
operators @ (f) all commute, in the strong sense that their spectral
projections do so, is involved here, and a by product of the analysis is
the simultaneous spectral resolution of all these operators, in the real
wave representation indicated earlier. The irreducibility of the U(f)
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and V(g) for all f and g shows that @® (%) is uniquely characterized by
the relations just indicated, in a recursive sense; i.e., @®(.) is deter-
mined directly, then @@ (.) relative to the determination of @® (.) and
so forth.

The foregoing construction shows some properties of the products
@Y (.) indicating that they are not a peculiar ad hoc creation, but have
some foundational features befitting a local function of the free field.
In the first place, they are indeed local, in the sense that @™ (g) is for
any g affiliated with the ring of operators (in the Murray-von Neumann
sense) determined by the @ (%), as the supports of % range over an open
set containing the range of g. In the second place, they are invariant
under the euclidean group.

Remarkably, but in retrospect perhaps not surprisingly, the same
pseudo-products have already appeared, in a much different and quite
primitive form, in the theoretical physical literature. Around two
decades ago, G.C. Wick studied a procedure for standardizing the
removal of infinities from products of field operators, and derived a
formula, known in the physical literature as Wick’s Theorem, which
greatly facillitated field-theoretic computations when in terms of the
“Wick products”. The mathematical nature of these objects was some-
what obscure (as can be seen from the treatment given in the book of
Bocoriousorr and SHIRKOV, which is actually one of the clearest in the
theoretical physical literature). A few years ago, GARDING and WIGHT-
MAN [2] treated mathematically a version of Wick products in four
space-time dimensions, obtaining densely defined operators by averaging
over space-time; but without obtaining self-adjointness properties,
or dealing with the products at a fixed time, or quite making an explicit
identification with the conventional Wick formalism. (The latter was
at the time mathematically somewhat nebulous, and for the definition
of the Wick product they used an explicit formula ascribed to CaIt-
NEL1O.) More recently, JAFFE [7] studied Wick products at fixed times
for the scalar field in two space-time dimensions. My own work pro-
ceeded from an observation I made years ago, that the fractional deri-
vative of the Wiener Brownian motion process or of similar processes,
of order 1/2, although not conventional stochastic processes but only
stochastic distributions, could be squared in non-trivial finite fashion
by what may be described, ex post facto, as an adaptation of ““center-
ing”’ in probability theory; and that higher powers could be treated by
generalization of the centering process. These generalized Brownian
motion processes are actually the same, as shown by the real wave
representation, as the scalar field at a fixed time. The stochastic approach,
although lacking transparence from the particle representation view-
point which is the most familiar one in the theory of free fields, leads
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directly to the simultaneous spectral resolution of all the Wick products,
at a fixed time, as well as to proofs of their self-adjointness, locality,
etc.; and is, in my opinion, indubitably better adapted to the treatment
of non-linear local interactions than the more elementary approach
through the particle representation.

The identification of the stochastically-defined Wick product with
the classical one is made by showing that it satisfies a known recursion
relation formally characterizing the Wick products; in particular, the
“theorem of Wick” acquires mathematical status as a simple but
essential algebraic formula. The interrelations between the characte-
ristics of the Wick products in the particle and real wave representations
becomes crucial in the study of non-linear interactions, inasmuch as the
“free” dynamics is more simply expressed in the particle than the
real wave representation, while it is very much the other way around
in the case of the non-linear local terms involved additionally in the
“interacting” dynamics.

These reassuring results have been for the case of two space-time
dimensions. What then of the case of four space-time dimensions? —
this is the physically really interesting case, but we have seen that there
is no chance that even the square of the field exists as a (strict) opera-
tional process at fixed times. Actually, the foregoing analysis for a
two-dimensional space-time has a form which adapts quite cogently to
the cases of higher-dimensional space-times. The analysis is largely in
terms of the unitary transformation properties of the Wick products
under specified unitary operators; and it makes just as good sense to
treat the unitary transformation properties of bilinear forms as it does
to treat the same properties for operators.

As a natural and convenient domain in the Hilbert space for the
process operators, let us take the infinitely differentiable vectors
for the one-parameter group of unitary operators [(f) generated by
the free energy operator. This domain is invariant under the U(f)
and V(g) indicated earlier, and thereby the square of the free field at a
fixed time may be characterized in essentially the same way as before,
except that it is to be a continuous bilinear form on the indicated
domain in the usual topology on such a domain. The uniqueness of the
square then depends on an extension of SCHUR’s lemma to show that
the U(f) and V{(g) leave no such bilinear form invariant. Next, the
locality of the Wick powers can be treated in essentially the same way
through the definition indicated earlier of the ring of operators deter-
mined by a set of a bilinear forms — a definition which extends the
conventional one for bona fide operators. Having defined and treated
squares, the higher powers may be treated recursively in essentially
the same fashion as in the case of a two-dimensional space-time.
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The Wick powers are, of course, structures associated with a free
field, and the question remains of the significance and treatment of
non-linear quantized field equations, which involve presumptively
processes which are not “free”’.

6. The meaning of non-linear quantized field equations

In attempting to give meaning to non-linear equations involving
generalized functions, one should bear in mind the ultimate purpose
of the equations, for it often turns out that definite mathematical
meaning can be given only to those features of the formalism which
have essential relevance to this ultimate purpose. In quantum theory,
there are two main objects which are relatively directly correlative with
experiment: the energy operator, i.e. the self-adjoint generator of the
one-parameter group of temporal displacements which is given by
STONE’S theorem; and the S-operator (or S-matrix), which can be
described as a measure of the effect visible at time --oco of the inter-
action on a given non-interacting situation at time — oo, relative to
the hypothetical motion which the non-interacting system would have
undergone from time —oo to time --oo, had not the interaction been
present. The S-operator is the more important object in quantum field
theory, and indeed suffices in one way or another for virtually all spe-
cific purposes. But the energy is more familiar, so I shall consider that
first.

To make a long story short, the dynamics of quantum fields requires
a more sophisticated phenomenology than the primitive one of forty
years ago, in which an observable is an hermitian operator, a state is
determined by a vector or density matrix in the underlying Hilbert
space, and the dynamics is given by a one-parameter group of unitary
operators. An apparently adequate, and currently widely investigated,
phenomenology is that based on the notion that the conceptual ob-
servables are elements of an abstract C*-algebra (by abstract I mean
an algebraic isomorphism equivalence class of concrete C*-algebras,
acting on Hilbert spaces); that the states are suitably regular positive
normalized linear functionals on the algebra on the algebra; and that
the dynamics is given by a one-parameter group of automorphisms of
the algebra. A physically crucial object is the “physical vacuum”,
which is definable succinctly as a state E which is invariant under the
cited one parameter group 4 A’ — as a result of which E(4? A*)
is necessarily a positive definite function of { — having the distinctive
property that the spectrum of this function is non-negative. One expects
mathematical systems of the indicated type mostly to be unstable and
not have vacuums, but if they correspond to reality they must in most
cases have sufficient stability so that any appropriate mathematical
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model must admit a vacuum. Having the vacuum, the energy is deter-
mined as the self-adjoint generator of the one-parameter unitary group
inducing the automorphism group in question in the representation
canonically associated with the vacuum state.

Now the equations of motion of a non-linear quantum field suffices
formally to determine a canonical (= anti-symmetric and/or symmetric)
quantum process at any time #, given the process at time ¢. But the
manner in which the equations determine the vacuum is considerably
more subtle. The situation can be illustrated quite well through the
consideration of a hypothetical relativistic equation such as

O¢=2(¢),

4 being a given polynomial. At any fixed time #, the process whose
kernel is formally (¢ (-, %), $(-,%) (i-e., more exactly, the process at
the time ¢, say y,, is defined on pairs of functions f and g which are, say,
infinitely differentiable of compact support on space, and v ((f, g)) is
the closure of [¢(%,7) f(X)dx + [¢ (%, #) g(X) d%) involves in its very
definition the vacuum. On the other hand, the definition of the vacuum
involves a given solution of the equation, or equivalently, given process
(-, 1), é (%, t)). The relation between the (“interacting”) quantum
process ¢ and its vacuum is thus a highly implicit one, from a mathe-
matical viewpoint, despite the simple heuristic description of the vacuum
in theoretical physics as the “lowest eigenstate of the hamiltonian”;
ab initio, the hamiltonian is not a bona fide operator in Hilbert space,
but becomes one only ex post facto, after the vacuum has been deter-
mined as an expectation-value form (i.e. the form 7—<{7'v, v}, where
v is the ““vacuum state vector”) so that in quantum field theory the
heuristic definition is merely suggestive.

A certain novelty in the mathematical formulation of the quantized
partial differential equations, relative to classical formulations regard-
ing hyperbolic equations, is thus apparently inevitable, although there
is a resemblence to a highly floating type of boundary value problem.
This formulation, in its simplest form, in which the process ¢ is postula-
ted to consist at fixed times of operators in Hilbert space, after suitable
averaging over space, — a postulate which, as earlier indicated, probably
restricts relativistic applications to the case of two-dimensional space-
time, but which can be relaxed in a way which permits the extension of
the formulation to higher dimensions, — is as follows.

I begin with the most essential point of the characterization of the
non-linear functions of a given canonical process. Let (D (), D(-)) be
a given anti-symmetric process with (for specificity) probe space C,
consisting of the infinitely differentiable functions of compact support
in space; this means that each of @ and @ is linear from C to the self-
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adjoint operators on a Hilbert space H, and that the usual Weyl rela-
tions are satisfied. (At this point there is no dynamics in the situation,
and the notation @ is purely in anticipation of later applications.)
There it is no essential loss of generality, and will be assumed for simpli-
city, that the ring of operators determined by the @ and @ is a factor.
(The conventional heuristic assumption corresponds to the stronger
mathematical assumption that this ring includes all bounded operators.)
It is also assumed that there is given a vacuum vector v, as earlier. Let
@ (f) be defined as [, and suppose that @7 (.) has been defined for
j<n in such a fashion that:

(1) @®(f) is affiliated with the ring of operators R, determined by
the @ (g), for all £<j and all # in the domain of &®;

(2) if k< and £>0, then

r=0 7

. . 2 k k
¢ ®® @® (f) ¢=7®M — closure of > @*" (1) ( )

for all AcC; and conversely, if there exists for any given feC a self-
adjoint operator T affiliated with R, such that veDs, <Tv, > =0, and

k
¢ ®® Tt — closure of T+ ) @*=" (1) C)
r=1
for all geC, then f is in the domain of @® and the foregoing relation
holds. (Note that the indicated closure automatically exists and is
self-adjoint.)

Then @™ is defined to have in its domain all feC such that there
exists an operator I having the indicated properties, with % replaced
by #, and @™ (f) is defined as this operator T'; by the factorial assump-
tion on the operator ring determined by @ and @, this operator is unique,
if it exists at all.

With this definition, the #-th power of a symmetric process
always exists as a well-defined process, whose domain is however not
necessarily non-trivial; and I may proceed to the question of the mean-
ing of a solution to a quantized equation such as [J¢ =2 (¢), p being
a given polynomial of degree ». A solution of the equation is definable
as a system (@(-,?), D(-,#), H, v, ['(-)) such that

(1) For each ¢ (or, in view of later assumptions, for #==0), the system
(P(-,1), (-, t), H,v) forms a symmetric process with probe space
C, such that the operator ring determined by the @(/, ) and @ (g, 1)
as f and g range over C is a factor; and such that the s-th power @ (-, #)
includes C in its domain, for s <7;
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(2) I'(-) is a continuous one-parameter unitary group on H with
non-negative generator, and such that

T @)L= t+s); T(s)D(, )16 L=D(f, t+s);
I')vo=uv(s, teR; fcC);

(3) There exists a dense domain D in H such that for w, w' €D,

(010 (D(f, ) w, w' > =L D(f, 1) w, w">
@ot) <D (f, 1) w, w' > = — D (B, t) w, 0y — (PP}, {) w, w'),
B=(m?*I—A)*,

where ®®) = 3 a; @Y if p(2) = 2a; i

These are minimal conditions as regards regularity, etc., for a solu-
tion which is an operational process in space at each fixed time; it would
be analytically inconvenient not to have somewhat more, and probably
difficult in practice to establish the existence of a solution without
establishing some additional regularity. The simplest and most natural
assumption in this regard would be that of the invariance of D under
the infinitesimal generator H of I'(-), and under the operators P (f, t)
and @ (g, ¢), as well as under the unitary groups generated by these
operators. The dynamical equations given in (3) are presented as partial
differential equations, but may equally well be given in pure operator-
theoretic form; with a slight but natural increase in the regularity
required, this form is:

(3") There exists a dense domain D in H, invariant under the gene-
rator H of I'(-), under the @(f,0) and & (f,0), and under the one-
parameter unitary groups they generate, such that

closure of [D(f, 0), H]=1®D(f, 0)
closure of [®(f, 0), H] = closure of —i®(B?f, 0) —i ®" (f, 0).

A similar formulation of the quantized equations could be given for
other types of relativistic differential equations and/or for symmetric
quantum processes. The existence and uniqueness of solutions is of
course another matter. For the free field equations, existence derives,
as indicated earlier, from the adaptation of the Fock-Cook construction
to the relativistic situation. Uniqueness is shown, in a slightly different
formulation of the problem in [10] in the case of symmetric processes
and in forthcoming work of WEINLESS [17] in the case of anti-symme-
tric processes. In general, one anticipates a high degree of uniqueness,
which is essentially a matter of the uniqueness of the vacuum as an
expectation functional, but present results are limited to linear fields.



206 I. SEGAL:

7. The S-operator and the interaction representation

Both because of the difficulty of establishing existence of solutions
of the foregoing equations for non-linear equations in two-dimensional
space-time, and the analytical complications in higher space-time
dimensions, it is advantageous to deal with the equations in a different
representation, which is at the same time closer to the important physi-
cal notion of S-operator (or S-matrix, as it is often referred to by physi-
cists). The putative solution of the foregoing equations is called the
“Heisenberg field”’; formally equivalent to these equations, but in the
absence of a comprehensive mathematical theory rigorously essentially
distinct from them are equations whose putative solution is sometimes
called the “‘interaction-representation field”. These equations derive
from the ones given by the method of variation of constants, which was
initiated in the present connection by Schwinger and Tomonaga,
independently, who noted that the resulting equations, although expli-
citly time-dependent, had an advantage in that the commutation
relations between process operators at different times can be given
explicitly, unlike the commutators for the Heisenberg fields, being in
fact the free-field commutation relations.

The temporal propagation in this “interaction representation’ is
given formally by the solution of a differential equation of the form

uw =1H@)u, (1)

where #(-) is a vector valued function on R!, and each H(f) satisfies a
formal self-adjointness condition, and indeed has the special heuristic
form

H(t) zeitH, Hl 6—itH.,’

where H, and H, are, heuristically, given formally self-adjoint operators.
From a mathematical viewpoint there are however two serious compli-
cations, even in the relatively simple case of two space-time dimensions.
First, H, is not really an operator in Hilbert space, but is rather what I
have identified as a “quantized differential form”. Just as a closed
differential form of degree 1 is locally identifiable with a function
modulo constants, but is not globally so identifiable when it is inexact,
so H, is identifiable locally (in space) with a bona fide operator, modulo
a constant operator which may be eliminated by normalizing so that the
vacuum expectation value vanishes, but is not globally equivalent to
any fixed operator.

In more conventional terms, H, is given heuristically by an expres-
sion of the form [g(¢, (¥, 0)) @%, where ¢ is a polynomial such that
¢’ =p; this definitely fails to exist as a self-adjoint operator, by a
unitary implementability argument for the putative one-parameter
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group it generates of the type indicated earlier in connection with
squares. The way around this difficulty is the use of the locality of the
interactions and the hyperbolicity of the underlying equation in con-
junction with the possibility of ascribing a natural mathematical
meaning as operators H} to the expressions [ ¢ (¢, (%, 0) f(¥) d%, when f
is an adequately regular function of compact support (cf. [13]). The
H/ for differing f define the same propagation within a given bounded
region of space-time, provided all the f are 1 on a sufficiently large
region in space, and the corresponding equations to (1) with H, replaced
by H} admit strong solutions at all.

The second difficulty is that while the HY are bona-fide self-adjoint
operators in Hilbert space, their transforms Hj (f) = ¢*#¢ H, ¢**% have
such variable domains that the existing general theory for equations
of the indicated type is quite inapplicable. It can nevertheless be shown
(as follows from [13]) that the Eq. (1) with H, replaced by H{ always
admits solutions. The uniqueness and regularity properties of these
solutions may depend on special properties of the polynomial p de-
scribing the interaction. In one of the simplest non-trivial cases, that in
which 4 (/) =73, some of the relevant questions have been studied by
Nerson [9] and GLiMM and JAFFE [3].

Added in proof. In forthcoming work, I have treated the case of an
arbitrary polynomial 4 of the form p = ¢, where ¢ is bounded from below
[abstracted in Bull. Am. Math. Soc. 75, 1390—1395 (1969)].

In four-dimensional space-time, the situation is further complicated
by the circumstance that the H} are generalized operators (or equiv-
alently, densely-defined bilinear forms), as earlier indicated. The
resolution of this complication, at least to the point of leading to a
rigorous and natural formulation of the fundamental dynamical equa-
tions, depends on two related special features. First, the two-dimensional
theory was largely developed in terms of considerations of unitary
transformation properties; and, as already noted, these considerations
apply virtually equally well to bilinear forms. Second, the bilinear
forms in question are not at all arbitrary but have the important regu-
larity property of being invariant under a set of unitary operators
whose commutor is a finite operator ring (in the case of the “scalar”
field being used for illustrative purposes here, a maximal abelian ring;
“finite”” refers to the concept introduced by MuRRAY and voN NEU-
MANN). This is a very strong property, which in the case of a densely
defined symmetric operator enforces its essential self-adjointness (cf.
e.g. [12]). The forms in question are thus a natural extension of those
corresponding to self-adjoint operators, and indeed can, in a sense,
be diagonalized, the corresponding operator being represented as multi-
plication by a generalized function. This aspect of the situation is related
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to a theory of generalized vectors in Hilbert space associated with any
given ring of operators, which appears to be a natural framework for
the treatment of singular perturbations of self-adjoint operators. For
brevity, and since I have already spoken some time ago about these
general matters, I shall here merely conclude with a presentation in
essentially conventional mathematical terms of the resulting formula-
tion of the quantized dynamical equations in any number of space
dimensions.

Consider the quantized equation [J¢ =9 (¢), where p’(0) >0, for
the tangential equation []¢ =2'(0)¢ has no vacuum when 2’ (0)<<0,
as shown by WEINLESS [17]; and it is convenient to assume also $ (0) = 0.
The primary objects, both from mathematical and physical standpoints,
are not so much the process operators ¢ as the operators S(#, #), which
I shall call propagators, which transform the system from one time ¢
to another time #. For the reasons indicated earlier, it is virtually
essential, or at any rate quite convenient, to treat these operators
(which do not exist as unitary operators even in simple cases, but
only as automorphisms of the C*-algebra W described in [13] as the
““space-finite Weyl algebra”) in terms of the operators S(#, ¢, /) which
are corresponding propagators for the equation [J¢=49'(0) ¢+
f(p(¢) —p'(0) ¢), where feC. Following these parenthetical indications,
I can make the

Definition. A (quantized) propagator for the equation ¢ =7 (¢),
where p is a given polynomial of the above-indicated type, is a strongly
continuous function S(#', ¢, f) on R' X R' X C whose values are unitary
operators on the free-field Hilbert space H for the free field (¢, H, v,17(-))
determined by the equation [J¢,=7"(0)¢, by the characterization
given earlier, satisfying the conditions:

() SE, e, HhSE,6,H=S@E" ¢t )¢t "R feC);

2 I'e)S@, ", N IO =Se+t,t+t",f);

(3) If heC is supported by the sphere S, and if f,gcC and
f(%)=g(x)=1 for xeS+Q,, where Q, denotes the open sphere of
radius a around the origin in space, then S(Z, 0, /) S (¢, 0, g)* commutes
with both @, (k, 0) and @, (%, 0), provided |¢| < a.

4) 15_(;_;_;‘)_ —H,(t) S(t,¢); S(¢, ) =1I, weakly on a dense domain D

invariant under the S(¢, ¢, f), where H}(f) is the generalized operator
corresponding to the bilinear form B representing [ :q (¢ (x, £)): /(%) d .
(More specifically, (0/0f)<<S(t,#) w, w'>=DB(S(t, ¢) w, w')> for arbi-
trary w and w»’ in D.)

Actually, the basic condition here is the differential Eq. (4). The
other conditions are formal consequences of (4), and are to some extent
unnecessarily strong in a definition, but serve to indicate some impor-
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tant properties of the temporal propagation. Condition (3) is a generali-
zation of a familiar region of influence result in the theory of hyperbolic
equations, and reflects the locality of the Wick product operators
Hi(#). By virtue of (3) the transform by S (¢, #, f) of any element X of the
operator ring determined by the @ (f, 0) and D (g, 0) as f and g range
over the elements of € vanishing outside of a given region R, i.e.
SE ¢, HNXS@E ¢, /)™, is independent of f, for f sufficiently close to the
unit function, and there results a well-defined automorphism 2. (¢, #)
of the space-finite Weyl algebra W earlier indicated, satisfying the basic
desiderata:

D@L Z@, ) =2@"0; TE)ZE0IE) =20 ", t+t").

These automorphisms are not in general, and probably never except in
trivial cases, unitarily implementable, in spite of the irreducibility of
the algebra W; and this is one reason why the use of the functions f
appears foundationally essential, and not merely technically advanta-

geous. However, the putative limit XY= lim 2@, wil
t'—>+} 00, t—>—00

be unitarily implementable, for an extensive class of quantum
processes, according to a line of thought which in its earliest form is
represented by a well-known paper by YANG and FELDMAN on scattering
theory, according to which the S-operator may be defined essentially
as the unitary operator in question. It may be noted that the partially
parallel problem of the existence of an analogous S-operator for a
certain class of similar classical non-linear relativistic partial differen-
tial equations has recently attained an affirmative solution.

8. Conclusion

The theory and application of normal products of canonical quantum
processes thus provides a mathematical foundation for the formulation
and treatment of the dynamics of non-linear local quantum fields. The
basically simple conceptual characterization and properties of these
products at fixed times remove them from the position of ad hoc devices
for removing infinite terms in order to obtain numerical results in
agreement with experiment, to a position of natural and intrinsically
interesting, if mathematically not yet familiar phenomena. They are
similarly foundationally relevant to differential equations which are
systems, or whose solutions are anti-symmetric rather than symmetric
processes. I contemplate also similar applications to local interactions
which are not defined by partial differential equations; these involve
free fields whose classical counterpart is not the solution manifold of a
differential equation, but a direct integral of such manifolds.

In any event, what are now established are formulations and methods
of treatment for the fundamental dynamical equations of typical non-

14 Functional Analysis
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linear relativistic quantized fields, which seem conservative and relevant
from both contemporary mathematical and physical positions. Indeed,
I should judge that there are now sufficiently many results in a positive
direction for valid optimism regarding the resolubility, within the next
few years, of some of the basic existential questions concerning the
mathematical framework for physical quantum field theory.
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On the Analogue of the Modular Group
in Characteristic p

By AxprE WEIL
The Institute for Advanced Study, Princeton

1. It is well-known that the classical concept of modular forms may
be introduced as follows. Write G for one of the two algebraic groups
GL(2), SL(2); take for % the field @ of rational numbers, R being then
the completion 2, of % at its infinite place; let I be the subgroup
Gz of Gg (i.e. the group of the matrices in M, (Z) with the determinant
+1if G=GL(2), and +1 if G=SL(2)). On Gg, consider the complex-
valued functions which are left-invariant under I" (or at any rate under
some congruence subgroup of I'), behave in a prescribed manner under
a translation belonging to the center of Gg, and behave in a prescribed
manner under the right translations belonging to the usual maximal
compact subgroup of Gp and under the Casimir operator for Gg; the
two latter conditions ensure that this determines in the upper half-plane
a modular form of prescribed degree which is an eigenfunction for the
Beltrami operator (in particular, if the corresponding eigenvalue is 0,
it is holomorphic, or at any rate the sum of a holomorphic and an
antiholomorphic function). If we write 4 for the ring of adeles of %
and G4 for the adelized group G, one can then, from such a function,
derive a function on G4, left-invariant under G,, and behaving in a
prescribed manner under the center, under right-translations belonging
to the usual maximal compact subgroup of G4 (or at any rate under
a subgroup of finite index of that group), and under the Casimir operator
for G,. Such an interpretation is useful if one wishes to extend the
classical theory to arbitrary number-fields or function-fields.

On the present occasion, we wish to take for % the field of rational
functions in one indeterminate over a finite field. Then, just as in the
case k=@, it is unnecessary to use the adele language, and the relevant
concepts can be described in a completely elementary manner.

2. Accordingly, we put 2=F(T), where F is a finite field and T
an indeterminate over F; we call ¢ the number of elements of ¥. As usual,
we write oo for the place of & for which | 7|, >1; then the completion
ko of k at that place is the field of formal power-series x = > «; T in
T-1, where «;cF for all i¢Z and there is # such that o; =0 for i<<#;

14%
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if at the same time «,==0, we have then | x|, =¢". The elements x
of &, for which | x|, <1, i.e. a; =0 for all 1< 0, make up the maximal
compact subring 7, of %, ; its maximal ideal is T-'. 7., and %, as
an additive group, is the direct sum of that ideal and of the ring F[T]
of the polynomials in T" with coefficients in F. If PcF[T] and P==0,
then | P|,, = ¢%'®).

We will confine ourselves to the group GL(2); to simplify notations,
we write G (instead of G ) for the group GL(2, k), i.e. for the group

x
of invertible matrices (z j;) in the ring M,(k,) of the matrices of

size 2 over k,. The matrices of that form for which z=0 (the “tri-
angular” matrices) make up a subgroup B of G; those for which z =0,
t=1 and x = T" with n€Z make up a subgroup of B which we denote
by B,. We write & for the group of the invertible matrices in M,(r,)
(i.e. the matrices in M,(r,) whose determinant is in r%), and 8 for the
center of G; & is a maximal compact subgroup of G, and we have
G=B-Q=B;-®3. We write I" for the “modular group consisting

R S
with P, Q, R, Sin F[T] and PS —QR in F*; this is a discrete subgroup
of G. In obvious analogy with the classical theory, one can define
congruence subgroups of I'. In particular, take any unitary polynomial
A in F[T] (i.e. one whose highest coefficient is 1); then we write [}

p
of the invertible matrices in M, (F[T]), i.e. of the matrices ( Q),

P
for the subgroup of I consisting of the matrices ( R g) in I for which

R=0 (mod. A), i.e. RcA-F[T]; these are the most interesting
congruence subgroups of I" for us, because of their connection (dis-
covered by HECKE in the classical case) with the theory of Mellin
transforms.

3. Just as in the classical theory, I" operates in a “properly dis-
continuous manner” on the space G/®3 (which takes here the place

of the upper half-plane). For every #n¢Z, write ¢, = (OT (1)) We begin
by proving the following:

Every element g of G can be written as g=yao,g, with yel', n=0,
8o ERB; moreover, when g is given, the integer n in this formula 1is
uniquely determined.

In substance, this is equivalent to the well-known classification of
the projective line-bundles over a projective line (i.e. of the rational
non-singular ruled surfaces) over the groundfield F; that aspect of our
problem will not be further considered here. On the other hand, the
above result corresponds to the determination of the usual fundamental
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domain for the action of the classical modular group in the upper
half-plane, and, as will be shown now, it can be proved similarly. For
each non-zero vector (x,v), with x and y in k., put A(x,y)=
sup(| #|w, | ¥|w)- Then & is invariant under &, i.e. we have 4 ((x, y) - f) =
h(x,y) for all Q. If g is any element of G, there is C> 0 such that

h((x,9)-g)=C-h(xy),
or, what amounts to the same,
hx, ») =C - h((%,9) - g)

for all vectors (x, ¥). At the same time, for each C' >0, there are only

finitely many vectors (R, S) with R and S in F[T], such that

h(R,S)=C’'. From these facts, it follows at once that, for a given
x

g€ G, one can choose an element y of I such that, if we put y~1g :( y) ,

2t
h(z, t) has its smallest value %,. Assume that ¢ has been so chosen, and

ut ylg=0b,f with b,= %o Yo €¢B and ¥c®, so that we have
1Y Y 8=0g o 0

zl

0 xr ’
ho=|ty| - Take any yp'el’, and put y’y‘lgz( t’); in view of our
. L 2y
choice of vy, we have h(2', ') =h, Writing y',=1 ,, g | we have
(2',t')y= (2", t") - £. Therefore: ?

R ) =h(Z, £) 2 hy=|to| -

0o 1
Now take y' = (1 S)’ with SeF[T7]; then (2",#") = (%y, ¥o+ Sty), so
that we must have, for all S:

Sup(|x0|oo’ |y0+St0|w)g|t0|oo'

As k is the direct sum of F[T] and T-1-7,, we can write y,%" in
the form S, +v, with SyeF[T] and |v|,<<1. Taking now S= —S5, in
the above inequality, we have

|y0—{—5t0|m=:|vt0|w<|t0|w

and therefore | %], =|f|,, S0 that we may write x,f"=T"% with
n=0 and ||, =1. Then:

B 1S, w T™"v ¢ b O
8=V o 1) %0 1 ) o 4)
In the right-hand side, the first two factors belong to I', the fourth
and fifth ones to ®, and the last one to 8. This proves the first part
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of our theorem, which we can also express by saying that the matrices
g, for n =0 contain a full set of representatives for the double cosets
NG/ P in G. Now we must show that, if two such matrices o, 0,, are
in the same double coset, then #»=m. In fact, our assumption means

P
that we have o, =y0,t; with yel',te®, 3¢ 8. Write y = (R g) and
=T "'u-1, with ¢€Z, |u|, =1. Then the matrix

poi (T 0\ (P Q) (T O "tp T
No 1) \rR s)\o 1/ \ 1R TS
must be in &, so that its determinant must be in #J; as the; determinar_lt
PS—QR of y is in F*, this gives n—m=2¢. As T"'R and T7'S
must be in 7, and the polynomials R and S are not both 0, we must
have ¢ —n =deg(R) if R==0, and otherwise ¢ =deg(S), hence in both

cases © =0 and » =m. Interchanging # and m, we get »=um, as was
to be proved.

4. It is also useful to find out when an element g of G can be written
in the above form in two different ways (this amounts to determining
when an element y of I', acting on G/® 3, can have a fixed point; here
the analogy with the classical case would be misleading). Clearly it
amounts to the same to find out when the matrix o;'yo,, with
n=0,yel’, can be in & 3. By considering its determinant, we see that,
if itis in 3, it is in ®, and that it is in ® if and only if it is in M, (»,,).

P
Writing y = ( R g), we see that this is so if and only if P and S are

in F, Q is at most of degree » (hence also in F if »=0), and R is O if
n>0 and is in F if »=0. For n =0, this gives yeGL(2, F); for n >0,

it gives y = (g %) with & and 8 in F* and deg (Q) <n.

5. One may now consider those complex-valued functions on G
which are right-invariant under ® 8 and left-invariant under I” or some
congruence subgroup of I'; an important example is given by the
“Eisenstein series”

1(g) =|det(g) li/fRZSﬂ(R, S)A((R, S) - g)~;

here the summation is taken over all pairs of mutually prime polynomials
R, S in F[T]; the coefficients a (R, S) depend only upon the congruence
classes of R and S modulo some fixed polynomial A; and s is any
complex number such that Re(s)>2, so that the series is absolutely
convergent (if this were not so, one could still attach a value to it by
analytic continuation in the s-plane). These series will not be further
considered here.
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We restrict our attention to the ‘“Hecke groups’ I, defined in no. 2;
a complex-valued function on G, left-invariant under I, and right-
invariant under §3, will be called an aufomorphic funcition of level
A on G. A complete set of representatives of I;\I, i.e. of the left cosets
I,y in I', can be obtained as follows. In the set of all pairs (R, S) of
mutually prime polynomials in F[T], consider the equivalence relation
(R, S)~(R', S') given by RS'=SR’ (mod. 4); write S/R mod. 4 for
the equivalence class of the pair (R, S) for this relation, and D, for
the set of all such classes; for obvious reasons, the finite set D, may
be called the projective line modulo 4 (or, more accurately, the pro-
jective line over the ring F[T]/A - F[T]). For each g¢D,, choose a
representative (R,,S,), and two polynomials F,,Q, such that
5 Q).
R, S,)’
o€D,, make up a complete set of representatives of I;\I". Consequently,
in view of the theorem in no. 3, the elements y,0,, for pcD,, n =0,
contain a complete set of representatives of the double cosets
I\G/® 3 in G. Therefore, if f is an automorphic function of level 4 on G,
and if we put f,(0) =f(y,0,) for every gcD, and every ncZ, fis
completely determined by the functions f, on D, for » =0.

In view of our results in no. 4, we have, for every #»=0, f(y'o,) =

Pg SQ—QQ RQ=1; put ’}}Q:( then the elements Yo of I for

1
f(yo,) whenever yly' is of the form (O Q1> with deg(Q) <#; if we

define o +Q, for p=S/R mod. 4, by o+Q=(S+QR)/R mod. 4,
this gives £, (o) =1, (o + Q) for deg(Q) <#. Similarly, for ¢ =S/R mod. A
and acF*, define wp=(«S)}/R mod. 4 and p'=R|S mod. 4. As the

10
matrix (0 “) is in I" and in & and commutes with ¢, for all ncZ, we
P
have f,(a0) =f, (o) forallneZ and alla c F*. Finally, fory = (R g) el
P
put y’ = (g R); we have

’ O T-
YO_ =Yy Gy 7" o |’

As the last matrix in the right-hand side is in & 8, this gives f(yo_,) =
f(y'e,), hence, for y=y,,f_,(0) =f,(0™) for all neZ and all peD,.

6. As in the classical case, one can attach “Hecke operators” to
the places of the field %; we begin with the places other than oo, since
for these the analogy is more obvious. Let II be a unitary prime
polynomial in F[T], not a divisor of A; call m its degree. Consider all

P
the matrices ( R g) with coefficients P, Q, R, S inF [T], R=0 (mod. 4),
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whose determinant is of the form «fl with «cF*. It is easily seen
that these matrices make up a union of finitely many left cosets of I,
in GL(2, k), and that a complete set of representatives for these cosets

o II

any complete set of representatives of the congruence classes modulo 17
in F[T], for instance all the polynomials of degree << x. Now, for any
function f on G, consider the function f; on G given by

o= 54 2

the sum in the right-hand side being taken over all the polynomials
of degree << in F[T]. If f is right-invariant under &3, so is f;; and
one sees at once that, if f is left-invariant under I}, f; has the same
property. Therefore the mapping f—>f; induces, on the space of auto-
morphic functions of level 4 on G, an operator which we denote by Hp.
As in the classical case, it is easily seen that any two of these operators
commute with each other.

. 7 0) . 1 M
consists of o 1 and of the matrices when one takes for M

From a birational point of view, there is no difference between the
place oo of % and those attached to the prime polynomials /7; therefore
we may expect to find a Hecke operator attached to co. Had we used
the adele language, we would not need a special definition for this;
here, as we have given a special role to play to the place oo, we shall
proceed as follows. For each function f on G, right-invariant under & 8,
consider the function f_, given by

feo(8) =Rf /(gto_,)dt

where df is a suitably normalized Haar measure on the compact group
Q. Clearly f is right-invariant under ®3; if f is left-invariant under
I, sois f,. We write H_ for the operator induced by the mapping
f—7, on the space of automorphic functions of level 4 on G; obviously
it commutes with the operators Hy;.

In the integral defining f,, the integrand is constant on the right
cosets modulo & no_,®a, in ®; it is easily seen that a complete set of

0o 1 1
representatives for these cosets is given by (1 O) and (O f) for £eF.

If we normalize 4f so that the measure of each such coset is 1, and if

we observe that
0 1 o 1\ .,
1 0/ %17y o) "
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we get (since f was assumed to be right-invariant under & 3):

T ¢
I (€) =1(gon) + Zf(g- ( o 1))
EEF
Assume now that f is automorphic of level 4; as in no. 5, put
fu(@) =1 (y,0,) for goeDy,mecZ, and write (H,f), for the function
similarly derived from Hf. Observe that we have

o 9= 1)
G \o 1) \o 1) %r

Taking now g =y,0, with #=0 in the above formula for f (g), we get:
(H o )n(@) = fuia(0) +§fn—~1(9 +ET7).

In particular, assume that f is an eigenfunction of H ; this corresponds,
in the classical case, to prescribing that the function f on GL(2, R) be
an eigenfunction of the Casimir operator (or that the modular form
determined by f be an eigenfunction of the Beltrami operator in the
upper half-plane). Let A be the eigenvalue of H  to which f belongs.
Then H f=Af, and we have, for all n =1:

fasn (@) =21, (0) —;fn—l (@+&T7).

This shows that f, is uniquely determined for all »>2 when f, and f,
are given on D,. As D, is a finite set, and as we have seen that f is
uniquely determined by the values of f, for all » =0, this shows that
the automorphic functions of given level, belonging to a given eigen-
value of H , make up a vector-space of finite dimension over C.

7. As we have observed before, we have G =B, - 88, where B, is
as defined in no. 2; therefore a function f on G, right-invariant under & 3,
is uniquely determined by the function ¢ induced by it on By, i.e. by

the function

Conversely, let @ be given; we wish to investigate whether there
is an automorphic function of level 4 on G, inducing ¢ on B,. For this
to be so, it is obviously necessary that ¢ should be right-invariant

for all neZ and yek,,.

1 v\ |
under the group B; n®8; as this consists of the matrices (0 1) with

ver,, we must have p(n, y +T"v) =@ (n, vy} for all ver. When that
is so, @ can be extended in one and only one way to a function f on G,
right-invariant under ®8; we have now to investigate whether f is
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left-invariant under I;. Express first that it is left-invariant under

for acF*; as this is also in ®, and as we have

o 0\ (T" y\ [« O 1 T ay
o 1) \o 1) Vo 1) "\o 1)
we get @(n, y) =¢(n, ay) for all #, y and «cF*. Express now that f

Q
1
@(n, y+Q); in other words, for each #, the function y—>¢(n, y) can
be expanded in a Fourier series on the compact group %, /F[T]. Take
a fixed non-trivial character g, of the additive group of F; for every
element x=a, 7% of k,, put 9 (%) =w,(x,). Then the characters
of &, trivial on F[T], are those of the form y—y(Qv) withQeF[T].
This gives:

1

1
is left-invariant under (0 ) for all QeF[T7]; this gives ¢(n, v) =

' (": y) :ZC (%, Q)w(Qy) s

Q

where the sum is taken over all QeF [T]. Writing that ¢ is invariant
under y—ay for all ¢ F*, and under y—y -+ T"v for all ver, we
get ¢c(n,Q)=c(n, Q) for all #,Q and «ck™, and c¢(n, Q) =0 unless
Q=0 or n+deg(Q) = —2. In particular, for a given value of #, only
finitely many terms in the Fourier series for ¢ can be other than 0,
viz., the term with Q =0 if » = —1, and otherwise that term and those
for which deg(Q) < —» —2. We will say that ¢ and f are B-cuspidal
when ¢ (n, 0) =0 for all e Z.

8. Let notations be as in no. 7, and let /,, be as defined in no. 6; as
observed there, f, is right-invariant under & 3 since f is so, and therefore
we have f =Af if and only if f, coincides with Af on B;; in view of
the formula given for f, in no. 6, this can be written as follows:

Apn, y)=g@n+1,y) +§§F¢(n—1, y+ETY).

In particular, if f is automorphic of level 4, this expresses that it is an
eigenfunction of H, belonging to the eigenvalue 4. Replacing ¢ by its
Fourier series, we get the equivalent condition

Ae(n, Q) =c(n+1,Q) +c(n—1, Q)éZw(ET”Q).

The sum in the last term in the right-hand side has the value 0 or ¢
according as the polynomial Q contains a non-zero termin 77"~ or not.
For Q =0, this gives

Ac(n, 0) =c(n+1, 0) +gc(n—1, 0)
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for all #n. For Q==0, put d =deg(Q), so that ¢(n, Q) =0 for n = —d —1.
Then the above condition is trivially fulfilled for # = —d —1; for
n<—d—2, it gives a recurrence relation which is easily solved by
writing the formal power-series expansion

(1—2v+ Lo =Y U

7 7 i=0
Then c¢(n,Q)=a_,_4_sc(—d—2,0) for n<—d—2 (and for all =
if we put a;=0 for 1<C0). When the coefficients ¢ (%, Q), for Q==0, have
that property, for some value of A, we will say (for reasons which will
become clearer presently) that they are eulerian at co.

On the other hand, take I/, and define /g, as in no. 6; write ¢, for
the function induced by 7, on B,. We have

o= )37 7))

where the sum is taken over all the polynomials M of degree <z =
deg(II). As f is right-invariant under & 3, this can also be written as

=7 ) ()

=@ n+tm, Iy)+ D ¢ (n—mn, I (y+M)).
M

Replacing ¢ by its Fourier series, we get
P (1, y) ZC (n+m,Q)p (QIIy) + 2o (n—m,Q)p (QII7y) Zw 1IM).
Q

Here the sum with respect to M has the value ¢” or 0 according as
w(QII1M) is 1 for all M or not, i.e. according as Q=0 (mod. I7) or not.
Consequently the Fourier coefficients of ¢, are

cp(n, Q) =c(n+m, [I72Q) +q¢"c(n—umn, I1Q)
provided we agree that the first term in the right-hand side is O unless
Q=0 (mod. I]).

We can now express, in terms of the coefficients ¢ (%, Q), the con-
ditions for f to be an eigenfunction of the operator f—fp; if @ is the
corresponding eigenvalue, we get, for Q =0:

wc(n, 0)=c(n+m, 0) +q¢"c(n—m, 0)
for all #; on the other hand, taking for Q a polynomial prime to /7,
and substituting IT°Q for Q in the above formula, with =0, we get

we (n, I1Q) = ¢ (n+a, [T2Q) 4" ¢ (n—a, IT*1Q).
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As before, this can be solved by writing the formal expansion

(1 SLAY S Uz)’lz S 4,Ur,
7 7 i—o
Then we have ¢ (n, [T'Q)=A;c(n+im, Q) for all 1=0. When that is
so, we shall say that the coefficients ¢ (n, Q) are eulerian at the place I1.
9. The ‘“‘eulerian’ property can be expressed conveniently by
introducing the formal power-series

o]
P(U)= 2 (¥ o(—n—2,Q))U"

n=0"'Q
where Y’ denotes the summation over all unitary polynomials in F[T].
For each #, the sum , may be restricted to the polynomials of degree
<, since all the other terms in it are 0; therefore P is well-defined
as a formal power-series. If f is B-cuspidal, we have c(n, 0) =0 for
all n; as ¢(n, aQ) =c(n, Q) for all xcF*, this gives

Tn
f(( 0 ?))”—*qﬂ(%, 0)= 2l cn,Q)=(g—1) 2'c(n,Q),
e 0

so that, in that case, the power-series P may be written

o] T—-n——z
H@=@4w§((o f»m.

As can be seen at once, the c(n, Q) are eulerian at oo if P can be
rewritten as

PU)= (1 —3 U+~;~U2)_1§’c(~deg(Q) —2,Q) U%s(@,

Here the series in the right-hand side may be regarded as corresponding,
in the classical theory, to the Dirichlet series whose Mellin transform
is the modular form defined by f, while the first factor corresponds to
the gamma factor in the functional equation for that series.

On the other hand, notations being as in no. 8, the c¢(n, Q) are
eulerian at /7 if and only if

P(U) = (1 —w (—f})" + (%i)”)l ”Zo (Z”c(—n —2 Q) U

0

where 2\’ denotes the summation over all unitary polynomials Q
prime to I7 in F[T].

10. We come back to the question, raised in no. 7, whether the
function f (derived from ¢ as explained there) is automorphic of level 4.



On the Analogue of the Modular Group in Characteristic p 221

If so, the function f' on G defined by

ro=i(3 o)

is also automorphic of level 4; one sees at once that, if f is an eigen-
function of one of the Hecke operators H,, Hy, f' is an eigenfunction
of the same operator, belonging to the same eigenvalue.

We assume now that f, and consequently f, are automorphic of
level 4A; moreover, to simplify matters, we will assume that they are
both B-cuspidal. Call ¢’ the function induced by f on By, ¢’ (n, Q) its
Fourier coefficients, and P’ the formal power-series derived from these
just as P was derived from ¢(», Q) in no. 9. As f" is assumed to be
B-cuspidal, this gives

0 T—n—2 o]
P'(U)=(q—1)-1;0f'(( o f))U"=(q—1)—1;f(( At g))U

Now we have, for #==0:

0 1 ATy~ 0\ (0
_n—2 = * : ") ar-r-,
AT 0 0 1/ \1 o

If we put a =deg(4) and # = T* 41, this gives, since # is then in #J,
and since f is right-invariant under 8 3:

e

Comparing now the power-series for P and for P’, we get the ““functional
equation”’
PU)=U*"*P (U,

which implies that both P and P’ are polynomials of degree a —4.
This corresponds to the fact, discovered by HECkE, that the Mellin
transforms of modular forms of suitable type satisfy functional
equations. Of course, here, we must have P =P’ =0 if a<<4.

11. As in the classical case, the above result can be significantly
extended. Let M be a unitary polynomial in F[T]; call 4 its degree.
Let 4 be a character of the multiplicative group of polynomials prime
to M modulo M (i.e. of the group (F[T]/M - F[T])*), which we extend
to all polynomials by writing y(Q)=0 when Q is not prime to M.
Assume that y is primitive, i.e. that there is no divisor M’ of M, other
than M, such that x(Q) =1 whenever Q is =1 (mod. M’) and prime
to M. We will also assume that y is trivial on F* (from a birationally
invariant point of view, this guarantees that y corresponds to a character
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of k34/k*, trivial on k%). Together with the power-series P introduced
in no. 9, we also consider, for all such characters X whose conductor M
is prime to the level 4 of f, the series

Pl U)= 3 (X'e(—n—2,0)2(Q)U"
w=0 'Q
and the series P’(y, U) similarly derived from f'. In order to establish
the functional equations for these series, we observe that the characters
of the additive group of F[T] modulo M are Q—y(M1NQ), where N
runs through a complete set of representatives of the congruence
classes modulo M in F[T], for instance the polynomials of degree <<u
in F[T]. Therefore, on that group, the character y may be written as a
linear combination of such characters. Just as in the classical theory,
this is
1) =47"8() ST Ny (N Q)

where g (y) is the “ Gaussian sum”’

= 2 2@y(—M1Q).

Q mod M
Consequently, we have

T-"2 _ [N
P(x,U):(q—1)-1q"‘g(x)Z;Z(NV(( 0 1 ))U

and similarly

P70 =~ 12 (@) 3 3 1 V) (( ATov-t _ape N)) o

As A is prime to M, the congruence A NN'=1 (mod. M) determines
a one-to-one correspondence between representatives N, N’ of the
congruence classes prime to M modulo M. For such a pair N, N’,

M N
write ANN' =1 —MX,with X eF [T]. Then thematrixy =
. —AN X
isin I, and we have:

0 1 T~*2 _M-1N\ (0 u
ATt —AM-N')"7'\ o 1 )\ o

with 4 =M-1T"*2 y=AM T~"~2 The last factor in the right-hand
side is in &3 if »7lv is in 7%, i.e. if n +n'=a 42y —4; therefore, when
that is so, we have

()| VT PPN
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From this, it follows at once that P(y, U) and P'(¥, U) are polynomials
of degree a 42 —4 and satisfy the functional equation

Py, U) = £H 4 (4) U= P (g, U,

12. The analogy with the classical case [cf. my note in Math. Ann.
168, 149—156 (1967)] suggests the following problem. Let the coeffi-
cients ¢ (#, Q) be given; assume that c(n, aQ) =c¢(n, Q) for all #, Q and
acF*, c(n, 0)=0forallz,andc(n, Q) =0forQ==0andn + deg (Q) < — 2.
Define P(U) as in no. 9, and P(y, U) as in no. 11. Define ¢ on B; by

@ (n, y) =§c(n, Qw(@Qy);

then, as we have seen in no. 7, ¢ is right-invariant under B;n &3,
and we can extend it to a function f on G, right-invariant under & 3.
Similarly, let coefficients ¢’(x, Q) be given, satisfying the same condi-
tions as above; from these, derive power-series P'(U), P'(y, U) and
functions ¢’, ' in the same manner. Now we ask: if P, P’ and (for
all primitive characters y whose conductor M is prime to a fixed
multiple B of A) the series P(y, U), P'(3, U) satisfy the functional
equations obtained in nos. 10—11, does it follow that f, /' are left-
invariant under I; and that f'(g) =7 ((2 é) . g)?

The answer is affirmative, at any rate, if one adds the assumption
that the coefficients ¢ (n, Q) are eulerian at almost all places of %; this
is a special case of a more general result, valid for any number-field or
function-field %. Perhaps, as the analogy with the classical case seems
to suggest (cf. loc. cit.), it might be more appropriate to assume the
eulerian property merely at oo; perhaps even this could be dropped.
As to these questions, I shall refrain from the temptation of offering
““conjectures”, which, in the absence of any evidence, would be mere
guesswork; a more thorough investigation is clearly needed.



A Theorem on the Formal Multiplication
of Trigonometric Series

By ANTONI ZYGMUND
The University of Chicago

1. The classical theorem of Riemann asserts that if the two-way
infinite sequence of numbers ¢, tends to 0 as #— - oo, then the series

oo
3 e e ()
—00
integrated termwise twice has sum
+o0 .
F(x)=%cox2— 2 "c,n2e"*
—00

which is smooth at each x, that is

F(x+4h)+F(x—h)—2F(x)
h

—0(h—0). (1.1)

As a matter of fact, the last relation holds uniformly in x.

If the sequence ¢, is merely bounded the result is no longer true
and we can only assert that the ratio in (1.1) remains bounded,
uniformly in %, as 2—0.

Since the property of smoothness is important in certain applications
we may ask when (1.1) holds, for some points x at least, if we no longer
assume that the ¢,—0. The theorem which follows may be useful here.

Theorem 1. Suppose that the coefficiens c, of the series S=D.c,e"*
are uniformly bounded and consider the formal product of S with an
absolutely convergent trigonometric series

2™ (Xl < ) (7)
If X, é"* is this product, then clearly c, =0 (1). However the function
! +°O ’ ;.
Fy (%) =%cox®— D ' c,n 2"

obtained by integrating the sevies D, c,e™* twice is smooth at each point
%o where the sum L (x) of 2, p,6"* is zero.
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We need the following lemma which is a slight generalisation of the
Riemann theorem stated above.

Lemma. Suppose that the sequence {s,},_, o .. is bounded and summable
(C, 1) to limit s. Then

L2 sin2 nh
fim = 2 sy =S (1.2)

This lemma is known but we indicate briefly the proof. In view
of the formula

Sht Z ek _la (o<hs1la)

we may assume that s =0, the only case that interests us. Let A— 40,
N=1[1/k], and let & be a large but fixed integer. We write the sum
in (1.2) in the form

2

oo

E=3+ 3~y

Clearly, if |s,| =M for all »,
DX
Yot

and so is small if % is large. On the other hand, if s, +s,+ -+ +5, =%n0,
summation by parts shows that

sin2 nh

!Z, = n2 h2 +o(1)
<h})£"}ax ”i nl Z IA Sl;;z ;h +o(1)

=h-o(N )V+0( )=o(1),
where V' denotes the total variation of the function (sin x)2/x% over
the interval (0, 4+ oo). This completes the proof of the lemma.
Passing to the proof of the theorem we may assume that x,=0.
The formal product S’'=c,é* of the series S=c,é"* and
T =2y,€e"* has coefficients

!
Cp= Z Cop¥Vn—p-
4

Since ¢, =0(1), 2| 74| < o, we have ¢, =0(1). We have to show that
F (h) +F,(—h) —2F (0) =0 (h). Now,

F,(2h) +F,(—2h) —2F, (0) +4Z oSk 1)
and if we show that under our hypotheses
N
2 c=0(N),
k=—N

15a Functional Analysis
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an application of the lemma will show that the expression (1.3) is
actually o (%) and the theorem will be established.

Write
+o0
Fq: 2 Y
p=q
Then
N , N +o00
Cp= e =2 C 4 _
”=Z_N n;_w;_m%? p— p{ N—p —IN_p11}
and
N
‘_Z;.VC M Z IFN p—INn—pl

Let us split the last sum into two, extended over the ranges | p| <2N
and |p|>2N. Denoting these sums respectively by >’ and )" and
observing that in view of the hypothesis 4(0) =0 we have I,=0(1)
for s tending both to + co and — oo we clearly have

>V =o0(N).
On the other hand,

N= p
2 B 2 Wl =@NA) X =0

[p|>2N —

Thus X' + > =0(N) and the theorem is established.

2. Let F(x) be the sum of the series obtained by integrating formally
twice the series S = > (—1 sign )¢, ¢"* conjugate to S. Thus

F(x) =i (sign n)% en*.

Theorem 2. Under the hypotheses of Theorem 1, the function F s
likewise smooth at the points where A(x) is zero.

The proof parallels that of Theorem 1. Assuming that x,=0 it is
enough to show that

+N . 4w +
2, (sign ”)0n=P=§m%{Fl~p —Iy p+1} 2 ep{linp—I p}=0(N

We omit the details.

It is clear that both in Theorems 1 and 2 the smothness is uniform
over the set of the zeros of A.

Also, if at some x, the value of 2 is not zero, writing A(x) in the
form {A(x) — A(x,)} + A{x,) we easily find that

B (w0 + 1) +F (7 — h) — 2F (%) —A(x) Flxo+h)+F(x—h) —2F(x)
h o h

and likewise for F.
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Theorems 1 and 2 have connection with the theorems of Rajchman
about the formal multiplication of trigonometric series. In Rajchman’s
theorems (see A.ZyGMUND, ‘“‘Trigonometric series”’, Chapter IX) we
assume that the “bad’ series S has coefficients tending to 0 and we
show that if the “good” series T has coefficients satisfying the
condition 2}|#y,|<C oo, then the formal product ST converges to 0
at each point where T vanishes. In our case we assume less about
both S and T, and of course get less in the conclusion.

15b Functional Analysis



The Influence of M. H. Stone on the Origins
of Category Theory

By SAUNDERS MACLANE
The University of Chicago

This talk is a small piece of historical investigation, intended to
be an example of history in the retrospective sense: Starting with some
currently active ideas in category theory, it will examine their origins
in particular in certain work of MarsEALL STONE. Hence this talk will
not even mention many of STONE’Ss contributions (his theorem on
one-parameter unitary groups, the Stone-Weierstrass theorem, or his
results on spectra, on integration, or on convexity); instead we will
examine the connection of just a few of his ideas with the subsequent
development of category theory.

Our historical study focuses on the mathematical developments
of the decade 1929—1939. This decade runs from the onset of the great
depression to the beginning of the second World War, so its initial and
terminal dates have some general historical significance. This decade
also has special mathematical significance; it saw the rapid development
of the methods of general analysis, modern algebra, and topology and
witnessed an increasingly active interaction between these disciplines.
The mathematical climate of the decade may be summarized by noting
the most influential books published in this period. Such a list would
surely include HERMANN WEYL’s Group Theory and Quantum Mechanics
(1928), VAN DER WAERDEN’s Moderne Algebra (1930 and 1931), STONE’S
Linear Transformations in Hilbert Space and Their Applications to
Analysis (1932), Banacu’s Théorie des Opération linéaires (1932),
ALEXANDROFF-HOPF’s Topology (1935), WEIL’S Spaces with Uniform
Structure and General Topology (1938) and the first section (Summary
of the theory of sets) of BourBaki’'s Fundamental Structures of
Analysis (1939).

The dominant tone of these investigations is very different from
that of previous decades. The general attitude is well reflected by
STONE’s statement, in his summary article [16] on the representation
of Boolean algebras: “A cardinal principle of modern mathematical
research may be stated as a maxim: ‘One must always topologize.””’
In the same article, STONE goes on to observe that this process of
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employing a suitable topology has given, for example, a deeper insight
into the structure of Boolean rings. This emphasis on the use of all
relevant mathematical methods to get at the deeper structure of the
mathematical entities at hand is typical of STONE’s influence on the
development of Mathematics. The decade 1929—1939 emphasized the
study of a variety of mathematical structures, and so set the stage for
many future developments; in particular, for the ideas of category
theory.

Category theory asks of each type of mathematical structure “ What
are the morphisms?”’ All the morphisms from 4 to B constitute the
set hom (4, B), in the category of all objects 4, B, C ... of the given
structure, and the axioms for a category (see [10] or [7]) specify the
properties of composition of morphisms. This emphasis on morphisms
as such came in the 1940’s and not in the decade 19290—1939, when
attention was focused rather on subobjects (monomorphisms) and
quotients (epimorphisms). For example, VAN DER WAERDEN’S Moderne
Algebra, following the lead of EMMY NOETHER, studies homomorphisms
G—H of groups, and of rings, but only such as map G onfo H. The
utility of considering the more general homomorphisms G—H of one
group nto another first became clear from the example of algebraic
topology, where one was forced to study continuous maps X—Y of
one topological space imfo another, and the corresponding homo-
morphisms on the homology groups. Indeed the notion of a functor
as a morphism of categories is suggested by the decisive example of
the homology functor H, on the category of topological spaces to the
category of abelian groups; it sends each space X to the corresponding
nth (singular or Cech) homology group H,(X) and each morphism
/:X—Y of spaces to the induced morphism H,(f):H,(X)—~H,(Y)
of homology groups.

The general idea of a functor as a morphism of categories was fore-
shadowed by many other examples. One example much emphasized in
the work of MARSHALL STONE is the ring C(X) of all continuous real-
valued functions f: X — R on the topological space X. We may regard C
as a functor on the category of such spaces to the category of rings.
Just as in the case of homology, the use of such functors emphasizes
and formalizes the passage between topology and algebra, a passage
fundamental to many of STONE’s investigations.

StoNE’s work emphasized certain cases where such a passage
provides an equivalence between topological and algebraic notions — a
relation we now formulate as an equivalence of categories. For example,
in Theorem 4, p. 383 of [15] he writes ““The algebraic theory of Boolean
rings is mathematically equivalent to the topological theory of Boolean
spaces by virtue of the following relations ...”” The relations which



230 S. MACLANE:

then follow involve the functor E which assigns to each Boolean ring 4
its prime ideal spectrum E(4), which is a Boolean space (a locally
compact totally disconnected Hausdorff space) and the functor B
which reciprocally sends each such space S to the Boolean ring B(S)
of all compact open subsets of S. The cited theorem of Stone goes on
to specify the functorial character of these two constructions E and B.
To be sure, this is specified not in terms of the general action of E and B
on morphisms, but in terms of their effect, more specifically, upon
automorphisms, monomorphisms (subrings), and epimorphisms (via
ideals). A previous theorem of STONE’s had produced a homeomorphism
S=E B(S) for any Boolean space S and an isomorphism 4 = BE(A)
for any Boolean algebra 4. Both these isomorphisms are natural ones
in the technical sense of category theory. The presence of two such
natural isomorphisms = EB and I'= BE, with I and I’ identity
functors, is exactly the assertion that the functors E and B provide
an equivalence of categories; more exactly an equivalence of the category
of Boolean algebras to the category of Boolean spaces. STONE'S prescient
emphasis on the careful formulation of this particular equivalence
amounts to a clear recognition of the importance of the general notion,
an importance which can now be illustrated by many different examples
of equivalences of categories — simplicial sets and C W-complexes, or
the useful equivalence between the category of all finite sets and the
“skeletal” category of finite sets, in which there is just one finite set #
for each natural number #=0, 1, 2, .... (With this example, one can
clearly note that mathematics really doesn’t use all those different
finite sets.)

The categorical notions mentioned so far — morphism, functor,
natural isomorphism, and equivalence of categories — belong to des-
criptive category theory. The cited instances of their use document
the claim that category theory provides a handy language for the
formulation of a large class of those general observations about
mathematical structure which were first recognized by STONE and
others in the decade of the 30’s, and were then formulated by EILENBERG-
MACLANE in the 40’s (see [5, 6]). More recent developments indicate
that the deeper aspects of category theory are those involved in the
concept of adjointness, due in its complementary aspects to SAMUEL
(1948, [11]) and Kan (1958, [8]). We now indicate how KAN’s notion
of adjoint functor may have been adumbrated in the analytical study
of adjoint transformations. It will appear that SToNE’s work provides
both a formalism which inspired that for adjoint functors and an
exhibition of several decisive examples of such adjointness.

The notion of an adjoint operator is an old one, appearing for
differential equations in the work of Legendre and elsewhere, notably
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later in the work of BocHER. In algebra, adjoints appear as conjugate
transpose operators. For a Hilbert space H, the adjoint T% of the linear
operator 7" on H is defined by the familiar condition on the inner
product

(T*f,e)=(/, Tg), (1)

required for all relevant vectors f, g in H. This definitive formulation
is due to STONE in 1929 (see [12], p. 198); it was almost immediately
put to extensive use by von NEUMANN ([19], 1932).

The definition of adjoint functor, as first stated by Kan ([8], 1958)
is formally parallel, for functors U: 4 —X and FF: X—A in the opposite
directions between categories A and X. Indeed, F is a left adjoint of U
if there is an isomorphism

hom 4 (FX, A) =homx (X, UA) (2)

of hom-sets, defined for all objects X of X and A of 4, and natural
in these objects. The formal analogy to the definition (1) of adjoint
transformation is striking — and becomes even more so if we use the
abbreviated notation (X, A) for the set hom 4 (X, 4) of all morphisms
in 4 from FX to A. On the factual side, we may illustrate by several
examples of adjoint pairs of functors: If 4 is the category of all (real)
vector spaces, X that of sets, and U the functor which assigns to each
vector space 4 its underlying set of vectors (the “forgetful” functor,
which forgets the vector space structure), then the corresponding left
adjoint is the functor I which assigns to each set X the real vector
space F X with basis X. The isomorphism (2) is then the familiar one,
which states that a linear transformation f:FX->A on the vector
space FX with basis X is completely determined once its values
f:X—UA on the basis X are known.

In this example, we may regard F X as the “free” real vector space
over the set X of “generators’’; other constructions of “free’’ algebraic
systems of various types lead in the same way to pairs of adjoint
functors. For instance, the forgetful functor from groups to sets has as
left adjoint the functor which assigns to each set X the free group F.X
with generators X, and the forgetful functor from algebras (over the
reals) to real vector spaces has as left adjoint the functor T which
sends each vector space V to the tensor algebra TV. For topological
spaces with a base point, the suspension 2'X is left adjoint to the loop
space 27, and this fact is used repeatedly in homotopy theory. The
tensor product of vector spaces is characterized by the equation

hom (V®C, W) =hom (V, hom (C, W)),

natural for all vector spaces V, C, and W (over the same field); this
equation states simply that the functor — ®C is left adjoint to the
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functor hom (C, —). Many other examples of the ubiquity of adjoint
functors may be found in any one of the standard sources; for example [7]
or [10].

The basic formal properties of adjoint functors are strikingly parallel
to those of adjoint linear operators. First, when the adjoint (or the
adjoint functor) exists, it is unique; for functors, this of course means
unique up to a natural isomorphism. Second, the composition rule
(ST)*=T*S* for adjoint operators has an exact analog governing
the composition of adjoint functors. Third, the adjoint of a linear
operator is linear, and correspondingly the adjoint of an additive functor
is additive ([10], Theorem 13.1); more generally any left adjoint
commutes with direct limits. Only in the existence assertions is there
a notable difference; FREvD’s adjoint functor theorem ([7], p. 84)
appears to have no analog for adjoint operators. In all the other cited
properties the parallel is so strong as to raise the evident question
“Why ?”’. However, I do not know any formal explanation, for example,
any more general concept which would subsume both adjoint functors
and adjoint operators with the just noted corresponding formal properties.

Even the properties of norms of operators have a parallel. In the
definition (1) of an adjoint operator we may set g=T%*f to calculate
the norm || T*f| as

[ TP =, TT*f).

Similarly one may set 4 =F X in the definition (2) of an adjoint functor.
Under this adjunction isomorphism the identity map 1:F/ X —F X then
corresponds to a special morphism m: X —UF X. This morphism # is
universal from the object X to the functor U, in the sense that every
morphism g: X —-UA4 from X to a value of U factors uniquely through
m, via a morphism g :FX-—sA. Such universal constructions were
first described by SamUEL, and indeed the notion of adjointness may
be characterized completely in terms of the universality of m (see [10],
Theorems 7.1 and 8.3).

MARrsHALL STONE’s work not only set the stage for the general
definition of adjoint functors by providing the clearly parallel definition
of adjoint operator; his studies also gave some decisive examples of the
construction of explicit adjoint functors. One such example arose
directly in his pioneering and systematic study [14] of the relation
between the “abstract” notion of a Boolean ring and the more ““con-
crete”’ notion of an algebra of classes. It is well known that he raised
(and solved) the question whether any Boolean ring could be realized
as an algebra of classes, but one can note in addition that his solution
amounted exactly to the construction of a pair of adjoint functors.
Each algebra of classes may be regarded as a Boolean ring, and this
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by the evident forgetful functor (forget that the elements of the algebra
are in fact classes). Stone explicitly constructed a left adjoint, which
assigns to each Boolean ring 4 the algebra E(4) of all subclasses of the
class of all prime ideals of A. He also constructed the morphism
E:A—E(A) of Boolean rings which sends each element a of the Boolean
ring 4 to the class E(a) of all those prime ideals  in 4 with 4 not in $.
This morphism FE is in fact the universal morphism of the Boolean
ring A to (a value of) the forgetful functor from algebras of classes,
and E is the left adjoint of the forgetful functor precisely because of
this universality of E. Currently this universality is stated in terms
of morphisms, but classically it can be stated in terms of the construction
of suitable quotients (replacing epimorphisms). This universality of E
is exactly so stated in the concluding Theorems 68 and 69 of StonNE’s
paper [14] on the representation of a Boolean ring by an algebra of
classes. As he remarks “We now complete the theory of representation
by means of the following result” (the universality of E).

A more famous example of adjoint functors is the Stone-Cech
compactification §. It is a functor.

Completely regular spaces LA Compact Hausdoff spaces,

and is the left adjoint to the forgetful functor (opposite direction). The
usual description of the compactification X of the completely regular
space X states that §X is compact, that the embedding m: X —-gX
is dense, and that every continuous function from X to the reals R
extends in a unique way to a continuous functor X — R. This property
of B was stated both by StoNE and CicH [4]. STONE went further, and
observed (in [15], Theorem 88) that any continuous mapping of X into
a compact Hausdorff space can be factored (uniquely) through §X. This
observation amounts exactly to the assertion that the embedding
m:X—fX is universal. In other words, STONE not only constructed
but established in full the properties which assert that g is a left adjoint.

For X completely regular, this universal map X —fX is a mono-
morphism (an embedding). One may also search for a compactification
of any T, space, except that in this case the universal mapping will
no longer be a monomorphism. This compactification is provided by
composing f with the functor ¢

Ty-spaces — completely regular spaces,

adjoint to the forgetful functor. Stone explicitly constructed this
functor ([15], Theorem 77) and showed it, via universality, to be the
desired adjoint ([15], Theorem 89).

We have now summarized some aspects of MARSHALL STONE’S work
on adjoint linear operators and on the representation of Boolean rings.
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It has long been realized that STONE’S investigations on the latter type
have had a decisive influence on the subsequent study of rings of function
What we have noted now is that these investigations also provided a
sharp and completely formulated example of the construction of adjoint
functors. This idea, central to the present usage of categories, was there
in embryo in STONE’S papers of 1936 and 1937.

It is of course not surprising that the abstraction presented in
category theory should arise from a variety of concrete instances; this
is a common aspect in the historical development of mathematics.
What is surprising is that the clear recognition of the notion of adjoint
functor waited for over twenty years, till KAN’s paper in 1958. The
notions of category and functor themselves were developed quite soon
after STONE’s work, in 1942 and 1945 ([5] and [6]). The related notion
of universal construction also appeared explicitly in the work of
SAMUEL [11] in 1948 and was extensively used by BourBaKI, though not
in the efficient language of categories. (Indeed, it was some time after the
general recognition of the importance of Kan’s work that the relation
between adjoint functors and universality was clearly realized.)

This situation is a striking instance of a historical question which
can be raised about the time of appearance of many mathematical
concepts: Given the available formalism of adjoint operators and the
numerous examples of adjoint functors, why was the general notion so
late in arising?

We have little expertise in answering such questions in the history
of mathematics and any attempt at an answer can only be speculation
(and is not to be regarded as part of my analysis of STONE’s work).
It is my own view that the climate of mathematical opinion in the
decade 1946—1956 was not favorable to further conceptual develop-
ment. Investigation of concepts as general as those of category theory
were heartily discouraged, perhaps because it was felt that the scheme
provided by BoOURBAKI'S structures produced enough generality. It is
to be noted that KaN, when developing adjoint functors, came at the
time from a solitary position more or less outside active mathematical
circles. It may even be that we should be on our guard lest the current
very active mathematical life inhibit the development of ideas which
fall outside the established directions of research.

There are other questions, not historical but mathematical, which
bear on future possibilities and new directions. STONE’s investigations
emphasized the utility of some axiomatic methods in analysis. The
current development of category theory raises the possibility of a different
style of axiomatics: One axiomatizes (say) not a single Hilbert space,
but the category of all Hilbert spaces. The model of such axioms on a
whole category has been indicated by LAWVERE, in his axioms [9] on
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the category of sets. The method has as yet been little exploited, but
there are many possible cases at hand.

Category theory has had lively use in Topology, Homological

Algebra, and Algebraic Geometry, but there have not as yet been
decisive applications to General Topology or to Functional Analysis.
We have observed that these fields, in the hands of MARSHALL STONE,
did provide some starting points for categorists. There is a clear prospect
that there may be future developments there, either using categories
or some yet-to-be-discoreved parallel notions.

(=

References

. ALEXANDROFF, P., u. H. Hopr: Topologie I. Berlin: Springer 1935.

2. BanacH, S.: Théorie des opérations linéaires. Warsaw 1932.

(93]

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.

21.

. BourBaki, N.: Eléménts de mathématique. Premiére partie, Les struc-

tures fondamentales de l’analyse, Livre I, Théori¢ des ensembles
(fascicule de résultats). Act. Sci. et Ind., No. 846. Paris: Hermann
1939.

.CecH, E.: On bicompact spaces. Ann. of. Math. 38, 823—846 (1937).
. EILENBERG, S., and S.MAcLANE: Natural isomorphisms in group

theory. Proc. Nat. Acad. Sci. U.S. 28, 537—543 (1942).

. — — General theory of natural equivalences. Trans. AMS 58, 231—294

(1945).

. FrREYD, P.: Abelian categories, an introduction to the theory of functors.

New York: Harper & Row 1964.

. Kan, D. M.: Adjoint functors. Trans. AMS 87, 2904—329 (1958).
.LawveRrE, F. W.: An elementary theory of the category of sets. Proc.

Nat. Acad. Sci. U.S.A. 52, 1506—1511 (1964).

MacLanNE, S.: Categorical algebra. Bull. Am. Math. Soc. 71, 40—106
(1965).

SAMUEL, P.: On universal mappings and free topological groups. Bull.
Am. Math. Soc. 54, 591—598 (1948).

StoNE, M. H.: Linear transformations in Hilbert space. I. Geometrical
aspects. Proc. Nat. Acad. Sci. U.S.A 15, 198—202 (1929).

— Linear transformations in Hilbert space and their applications to
analysis. Am. Math. Soc. Coll. Publ., vol. XV. New York 1932.

— The theory of representations for Boolean algebras. Trans. AMS
40, 37—111 (1936).

— Applications of the theory of Boolean rings to general topology.
Trans. AMS 41, 321—364 (1937).

— The representation of Boolean algebras. Bull. A M.S. 44, 807—816
(1938).

— A general theory of spectra. I. Proc. Nat. Acad. Sci. U.S 26, 280—283
(1940).

‘WAERDEN, B.L.vaN DER: Moderne Algebra. Berlin: Springer, vol. 1
(1930), vol. 2 (1931).

von NEUMANN, J.: Uber adjungierte Funktionaloperatoren. Ann. Math.
33, 249—310 (1932).

WEIL, A.: Sur les espaces 4 structure uniforme et sur la topologie générale.
Act. Sci. et Ind., No. 551. Paris 1938.

WEevL, H.: Gruppentheorie und Quantenmechanik. Leipzig 1928.



236 S. MAcLANE:

Remarks of Professor Stone

In his lecture, Professor MACLANE asked some intriguing historical
questions about the concept of adjoint functors or operators. I may
perhaps be permitted to make a few comments by way of response to
these questions. If one seeks to explain why the notion of an adjoint
functor appeared in category theory as much as fifteen years after its
inception, it seems to me that two reasons have to be suggested. In the
first place, the concept had its origins and early development in analysis,
in the theory of differential equations. It was not a vital part of the
mathematical experience of the algebraically-oriented pioneers in
category theory. The other historical factor that has to be cited is the
interruption of mathematical research imposed by World War IT and
the many professional readjustments that followed it.

Without an opportunity to do some historical research on the
point, I cannot now trace the concept of adjoint back to its origins. In
the theory differential equations it is rather old. BOCHER in his ““Legons
sur les méthodes de Sturm”’ was already able to give a classic exposition
of the concept and its applications to ordinary differential equations. In
the late twenties the concept assumed a more abstract, algebraic form
as a result of its relevance to the theory of operators in Hilbert space.
The history of this development is interesting and instructive. I should
like to sketch it briefly.

Stimulated by an interest in quantum mechanics, J. VON NEUMANN
began the work in operator theory which he was to continue as long as
he lived. Most of the ideas essential for an abstract theory had already
been developed by F. Riesz, who had established the spectral theory
for bounded symmetric operators in a form very much like that now
regarded as standard. Von NEUMANN saw the need for extending RI1ESz’s
treatment to nonbounded operators and found a clue to doing this in
CARLEMAN’S highly original book on integral operators with singular
kernels. The result was a paper voN NEUMANN submitted for publication
to the Mathematische Zeitschrift but later withdrew. The reason for
the withdrawal was that in 1928 ErRHARD SCHMIDT and I independently
saw the role which could be played in the theory by the concept of the
adjoint operator and the importance which should be attached to self-
adjoint operators. When voN NEUMANN learned from Professor SCEMIDT
of this observation, he was at once enabled to rewrite his paper in much
more satisfactory and complete form, giving a full spectral theory for
all closed symmetric operators as well as for the self-adjoint operators.
This he did by abandoning CARLEMAN’s methods, which he had been
able to apply only by use of a transfinite induction, and introducing
the Cayley transform, which served to reduce the theory of non-bounded
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symmetric operators to that of bounded isometric operators. Incidentally,
for permission to withdraw the paper without penalties when it was
already in page proof the publisher exacted from Professor voN NEUMANN
a promise to write for him a book on quantum mechanics. The book
soon appeared and has become one of the classics of modern physics,
particularly valued for its analysis of quantum statistics. My own
interest in Hilbert space problems was aroused by reading the page
proofs of vON NEUMANN’S paper when they were given to me by Pro-
fessor CARATHEODORY, an editor at that time of the Mathematische
Zeitschrift, just as he was finishing a visiting lectureship at Harvard in
the spring of 1928. I saw almost at once that voN NEUMANN needed
the concept of adjoint as a key to his problem and that a successful
approach to the spectral theorem for self-adjoint operators could be
made by the use of methods already familiar in the theory of differen-
tial equations. Looking back, I draw from this bit of mathematical
history the lesson that a broad background is sometimes useful in
quickly finding important clues to particular problems. Certainly von
NEUMANN would have seen for himself the relevance of the notions
of adjoint and self-adjointness had his experience with differential
integral operators then been as extensive as Professor SCHMIDT'S or my
and own.

By analogy, I am equally certain that EITLENBERG, MACLANE, and
the other early pioneers in category theory would have hit quite early
upon the idea of adjoint functor if they had been more fully aware of
contemporary work in Hilbert space theory and its background in the
theories of differential equations and topological groups. As it was, they
drew mainly upon algebra and algebraic topology-especially the theory
of abelian groups — for sources of the new theory. Of course, it will
never take very long for such a central and essentially simple concept
as that of adjoint functor to emerge from research carried on strictly
inside a growing branch of mathematics. While I do not know the
private history of Kan’s introduction of the adjoint functor, I suspect
that it may have come about in just this manner. Even if such be the
case, one could still ask with Professor MACLANE why, as a matter of
the purely internal development of category theory, adjoint functors
did not appear considerably earlier upon the cene. After all, the well-
known dualities for abelian groups and for vector spaces could have
provided clues without any need of venturing very far away from the
initial concerns of category theory. If an answer is to be found here I think
we have to look at another factor, the impact of the Second World War
upon mathematicians and mathematics.

Before doing this, let me indulge in a few comments on the relation
between category theory and other branches of mathematics, with an
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eye upon the future rather than upon the past. Category theory has
scored real triumphs in algebra, algebraic topology, and algebraic
geometry, and in so doing has established itself as a respectable branch
of mathematics, worthy of intensive cultivation both for its own sake
and for the sake of its applications. However, the relevance and the
importance of category theory for some other branches of mathematics,
such as analysis and set-theoretical or general topology is still to be
demonstrated. In spite of a considerable amount of research intended
to connect category theory with these branches of mathematics, we still
have few if any indications that categories will serve as powerful tools
in their further development. Professor MACLANE has been very kind
in pointing out the presence in my paper on ““Applications of the Theory
of Boolean rings to General Topology’ of a number of mathematical
phenomena which have since been recognized and studied in category
theory. More recent work by others has shown that there are indeed
many close links between general topology and category theory. Funda-
mentally, however, this still amounts to saying that many topological
situations appear as special cases of general results in category theory.
We do not yet have many new results in general topology made possible
by essential applications of category theory. Possibly this is due to the
observation, made in a recent paper of STEENROD, that the kinds of
topological space that can be treated smoothly in terms of categories
are not coextensive with the kinds that topologists have chosen as the
subject of their investigations. The connections between measure
theory and category theory have likewise been investigated, especially
by LiNTON, with somewhat similar results. Some measure-theoretical
phenomena can be neatly expressed in terms of category theory, but
others seem to remain elusive. Indeed, some problems in measure theory
suggested by the connections with category theory and essential to a full
understanding of those connections can apparently be attacked only
within measure theory and remain unsolved. It is possible that some
of LAURENT SCHWARTZ'S recent work on measure theory could be
interpreted as effecting a rapprochement with category theory through
a revision of the fundamental concepts of measure theory. If so, there
is an obvious analogy with STEENROD’S proposal in the case of topology.
These two illustrations may serve to remind us that in those parts of
mathematics where limit processes play an essential part, as in general
topology, measure theory, and analysis taken as a whole, we often have
to contend with situations bordering on the pathological and sometimes
need to avoid entanglement in irresoluble pathologies by judicious
limitation of the problems we try to attack. This clearly presents a
certain contrast with the situation in algebra. Furthermore it suggests
that however well category theory may be adapted to algebraic
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situations, it may still not fit the requirements of analysis and general
topology in an entirely satisfactory manner. Whether the answer lies
in changing our attitude towards analysis or in modifying category
theory or in working out some sort of mutual adjustment between
them, only future researches can tell.

Returning now to the influence of World War II upon mathematics
in general and upon the development of category theory in particular,
we need only recall the almost universal disruption of mathematical
activity to realize how many potential advances must have been held
up or even made forever impossible. It is unnecessary to recall in detail
the breakdown of international communications, the diversion of mature
mathematicians to war-time tasks, the suspension of normal teaching
functions in the universities, the absorption of youth by the military
services, or the tragic loss of life on the battle field and in concentration
camps. All these evils had a heavy impact upon our science. Yet it
seems to me equally important to dwell upn a less obvious influence
of the war, but one that should not be underestimated. In the war’s
aftermath we had to deal with many problems of readjustment and
reconstruction which undoubtedly took their toll of research. At the
same time many of us returned to our normal pursuits as mathematicians
with a certain restlessness of spirit and a new vision of a more intense
and highly organized mathematical activity than we had previously
known. Those of us who shared this sense of restlessness and of the
opening up of new possibilities were not content to pick things up just
as we had left them. Instead we looked for new beginnings and devoted
much time and energy over a number of years to organizing a significantly
higher level of mathematical activity than we had known before the
war. In retrospect it seems to me plain that this upsurge for which we
worked in the years just after the war was partly the result of the
intellectual revolution in mathematics that had begun at the turn of
the century and was in full swing by 1939, partly the result of new
organizational trends in science which received a great impetus from
experience gained in the prosecution of the war. If research suffered
a little because of such new preoccupations — I think there is no
doubt that it did — it was only for a short time. We all know that
since then mathematical research has attained impressive new levels
of quantity and quality.

The effects which we have tried to describe here can be traced in
more specific terms with reference to developments in the field of which
category theory is a major part. In the period just before the war a
number of mathematicians began to look for general principles of the
kind with which category theory is concerned. Some of them found
leads in my paper on ‘‘Applications of the Theory of Boolean Rings
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to General Topology”. One problem posed in this paper was that of
characterizing the rings of continuous functions on a compact Hausdorff
space. A manuscript of the paper was made available to mathematicians
in Moscow by early 1936 and quickly stimulated some notes by KoLmo-
GOroV and GELFAND. A little later and at about the same time, GELFAND
and I gave solutions of the characterization problem, he in the case of
complex functions with his famous paper on Banach algebras and I in
the case of real functions. Similar results were obtained for lattices or
vector lattices of various types by a number of mathematicians, including
Kaxkutani, the KrEiNs, voN NEUMANN, and myself. Indeed, after
reading a paper of FREUDENTHAL, I had obtained an unpublished
result along these lines as early as the summer of 1938. These different
theorems had as a common feature the fact that they all furnished
representations of certain algebraic structures by sets of functions
subject to appropriate operations. The general principle on which they
were all based was formulated in explicit terms in notes written at
roughly the same time by GARRETT BIRKHOFF, KakuTaNI, and McCov.
The greater part of these results was published in 1939—1940. I have
no doubt that, if it had not been for the war, research along these lines
and along certain other lines suggested by my Boolean algebra paper
would have continued at the same level of activity during the period
1940—1945. Speaking for myself, I can say that I did indeed carry
on my investigations of some of the general principles which appeared
to lie at the foundation of functional analysis and topology. I lectured
on this subject at the University of Buenos Aires in 1943 with ALBERTO
CALDERON as one of my auditors; returned to the subject again in my
unpublished retiring address as President of the American Mathematical
Society; and finally lectured on it again at the University of Chicago,
in a class which included RicEARD KADISON as one of its members.
I never succeeded in bringing my results to a point which satisfied me,
and I was eventually drawn away from further work upon them by
problems closer to my major interests in analysis. One thing that
displeased me was that I did not succeed in showing the relevance to
Galois theory of what I hoped were general principles with at least
that much scope. It is quite clear to me that if the war and its aftermath
had not interrupted my systematic work in this field I would have been
in a far better position to make substantial progress in it. I think that
under other circumstances I would inevitably have been led to explore
the significance of category theory as it then was for my own work. No
doubt what I have said about my own experience must be true of the
experiences of many other mathematicians. And it must always be
remembered that a great many young people were prevented by the
war from starting their mathematical careers when they were ready
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to begin and that they were therefore delayed in exercising their talents
on the problems we have been discussing.

In conclusion I would like to insist again on the value of a broad
mathematical background in the conduct of research into the fundamental
structure of our subject and even into somewhat specialized aspects or
branches of it. A sign of the essential unity of mathematics is given us
by the sort of experience which has been recounted here. It points to
the need for offering our future research methematicians a broad
preparation that will enable them to cope successfully with the
increasingly complex interconnections that bind mathematics into a
single whole.

16 Functional Analysis
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