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We derive an exact expression for the electromagnetic mode density, and hence the group velocity, for a

finite, N-period, one-dimensional, photonic band-gap structure. We begin by deriving a general formula for the

mode density in terms of the complex transmission coefficient of an arbitrary index profile. Then we develop

a specific formula that gives the N-period mode density in terms of the complex transmission coefficient of the

unit cell. The special cases of mode-density enhancement and suppression at the photonic band edge and also

at midgap, respectively, are derived. The specific example of a quarter-wave stack is analyzed, and applications

to three-dimensional structures, spontaneous emission control, delay lines, band-edge lasers, and superluminal

tunneling times are discussed.

PACS number(s): 41.20.Jb, 42.50.—p, 78.66.Fd, 85.60.Jb

I. INTRODUCTION AND BACKGROUND

In 1991 it was shown experimentally and theoretically
that there exist three-dimensional, periodic, dielectric struc-
tures that exhibit an electromagnetic stop band for all polar-
izations and directions of photon propagation over a wide
band of frequencies [1,2]. Since that time, a large class of
such omnidirectional-Bragg-reflector geometries has been
discovered [2], and they are usually referred to as photonic
band-gap (PBG) "crystals. " In general, elucidating the pho-
tonic band structure of such a three-dimensional (3D) crystal
is an arduous task involving the computationally intensive
eigenvalue problem for the solution of Maxwell's vector
equations in a topologically complicated dielectric lattice
[1,2]. Although such an approach yields very good agree-
ment between theory and experiment [2], it has much to be
desired for a simple analytical understanding of the electro-
magnetic properties of these materials.

One way to overcome this problem was provided by a
model due to John and Wang [3], in which they approximate
the 3D photonic crystal with a hypothetical structure that has
a perfectly spherical Brillouin zone (BZ) for all polariza-
tions. Although a geometry that yields such a BZ probably
does not exist, the John-Wang model nevertheless reduces
the intractable 3D problem to an analytically solvable 1D
one, by producing a stop band that looks precisely the same
for all polarizations and directions of photon propagation
[3—5]. One drawback of this model, however, is the fact that
for an infinite 1D PBG structure, the electromagnetic density
of modes (DOM) becomes formally infinite at the photonic
band edge, due to the low dimensionality of the system [4].
Since the mode density is proportional to the spontaneous
emission rate of an embedded probe atom, by Fermi's
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"golden rule" [6], this restriction severely limits the useful-

ness of the John-Wang model in understanding the atomic
emission enhancement expected at the photonic band edge.

In the current paper, we overcome this problem by devel-
oping an exact, analytical expression for the DOM of a finit,
N-period, 1-D PBG lattice, in terms of the complex transmis-
sion coefficient t(ro) of a unit lattice cell. The restriction to a
finite number of unit cells, periodically arrayed, removes the
DOM singularity at the band edge. Our result is made pos-
sible by the combination of two recent discoveries in the 1D
theory of scattering. Firstly, the complex transmission coef-
ficient t(ro) of an arbitrary 1D scattering potential can be
used to construct the group velocity, U—=duo/dk, and hence
the DOM, p=dk/de, for that potential [7,8]. Secondly, for a
finite, periodic, 1D PBG, there exists a compact analytic for-
mula for the complex, N-cell, transmission coefficient t~ that
can be written solely as a function of N, and the transmission
coefficient t(to) of the unit cell [9].

In addition to its application to the John-Wang model of a
3D PBG, our result has direct significance for understanding
the DOM on axis in actual 1D distributed Bragg reflectors
made from periodic, multilayered, dielectric stacks. So say-
ing, our formulas can be used in the study of band-edge
lasing [10];band-edge spontaneous emission enhancement in
layered semiconductors [7]; nonlinear optical effects such as

gap solitons [11], bistability [12], limiting and switching
[13], and thin-film optical isolators [14]. The fact that the
N-period DOM, pz ——dk&/dao, is inversely proportional to
the group velocity, Uz=dco/dk~, allows us to also provide
analytical statements about the group velocity slowdown at
the photonic band edge, with applications to band-edge las-
ing [10] and optical delay lines [7], as well as about the
anomalous group velocity at midgap, responsible for the re-
cent observations of "superluminal" tunneling times [15,16].

In Sec. II we will review recent results that show, in gen-
eral, how we may extract the DOM p for an arbitrary 1D
scattering potential, or index profile n(x), from the complex
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transmission coefficient t(to) of that potential [7,8].A review
of the transmission properties of an arbitrary, N-cell, periodic
potential is then discussed in Sec. III [9].We combine these
ideas in Sec. IV to produce our primary result: a general
expression for the density of modes of an arbitrary N-period
index potential, in terms of the complex transmission coeffi-
cient t(to) of the unit period cell.

In Sec. V we illustrate these ideas by discussing N-period
transmittance T~= lt~l and DOM p~ curves in general, and
then for the simple case of an N-period, quarter-wave, di-
electric stack. Both Tz(to) and p~(co) exhibit, in general, a
remarkable series of N resonances in the first pass band, or
2N resonances in the higher-order bands, where the trans-
mission is exactly unity —independently of the form of the
unit cell t. In addition, at these resonances, the DOM is lo-
cally maximal. We shall discuss these resonances in Sec. VI,
paying particular attention to the band-edge maximum. Here,
we shall also consider the values of Tz(co) and p~(cu) at
midgap while illustrating all these concepts again with the
quarter-wave stack. We end, in Sec. VII, with the practical
application of solving for the physical specifications of a
particular stack whose band-edge, modal-resonance width
matches a given fixed bandwidth 5 co—say that of an embed-
ded emitter. This result has direct application for optimizing
the structure for maximal, band-edge, spontaneous emission
enhancement [7].In Sec. VIII we wind up with our summary
and conclusions.

FIG. 1. In (a) we illustrate the scattering of light off a 1D, real
index potential n(x), where x c [O,d j. The transmission and reliec-
tion coefficients are t and r, respectively, with ltl + lr l

=1, by
energy conservation. In (b) we show the time-reversed process of
(a). The general transfer matrix, consistent with these processes, has
the form of Eq. (11).

II. MODE DENSITY IN TERMS OF
TRANSMISSION COEFFICIENT

There are several different conventions for defining the
electromagnetic mode density p(co) for a ID index "poten-
tial" n(x) [17]. We will use cavity QED to motivate the
convention we use in this work. Suppose we have a lossless,
dispersionless, index of refraction profile n(x) that is non-
zero over the interval x~ [O,d] (see Fig. 1). The vector-
potential, normal-mode eigenvectors for this profile, a~(x),
obey the Helmholtz equation [4]

d at.(x) co„
+ 2 n (x)at(x) =0,

dx c

where c is the vacuum speed of light and cvz is the eigen-
value, related to k via a dispersion relation, k= k(cu), that is
determined as a part of the solution of Eq. (1).If an oscillat-
ing point dipole with frequency flo is embedded in the po-
tential n(x) at a point xo, the inhomogeneous dielectric will
alter the free-space emission rate. In particular, the emission
rate y (normalized to the free-space rate) is given by [4,7, 18]

dk
y=&ol~k(xo)l'

d
co=Op

where we normalize the eigenvectors a& such that

['d
a*,(x)at(x) dx = B(k' —k).

From Fermi's "golden rule" [6], we know also—in the weak
atom-cavity coupling limit —that the emission rate y is pro-
portional to the product of the atomic electric self-field in-
tensity,

l Ek(xo) l, with the DOM, p(co). Since
l&z(xo) l lak(xo) l, then without loss of generality we may
define

(4)

as our mode density. This convention has the natural inter-
pretation that p(co) is the number of wave numbers k per unit
frequency co, and hence it is the reciprocal of the group ve-
locity [19],U = I/p=dto/dk. This velocity is associated with
the propagation of a pulse peak through the potential n(x).
In addition, note that when p is large, the mean of lakl will
also be large —since then the group velocity is low and a
quasi-standing wave forms in the structure [10]. Hence, a
maximum of p will correspond to a maximum of the emis-
sion rate y, provided that the dipole is located at an antinode
of

l
at(x)

l

. Thus, knowledge of the density of modes can tell
us much about the emission rate.

Now that we have motivated a reasonable definition of p,
we need a simple way to compute it. A direct brute-force
approach is to numerically solve the eigenvalue problem, Eq.
(1), for the dispersion relation k= k(cu). However, we shall
motivate here a faster and more elegant method that uses
simple matrix-transfer techniques and one-dimensional scat-
tering theory. Previous work has shown that the j.D scatter-
ing matrix can be used to derive the group velocity for a
compact potential [8].We now give a simple, physically in-
tuitive derivation of that result [7]. Suppose, as in Fig. 1(a),
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we have an electromagnetic wave of unit amplitude, and zero
phase at x=o, incident from the left, as shown. Then the
complex transmission coefficient amplitude on the right we
will call t(cu), as indicated. Now, for optical applications
such as thin films, usually one is only interested in the trans-
mitted intensity or transmittance, T= ltl —. However, t(cu)
also contains phase information, from which we can extract
the dispersion relation k=k(co) and hence the density of
modes p=dk/den, as we shall see.

Given the transmission coefficient for any structure, t
=x+t'y= QTe'", it is simple to construct the density of
modes. (Here, x is the real part of t and not the position
coordinate. } We know that tan y=y/x, but y is the total
phase accumulated as the light propagates through the poten-
tial and hence can also be written as kd, where k is the
effective wave number and d the physical thickness of the
structure. Hence, the dispersion relation can be written as
tan kd=y(co)/x(co). Therefore,

d d /y
(tankd) =

dco de (x

Evaluating the derivative of both sides yields

dk 1 y'x —x'y
sec (kd) dc' d x (6)

where the prime denotes differentiation with respect to co.

After simplifying this expression with the identity
tan 0+1—=sec 0 and solving for dk/dao, we get

dk 1 y'x —x'y
dG0 d x +yp(~) = (7)

a„(x)=~„E„(x),
where

It is significant to note that this equation is valid regardless
of the spatial form of the potential n(x) that we are dealing
with. If we can find the real and imaginary parts of the trans-
mission coefficients x and y, respectively, then we have all
the necessary information to calculate the mode density p
and group velocity v = 1/p. From a computational point of
view, the calculation of t(cu)=x +ytfor a given potential
n(x) can be carried out quite simply by matrix-transfer tech-
niques that are easily implemented numerically [7,19].Then
we take x =Re(tj and y =1m(tj. In the practice of thin-film
construction, n(x) is a piecewise-constant function for which
both t{co) and the electric field profile in the structure,
E (x), can be readily obtained by matrix transfer [7,19].
Even if n(x) is a continuous function, an approximation of
n(x) by a piecewise constant function, corresponding to a
product of matrices, yields rapidly convergent values for
t(cu) and E (x) as the subdivision of n(x) becomes suffi-
ciently fine. Hence, all the information needed to compute
the spontaneous emission rate y, via formula (2), is available
from a simple matrix-transfer solution to the 1D scattering
problem. The density of modes, p= dk/dao, is obtained from
t =x+ t'y = +Te'~, via Eq. (7), and the normal mode ampli-
tudes a„(x) can be obtained from the hypothetical incident
electric field profile E„(x) via the normalization

I d

E„*(x)E (x)dx
Jo

—1/2

(9)

is the normalization constant, as required by Eq. (3). Pre-
cisely such a technique was used to analyze a recent experi-
ment by our group on spontaneous emission rates at the pho-
tonic band edge of a GaAs/Ga Al],As semiconductor 1D
PBG [7].

Although a numerical matrix-transfer technique for com-
puting the DOM is quite efficient for the general 1D prob-
lem, there is an understanding of scaling laws that can only
be obtained from an analytical expression for p. An analyti-
cal solution for t=x+ t'y would imply one for p, via Eq. (7).
As we shall see in the next section, such a solution for t(cu)
exists in the special case when n(x) has the form of an
N-period potential.

III. TRANSMISSION COEFFICIENT
OF AN X-PERIOD POTENTIAL

Recent results in one-dimensional scattering theory have
shown that the complex transmission coefficient t~(cu) of an
N-period periodic potential can be written, in general, in
terms of t(cu), the transmission coefficient of a unit cell [9].
This result is remarkable in that the formula is nearly inde-
pendent of the form of t(co). We shall give a somewhat
streamlined derivation of it here.

Let us start by deriving some properties of the scattering
matrix for an arbitrary, dispersionless, real potential n(x)—
not necessarily periodic —as shown in Fig. 1(a). In the inter-
val [O,d], the general solution to the Helmholtz equation {1)
can be written as a superposition of right- and left-going
waves, labeled plus and minus, respectively, as
tt

—(x)=f ()xe'"', de-termined by the solution to Eq. (1).
The f are real envelope functions. Written in column vector

form u=(„"), we have the boundary conditions u(0)=(„')
and u(d) =(o), by inspection of Fig. 1(a). If we define the
transfer matrix M=(co) via

~ AB

u(0) =Mu(d),

M=
~

r/t l/t* )

If we also impose energy conservation, in the form
I

~ '+
I

tl'—=R+ 7 =1 tii~n it is easy to check that detlMI =I
and hence M is unimodular.

We digress here briefly to discuss the relationship be-
tween the operations of time-reversal 7. and parity ~. From
Eq. (10) it is clear that MAL=M propagates right to left (RL)

then the boundary conditions imply that (,')=(ct,)(o),
hence A=1/t and C=r/t. Now for a complex wave E~e' ',
the operation of time reversal 7. corresponds to complex con-
jugation; i.e., r(E) =E*.For real, linear, index profiles, the
scattering process must be invariant under time reversal,
yielding the process shown in Fig. 1(b). Thus, we read off a

second boundary condition, namely, (i )=(CD)(,„), or
B=r~/t* and 0=1/t~. This tells us that the scattering or
transfer matrix M for a real index profile must have the very
general form
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across the potential n(x) H. ence, M„R—=MRL propagates left
to right (LR). If we replace the transmission coefficient
t~tLR in Eq. (11) for MR„—=M and t~tLR in the equivalent
of Eq. (11) for M„R then t„R can be found in terms of t~L by
constructing MRL' via (cD) '=( c „), since det~MJ=I.
Reading off the diagonal terms of the equation MRL'=MLR,
we find tRL= tL& or TRL =

~ tits =
~ tLR~ = T„R. Hence, the

one-dimensional transmittance T is invariant under the parity
operation ~(TR„)=T„R=TRL—=T. This is a direct conse-
quence of the assumptions of energy conservation, time-
reversal symmetry, and the fact that the index potential n(x)
is real and linear. If n(x) is complex —indicating the pres-
ence of absorption or gain —or if n(x) contains nonlinear
Kerr media, and hence is intensity dependent, then time-
reversal still holds, but it no longer implies parity conserva-
tion in transmittance. [For a Kerr medium, the solutions on
opposite sides of n(x) are no longer related by a linear ma-
trix transformation. ] This fact is used in the thin-film, Kerr-
nonlinear, optical diode or isolator that exhibits an aniso-
tropic transmittance [14].

The eigenvalue equation for M is easily seen from Eq.
(11) to be

I

0 d 2d

FIG. 2. Here we take the unit-cell potential n(x) of Fig. 1 and
repeat it W times to obtain the N-period, finite, periodic potential,
n(x) =n(x+ d), where x e (O,Nd]. Here, r~ and r~ are the
N-period coefficients, with ~tz~ + ~r~~ = 1. The N-period transfer
matrix M is given in terms of the unit cell M by Eq. (16) and has
the general form of Eq. (17).

sinNP sin(N —1 )PM=M . —I (16)

Then, by induction (see Appendix A), it is easy to establish
that the transfer matrix M for a finit, N-period potential, of
unit cell n(x), is given by

p, —2 p, Rei 1/t) + 1 = 0, (12)

~ipMuz = p, ~ uz = e —' uz, (13)

where the two eigenvalues p
— are related by

p,
+

p, =det~M~ =1 by unimodularity.
We now would like to make a very important point. Sup-

pose, for the sake of discussion, we were to impose the pe-
riodic boundary condition, n(x) = n(x+ d), for x e ( —~,~),
and then seek the corresponding Bloch eigenfunctions u~,
appropriate for an infinite-period potential with unit cell
n(x), x E (O,d]. We know that the Bloch functions change
only in phase —and not in amplitude —from cell to cell in the
infinite periodic potential. This phase per unit cell is ca11ed
the Bloch phase P, associated with the infinite periodic struc-
ture [4,17]. (This is not the same as the phase y associated
with the unit cell transmission coefficient, r= QTe'~. ) For
these Bloch eigenfunctions uz, we have then —from the defi-
nition of eigenvector —the eigenvector equation j 1/t~ rg/t~

M =
l r~/t~ 1/t~ /

(17)

where I is the unit matrix (see Fig. 2). Hence, we amve at
the important result that the scattering (or transfer) matrix
M fol all N-period potential can be wIitten sln1ply ln terms
of the unit cell matrix M, the number of periods N, and the
Bloch phase P that is normally associated with the infinite
periodic potential.

It is now an easy task to compute the complex transmis-
sion coefficient tz for the N-period structure. The general
form of the transfer matrix derived for M, Eq. (11), also
holds for any such matrix, including M . In particular, we
have

Rej I/t) = cosP, (14)

where the last term comes from the definition of the Bloch
phase P. Hence, the eigenvalues for the Bloch functions are
of the form p, ~ = e ', since p, ~ p, ~ = 1. Now, since the
eigenvalue equation (12) holds for all eigenvalues p, of M, in
particular it holds for the p, t, . Inserting pii =e ' into (12),
and equating real and imaginary terms, yields the very im-
portant relation that

1 1 sinNP sin(N —1)P
t~ t sinP sinP

(18a)

Now let us take these expressions for M and M, Eqs. (11)
and (17), and insert them into the matrix equation (16). By
considering firstly the diagonal and then secondly the off-
diagonal terms, respectively, we get

where P is again the Bloch phase for the hypothetical infinite
periodic structure. This will be crucial to remember later in
this work.

Let us go back now to the single-unit potential n(x),
x e (O,d], Fig. 1.We note from the Cayley-Hamilton theorem
[20], which states that every matrix obeys its own eigenvalue
equation, that we can use Eqs. (12) and (14) to write

M —2M cosP+ I=0.

r~ r sinNP

t sinP

For our DOM calculation in the next section, we will use the

complex transmission coefficient t~= /TJve'~&, Eq. (18a), to
extract the phase information cp~ needed to obtain the DOM,
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p~. The N-period transmittance, T~=~t~~, is most easily
obtained by taking the modulus squared of Eq. (18b) and

applying conservation of energy in the form ~r~
= 1 —~t~, or

R=1 —T. This yields

sin NP 1—1+ . 2
—1.

sin P T

These results for a general N-period potential are the same as
given by Sprung, Wu, and Martorell (SWM) [9]. Equation
(19) has also been derived by Yariv and Yeh, in the special
case where the unit cell is composed of a two-layer step
index profile [19].Once again, the phase P here is the Bloch
phase of the N=~ structure, given by Eq. (14), and not
either of the phases y~ or y associated with the N-period or
unit-cell potential, respectively.

In general, we see that the infinite-period Bloch phase P
plays a very important role in the finite-period structure. In
particular, the passbands and stop bands of the N-period po-
tential mirror very closely those of the infinite lattice. The
Bloch phase will be real whenever Re(1/t)

~

~ 1 and complex
otherwise, corresponding to the passband and band-gap con-
ditions, respectively. In the gap, we set P= i 9 or P = rr+i 9,
depending on whether Re(1/t)~1 or Re(1/t)& —1, respec-
tively. Notice that in the passbands T~ varies sinusoidally
with P. We have P ~ [O, vr] in the first band, P c [7r, 37r] in the
second, and so forth. From the identity, sin 0
=(1—cos 20)/2, we see from Eq. (19) that T~ is periodic in P
with period ~/N, and hence we expect it to exhibit N oscil-
lations in each passband interval of P length vr.

Inside the gap, where P is complex, we shall see that all

the sinusoidal behavior changes into a hyperbolic exponen-
tial form. More of the properties of T~ will be covered in
Sec. VI. What is remarkable is that many of the interesting
properties of T~ are qualitatively independent of the form of
the unit cell's transmission T. This indicates that most of the
rich structure arising in the transmission and DOM of a pe-
riodic potential arises purely from the finite periodicity, in-

dependent of the form of the unit cell.

IV. DERIVATION OF MODE DENSITY AND GROUP
VELOCITY FOR AN X-PERIOD STRUCTURE

We will define the N-period mode density as
p~= dk~/d~ and the group velocity as vz= 1/p~= des/dk~.
Given the transmission coefficient for the structure, tz=xz
+iyz= QT&e'~~, it is simple to construct the density of
modes using Eq. (7), derived in Sec. II (see Fig. 2).

We will now make use of the results of Sprung, Wu, and
Martorell [9], summarized in Sec. III above, by using Eqs.
(14) and (18a) for cos P and tz as a starting point. For these
two equations, t~(cu) refers to the complex transmission co-
efficient for the N-period structure (Fig. 2), and t(co) refers
to the transmission coefficient for a single period (Fig. 1),
with x and y being t s real and imaginary parts, respectively.
After performing some algebraic manipulations on Eq. (18a),
it is possible to solve for the real and imaginary parts of t~,
namely, x~ and y~, respectively, in terms of t =x+ iy for the
unit cell. We get

x sin NP sinP —(x +y )sinP sin(N —1)P
sin NP —2x sin NP sin(N —1)P+(x +y )sin (N —1)P' (20a)

y sin NP sinP

sin NP —2x sin N/3 sin(N —1)P+(x +y )sin (N —1)P ' (20b)

where cos P=Re(1/t), as before. Because xz and y~ are
fairly complicated functions of P, x, and y—that are them-
selves all functions of frequency co—a direct calculation of
p~ at this point, via the differentiations required by Eq. (7),
would be somewhat unmanageable. However, the problem
simplifies significantly by making the substitution
zw= yw/xx.

From Sec. III we know that q&~=k~D=tan '(z~), and
hence,

y sin NP
x sin NP (x +y )sin(N —1)P— (22)

By making the substitution for the unit-cell transmission co-
efficient, T=x +y, and the scaled quantities g=x/T, and
y=y/T, then z~ can be further simplified. The fact that
g=cos P will also be used in the simplification, which even-
tually yields

zjv=z tan NP cotP, (23)

dco D dc' D 1+ (21)

where D =Nd is the length of the N-period potential. Since
Eqs. (20a) and (20b) for x~ and y~ have the same denomi-
nator, the expression for z~ simplifies to

where z=y/x corresponds to the unit cell. Note that this
implicitly gives the dispersion relation k~=k~(co) for the
stack in the form tan y~=tan(k~D) =z~=z tan NP cot P.
Now, we can use this expression for z~ with Eq. (21) to
calculate the mode density p~. After some algebraic manipu-
lation we get
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1 ( I/2) [si n(2 NP) /si nP] [ r/' + r/(g'/( I —g )] N—r/(''/( I —g )
PNN D cos2N P+ r/ [sin(NP) /sinP] (24)

where D =Nd. This is our primary result for this paper. Here
we have an exact expression for the density of modes of the
N-period potential in terms of the number of periods N, the
Bloch phase p, and the transmission coefficient t of the unit
cell. Up to this point, no assumptions have been made con-
cerning the actual spatial variation of the index n(x) of the
unit cell.

2

T)I /4 T12
2

1 —2R12cos ~co+ R,2
(29)

Finally, we can now calculate all of the components neces-
sary to derive p~' via Eq. (24). Using g= x/T —and r/= ylT,—
we have

V. QUARTER-WAVE STACK

For a quarter-wave stack there is a fixed relationship be-
tween the indices of refraction n1 and n2, and the thick-
nesses of the layers, a and b, respectively, in the periodic
structure, as illustrated in Fig. 3. Each layer is designed so
that the optical path is exactly 1/4 of some reference wave-
length Xp corresponding to the midgap frequency cop. From
this fact, we can write

cosp= (= cos7T co —R12

T12

T12
'

7T sin~co

cop T12

(30a)

(30b)

(30c)

Xp 7TC
n&a=n2b= —=

4 2 cop
(25)

'TT COS 'TT CO

Ct) p T12
(30d)

Next, we will calculate the transmission function and density
of modes for a finite quarter-wave stack. We will first de-
velop an expression for the quarter-wave unit-cell transmis-
sion coefficient t ' using formulas from Appendix B. Doing
this, we get from Eq. (B9a), the complex transmission coef-
ficient of an arbitrary two-layer unit cell, namely,

U
"' =(c /2)[1/n, + In/~], (31)

where Eq. (30a) for ( also determines the Bloch phase p. In
Figs. 4 and 5 we plot the transmission TN and pN together,
for n, = 1; n2E (&2, 2j, and Ne/5, 10), to illustrate the gen-
eral behavior. We normalize pN to the dimensionless quantity
U

"
pN, where we define the bulk group velocity,

where

and

T e~(P+

1 —R12e '

4n1n2
T12 t 12t21 (n, +n2) 2

f n, —n~l
~ t2= (r &z)'= '

( n1+n2f

(27a)

(27b)

defined as the distance d over the travel time, discounting
rejections. From Figs. 4 and 5 we can see a number of
interesting properties of the transmission coefficient and
mode density. First of all we know that for an N-period
structure there are exactly N peaks to the left of the first gap
in both the transmission coefficient and mode-density curves,
since both Tz and pz are periodic in p with period 7r/N, and
in the first passband pe [0,vr]. We can also see that as n2 and
N are increased, the band gap becomes more sharply defined
approaching the N~~ limit, and the band-edge peaks of the
mode-density curve are larger. The maxima and minima of

are the double-transmission and reflection factors, defined as
per Eq. (B3). Here, p=ntaco/c and q=nzbto/c, where Eq.
(25) holds in addition for a quarter-wave stack. Note that
T&2+R12= 1. After extracting the real and imaginary parts
from the quarter-wave cell transmission coefficient, t, we
have unit-cell expressions for x"' and y"

b
I ~l
I I I

ng ~ ~ ~ n2 n1

cosmos —R12
X = T12 2

1 —2R12cos ~6+R,2
(28a) 0

Sln 7T CO
k/4 T12

1 —2R12cos mco+ R12
2 (28b)

where au= cu/cop, with cop at midgap. The unit-cell transmis-
sion, T—= t*t, becomes

FIG. 3. Here we show the general, N-period stack composed of
two-layer unit cells of thicknesses a and b and constant, real indices
n

&
and n2, respectively. If, in addition, a = kol(4n &) and

b = ka/(4n2), where ko is some reference wavelength, then we have
a quarter-wave stack whose first band gap is centered about ko, as
per Eq. (251.
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FIG. 4. Plot of the dimensionless DOM, U
"' p~normalized to

Ub„ik—Eqs. (24) and (30) (solid) and the dimensionless transmit-

tance T~, Eq. (29) (dashed) vs dimensionless frequency &oleo& for a
five-period (N=5), quarter-wave stack with (a) ni ——1, n2= 1.41;
and (b) n, = 1, n2=2. Notice the five transmission resonances on
either side of the band gap in both plots, corresponding to N = 5.As
the value of n2 increases (b), the gap becomes more defined and the
DOM resonances are greater in magnitude. The maxima and
minima of the DOM and transmission appear to line up; however,
there is a small amount of offset between the extreme values of the
two curves that becomes rapidly negligible for increasing number
of periods N.

the two curves appear to line up with one another. However,
there is actually some offset between these extreme values
that becomes rapidly negligible with increasing ¹ All of
these points will be covered in more detail in the next sec-
tion.

VI. PROPERTIES OF T/1/ AND P~

In this section we take a closer look at the formulas for
the transmittance T~ and the DOM p~, Eqs. (19) and (24),
respectively, for an N-period potential, as shown in Fig. 2. To
begin with, we analyze the transmission formula, summariz-
ing and expanding on the results of SWM [9] and Yeh [19].
From Eq. (19) for T~, we know that whenever NP=m7r,
m ~ (O, I, . . . ,N I), then the sin NP term —is equal to zero
and TN= 1, exactly. This phenomenon corresponds to the N
transmission resonances seen in Figs. 4 and 5. What is re-
markable is that, in general, these transmission resonances of

FIG. 5. Plot of the dimensionless DOM, U
"' pz, Eqs. (24) and

(30) (solid) and dimensionless transmission Tz, Eq. (29) (dashed)
vs dimensionless frequency co/coo, for a 10-period, quarter-wave
stack with (a) n, =1, n2=1.41, and (b) n, =1, n2=2. There are
now N = 10 transmission resonances on either side of the band gap,
as opposed to the N= 5 in Fig. 4. Notice also that an increase in the
number of layers increases the magnitude of the DOM band reso-
nances, and decreases the DOM in the band gap.

T~ are unity —independent of the unit cell's transmission T.
In other words, even if T(cu) is practically zero at these
points —and hence the unit cell highly reAective-
nevertheless the entire N-period stack is absolutely transpar-
ent. These "sweet spots" are hence properties of the finite
periodicity of the stack alone, not of the unit cell. These
resonances are well known in the theory of periodic, multi-
layered, thin films [19]—but the fact that they are a general
property of any N-period 1D dielectric structure has not been
fully appreciated [9].In addition, Brown and McMahon have
recently observed similar resonances in transmission experi-
ments with finite 3D PBG crystals, while Pendry and co-
workers have also predicted them in 2D and 3D transmission
calculations [21], indicating that the phenomenon generalizes
to higher-dimensional lattices. A study of such transmission
or tunneling resonances has been made in 1D by Yeh, in the
context of light propagation through finite, periodic,
GaAs/Al Ga& As heterostructures with steplike unit-cell in-
dex profiles [19].Yeh argues that these resonances are con-
sequences of the transverse guided modes that propagate in
the y and z directions of the physical, layered, "1D" struc-
ture, by comparing our Eq. (19) for T~ to the dispersion
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equation for the guided modes, which is similar to our Eq.
(18a). However, our calculation made here of these T~ reso-
nances is from a strictly 1D scattering theory, and hence
casts doubt on this interpretation. It is our position that these
resonances are strictly one-dimensional effects, and that
physically they have nothing to do with the transverse
guided-wave modes. In particular, these resonances are pre-
dicted to appear in true 1D systems —such as for electron
waves in periodically modulated quantum wires —where
clearly no transverse guided modes are present [22].

When Np is equal to odd multiples of 7r/2, for example,
Np=(2m+ 1)7r/2, then the transmission curve T~ will be
close to, but not exactly at, a local minimum [9]. This ap-
proximation improves very rapidly with increasing N. This is
due to the fact that sin Np is a maximum at this point, and
since it is the most rapidly varying term, the entire function
will be close to its minimum, as can be seen from Eq. (19).If
we evaluate Tz at these approximate minima points, we find
that

0.8-

0.6-

0.4-

0.2-

0.8-

10

Tmin P [(2m+ 1)/N]7r/2

1 1= 1+ —. ——1
sin [(2m+ 1)vr/2N] T

(32)

0.6-

0.4-

For a quarter-wave stack, this expression can be simplified.
In general, the transmission coefficient Tz' (tu) for the
quarter-wave stack is

0.2-

1+cosP
1+cosP+2(Ri2/T, 2)sin NP' (33)

1+cos[(2m+ 1)m/2N]

1+2R &z/T~z+ cos[(2m+ 1)7rl(2N)]

where Ti2 and Ri2 are defined in Sec. V, Eq. (27), and p
implicitly by Eq. (30a). The minima for the quarter-wave
stack can then be written as

FIG. 6. Plot of (a) the dimensionless band-edge minimum of the

transmission Tv' '", Eq. (35), and (b) the dimensionless midgap
transmission T~', Eq. (40), vs the number of periods N for a
quarter-wave stack with n1 = 1 and nz = 1.41. The band-edge trans-
mission minimum illustrates how fast the transmission curve ap-

proaches the N=~ step function. We observe a 1jN relationship
between the band-edge transmission minimum and the number of
periods N. For the midgap transmission we see an exponential de-
crease in transmission vs the number of periods.

A final expression for the transmission minima that could be
useful is an approximation for the band-edge minimum for
large values of N At this point, . p= m(2N I)/(2N) or—I=N —1. By writing a Taylor series expansion for the co-
sine terms in Eq. (34), we get the relation

1 sinh NO 1=1+ ——1 '

T~~'P sinh 0 T (36)

2
y/4

' TT T12 1

jy2 '
Pf~oo 12

(35)

where 8=cosh '( —(). This is a general formula for T~ any-
where in the band gap. For the specific case of a quarter-
wave stack we can express the gap transmittance as

where T,2 and R,z are given by Eq. (27). This expression
shows that the minimum between the left band-edge reso-
nance and the N= ~ band edge decreases proportionally to
1/N, Fig. 6(a), showing how fast the gap wall is approach-
ing the step function of N= ~.

Another region of interest for the transmission function
T~ is inside the band gap. It is well known that inside the
first band gap, the Bloch phase has the form P= sr+i 6
[9,19].By using this fact, and converting sines and cosines to
their hyperbolic equivalents via sining=i sinhO and cosiO
=cosh', we obtain

sinh 0/2
T)~ /4 —gaP

sinh 8/2+ (R,z/T, ~) sinh NO
(37)

I+Rt2l
gMG cosh 1

I
=1n ~=,

T12
(38)

At exactly midgap cu = ~/coo = 1, so for the quarter-wave
stack we have, at midgap (MG), cosp = —cosh 0
=(cos~—R t~)/T, 2, which imphes
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where ~=n, /n, with n;(n and i,j ~ t1,2j. Evaluating Tz~'~

at midgap for a quarter-wave stack yields, then, 6-

TX/4 —MG
1

1+ sinh NO
(39)

5-

which can be simplified to 3-

TX/4 —MG
1

1 + (1/4)[ /v — /v]2 ' (40)

2-

where ~=n 1/n2 or n2/n 1 .
This last equation can be approximated asymptotically by

making a Taylor series expansion that is valid for large N. If
this is done, then

10
I

15 N
20

TX/4™G 4 2N
N

N~ oo

0.8-

maxi
p// I p=m~/// =

p= m7T/N

(42)

For the case of the quarter-wave stack, the expression can be
simplified using Eqs. (30) for ( and r/, and by making the
substitution D =Nd where N is the number of periods and d
is the physical thickness of a single period. The parameter d
does not appear in the equation below, because for a quarter-
wave stack it can be expressed in terms of coo, n 1, and n2 via

~=n;/n, where n; &n . So then we observe asymptotically
an exponential decrease in the midgap transmission coeffi-
cient for increasing values of N. [See Fig. 6(b).]

Now that we have analyzed the transmission function in
detail, we will follow the same general procedure for the
density of modes pN. To begin with, we use the fact that the
peaks of TN and pN very nearly line up, with the approxima-
tion improving rapidly with increasing N [9], so that the
density of modes in the left passband will have its maxima at
approximately P=mm/N, me(0, 1, . . ,N lj. Th.is c—an be
understood by inspecting Eq. (24) for p/i/, where we see that
when N=mm, then sinNp=O, sin2Np=O, and
cos 2NP= 1. Hence, the most rapidly varying term in the
denominator of pN is nearly as small as possible, while the
numerator remains proportional to large N—tending to maxi-
mize pN. Evaluating the density of modes at these approxi-
mate maxima gives the general equation

0.6-

0.4-

0.2-

I

10 15 N
20

FIG. 7. Plot of (a) the dimensionless band-edge resonance DOM
v "'"p//, Eq. (45), and (b) the dimensionless midgap DOM
v

' p~, Eq. (48), vs the number of periods N for a quarter-wave
stack with n1= 1 and n2= 1.41. The DOM maximum at the band
edge increases proportionally to N for fixed ni and n2 and mod-2

erately large values of N. At midgap, the DOM is asymptotically
inversely proportional to the number of periods N.

1 1 —T,2 cos [~/(2N)]
P/v l Pww//vbUllcTstn[ /(2N)]

a variety of applications. For this case, we use the fact that
m =N 1 at the band-edge r—esonance (BER), resulting in the
formula

7T
bulk

c ~n, +n ~

2coo ( ntnz / coo
(43)

Again, we can use a Taylor series to give us an asymptotic
approximation valid for large values of N,

where v
"'" is defined in Eq. (31). Hence, the DOM maxima

can be written as

X/4 —BER 4 R
NpN 2 bulk TN~~ 12

(46)

1 1 —T,2 sin [mar/(2N)]

T cos [m 7r/(2N)]
, (44)

where T12 is given by Eq. (27a). The maximum of the den-
sity of modes nearest the band edge is of special interest for

For moderately large N, we can see that pN' increases
proportionally to N, an important point for band-edge emis-
sion enhancement and delay-line applications [4,7]. [See Fig.
7(a).] Finally, we take a look at what happens to the mode
density for frequencies inside the band gap. Because in the
first gap P= ~+i 8, we can replace the trigonometric terms
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~ ~

odes E . (24), with hyperbolic functions of 0. Making these substitutionsin the general expression for the density of modes pz, Eq. , wi yper
gives us

1 —(1/2) [sinh(2NO)lsinh0][r/'+ (r/('l(1 (—)] N—r/('/(1 —( )

D cosh NO+ i7 [sinh(NO)/sinh0]
(47)

. In eneral, when we are exactly in thefor the densit of modes anywhere in the first band gap. n g
/

1
~

which is a general formula or t e ensi y
hd 'h 'mum or minimum value, so that $ =0. App yingminimum of the band-gap transmittance; cos~=„e cos~~= ~~~~~ has reached eit er a maximum

this to Eq. (47) gives us, at MG,

1 —(1/2) [sinh(2N0 )/sinh0 ] r/'

D co h NO + r/ [sinh(NO )/sinh0 j
(4g)

h 8 =cosh '( —P ). For large values of N, the hy-
erbolic functions can be approximated by exponentials. If

this substitution is carried out, the exponential terms of ar-

gument NO cancel out, leaving

~=n;/n, where n;~n, , with i,j e (1,2), and

T,2=4n, n, /(n, +n2) as before. Equation (50) can be sim-

plified by using identities for hyperbolic functions. Doing
this we get

y' sinh0
MG~

Nd i/+sinh 0
(49)

P l'4 —MG
Px bulk 2 1 2N+ 112V

1 sinhW0
X/4 —MG

MG ~ MGW ""' coshNH sinh0 Ti2

where

~ ni+ft22 2

gM =cos
I 2n&n2

= ln(1/~),
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FIG. 8. Plot of the dimensionless group velocity,

)
' E (24) and (30), vs dimensionless midgap-V~/C =- (CP~), qs.

normalized frequency, co coo,f i for a qualitative model of the structure
used in the superluminal tunneling-time experimen ynt b Steinber,
Kwiat, and Chiao. For our hypothetical structure we assume 5 pe-
riods instead of the 5 z used in the experiment, and we assume air is
on both sides, ignoring their substrate. The primary point of interest
is the peak of the group velocity U&/c in the band gap that clearly is
greater than the speed of light in a vacuum.

We can see that —in general —p~ varies asymptotically in-

versely as X, independently of the unit cell. Equivalently, the
roup velocity at midgap increases as a linear function of W,

eventually becoming "superluminal
ticular case of the quarter-wave stack, we can evaluate Eqs,

and Eq. (31) for U "', to give the expression

For moderate N, the factor (~ —1)/(~ +1) is approxi-
mately equal to one (if ~=n;/n, )1), so the density of modes
is inversely proportional to N, as expected from the general
case, Eq. (49). [See Fig. 7(b).]

An experiment was done by Steinberg, Kwiat, and Chiao
[15] (SKC) to measure the apparent "superluminal" tunnel-

ing velocity of a wave packet through a 1D photonic band-

gap structure. They measured this velocity to be (1.7~ 0.2)c
at mi gap ind their experiment. We would like to use our
formulation of the group velocity to predict an approximate
value for this tunneling velocity. For their experiment, air is
the incident material, and a substrate is attached to the other
side of a 5-,' period PBG structure of the form (HL) H,
where the titanium-oxide "H" layers have high in ex
F2=2.22, and the fused silica in the "L" layers have low
index n, =1.41. Up to this point, our formulas for p~ and
v~= lip~ assume that the quarter-wave PBG is embedded in
a material with an index of refraction that is equal to either of
the two in ices n l or n2 ud' used in the quarter-wave PBG struc-
ture. We can generalize our formula somewhat by allowing

t rial with anthe PBG structure to be embedded in a materia wi
arbitrary index of refraction no, say n, o= pp= l,see A endix C).
If this correction is made, using no= . , n, &=n =1.41, and
n.2

= . , w=2.22, we calculate a theoretical midgap group velocity
of U'"=1.37c. (See Fig. 8.) This number is somewhat smaller

we assume that air is on both sides of the structure, that the
stack has the form (HL) so that N=5, and we ignore the
substrate. The method that we use in Appendix C to gener-
alize this problem requires that the indices on either si e o
h PBG structure be the same, hence the term symmetric

sandwiching. If they are not, the exact solution to the p
lern becomes a goo ead deal more complex. To calculate the
midgap group velocity more accurately, we may simply use
the numerical, arbitrary-stack, matrix-transfer method as out-
lined in Sec. II. Performing this computer calculation gives a
much better numerical estimation of the experimentally mea-
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sured group velocity, namely, U"" =1.76c, well within the
experimental error bars of v'"~'=(1.7~ 0.2)c. 1.15-

VII. MATCHING THE BANDWIDTH OF p&
AT THE BAND-EDGE RESONANCE

CU ~
—602

(52a)

CO~+ 602

2
(52b)

which are assumed to be the known spectral width and cen-
tral frequency of our emitter, respectively. Here, ~, and cu2

are the lower and upper limits of the emitter's spectral range,
respectively. We can now write two equations relating the
two edge frequencies in P space to those in cp space:

37K
cos' m =R i2

—Ti2cos
~oi

(53a)

co, ~ m
cos vr =Ri2 —Ti2cos —,

tpo l
(53b)

where R,2= (n t
—n2) /(n t+ z) nand T&z ——4n &n2/

(n, +n2), as before. By adding and then subtracting these
two equations we get another pair of equations in Ace and co,
which are

As a potential application of the formulas developed thus
far, consider the case of a PBG-embedded emitter whose
emission rate we would like to enhance at the band-edge
resonance. From Fermi's "golden rule, " we know that the
emission rate is directly proportional to the density of modes,
as in Eq. (2). To design our structure, we use the fact that the
mode density at the band edge can be quite high. We would
like to build a PBG for which the bandwidth, and location of
the band-edge peak of the mode density, matches the corre-
sponding parameters of the emitter spectrum. Because n&

and n2 are more or less strictly constrained by the physical
properties of materials that can be microfabricated with pre-
cision, we can also assume that we know their values, or at
least some trial set. Given the bandwidth Ace and location ~
of the emitter in frequency space, and the values of n& and

nz, we want to solve for values of the midgap frequency coo

and number of periods of N, required to actually fabricate the
correct stack. We know that for a quarter-wave stack,
Cosp (COS1TCO R12)/T12 where co= cp/coo. From our argu-
ments about the maxima and minima of p~, we also know
the lower band-edge maximum for p~ is located between
P= [(2N —1)/N](7r/2) and P= [(2N —3)/N](7r/2) Let us.
also define the quantities
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A

0.95-
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FIG. 9. Plot of the band-edge resonance, Eqs. (24) and (30), for
the dimensionless DOM U

"'
p& vs frequency for a quarter-wave

stack. Here we have matched the central frequency and frequency
width of the band-edge resonance of the DOM, for a quarter-wave
stack with fixed n

&
and n2, to the location and bandwidth of a given

spontaneous emitter that is embedded in the PBG. While the peak
amplitude of the resonance is relatively small (—1.12), it is the
integrated area, under the resonance and above the line, U

"' p&= 1

that is important.

VIII. SUMMARY AND CONCLUSIONS

Since Ti2, Ace, and Q are assumed to be known, we have two
equations for the two stack unknowns: ~0 and N, the midgap
frequency and number of periods, respectively. A numerical
root-finding routine can now be used to find appropriate val-
ues for ceo and N, given Ti2, or equivalently, ni and n2. Let
us consider a simple numerical example. Suppose we have
n

&

= 2.9, n2= 3.2, co= 2.154X 10' rad/s, and
5~=0.215X10' rad/s. This corresponds to a quarter-wave
stack fashioned from alternating layers of low-index alumi-
num arsenide with high-index aluminum gallium arsenide, a
commonly microfabricated Bragg refIector used in semicon-
ductor spontaneous emission experiments [7]. The spectral
width Ace is chosen to match that of the electron-hole, re-
combinate spontaneous emission of an active quarter-wave
layer of gallium arsenide embedded in the stack. Inserting
these values into Eqs. (54) and solving numerically, we find
N=9.23 and coo=2.43X10' rad/s. Since N must be an inte-
ger, we use N = 9 and a correspondingly recalibrated
~0=2.45X10' rad/s to plot the DOM curve. From Fig. 9,
and by calculating values of ~& and co2, we observe
m=2. 164X 10 rad/s and 5m=0. 126X10 rad/s. The small
difference in the final Ace and co from the initial desired
values can be attributed to the fact that N had to be rounded
to the nearest integer value when the root-finding routine
found a noninteger root. When using the root-finding routine,
one must be careful to reject nonphysical results such as
negative values for N, or a midgap frequency ceo that is
larger than the upper band edge of the PBG stack.

1 1+cos(m/N)cos[7r/(2N)]

Ttp 1 cos( v7A co/top) cos( 7rto/top)

1 sin( 7r/N) sin [~/(2N) ]
Tt2 sin(mb, cp/cup)sin(vrtp/top)

' (54b)

We believe this paper illustrates the usefulness of devel-
oping and analyzing formulas for transmission, DOM, and
group velocity of a simple 1D model of photonic band-gap
structures. We have paid special attention to finite periodic
structures, in particular the quarter-wave stack. From our r-
sults, we have gained a better understanding of some of the
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scaling laws inherent in the formulas for transmission, DOM,
and group velocity, and we will be able to make accurate
predictions concerning the behavior of actual PBG struc-
tures.

We began in Sec. II by establishing our definition of the
density of modes, p(co) =dkldco, by justifying this conven-
tion through its meaning for spontaneous emission in cavity
QED. Also in that section, we showed how the DOM can be,
in general, constructed from the complex transmission coef-
ficient t(cu) for an arbitrary, real, 1D dielectric structure, as
per Eq. (7). In Sec. III we applied a matrix-transfer method
to obtain a formulation for the transmission coefficient t~(co)
of an N-period structure in terms of the transmission coeffi-
cient t of a unit-cell transmission T= ~t~ . We performed the
same type of calculation to give us the N-period transmis-
sion, T~= ~t~~, in terms of the unit cell. These formulas are
quite significant, in that we can say something about the
transmittance and transmission coefficient of a periodic
structure without our knowing much about the unit-cell in-
dex of refraction profile n(x). In Sec. IV, we derived our
primary result: the DOM p~(co) of an N-period potential in
terms of the number of periods, parameters of the unit cell,
and the Bloch phase P that corresponds to the hypothetical
infinite periodic structure constructed from that cell. In Sec.
V, we applied the equations derived up to this point to the
particular case of a quarter-wave stack, a common 1D PBG
structure. In Sec. VI, we investigated some of the interesting
properties of the transmittance Tz and the DOM p~. Some
of these properties included the behavior of T~ and p~ at
their maxima and minima, near the band edge, and inside the
band gap. It is in Sec. VI that we developed some of the
important scaling laws that could be of use for general 1D
periodic structures, as well as in the specific case of the
quarter-wave stack. Also, in that section we discussed the
results of an experiment done to measure midgap tunneling
velocity of a pulse, as well as our predictions concerning this
superluminal tunneling-time experiment of Steinberg, Kwiat,
and Chiao. Finally, in Sec. VII, we applied the equations we
have developed thus far to a particular application in which
we matched the location and width of the band-edge reso-
nance of the DOM to the known spectrum of an emitter. This
paper contains a number of important accomplishments. By
developing an equation for the density of modes for a finite
periodic structure, we are better equipped to understand the
behavior of the DOM and group delay. Furthermore, because
of the John-Wang model [3], our results should yield practi-
cal approximations for finite 3D PBG structures with nearly
spherical BZ zones. There are a number of specific applica-
tions for which our results would be readily useful, including
spontaneous emission alteration in periodically layered semi-
conductors [7], nonlinear optical effects, such as gap solitons
[11], optical bistability [12], optical limiting and switching
[13], and thin-film optical isolators [14].

Finally, we note —due to the isomorphism between the 1D
Schrodinger and Maxwell wave equations —that our mode
density formulae have direct application in solid-state phys-
ics to electron transport in periodically modulated semicon-
ductor quantum wires [22].
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APPENDIX A: PROOF OF FORMULA FOR M
IN TERMS OF M

Here, we prove Eq. (16) in Sec. III by induction. We want
to establish the equation

A 1
M = . [M sin NP I sin—(N —1)P].

sinP
(Al)

For N= 1, we have the trivial identity M=M. For N= 2, the
equation can be simplified to

M =2M cosP —I, (A2)

which we know to be valid from the Cayley-Hamilton theo-
rem, as per Eq. (15). We then multiply Eq. (Al) by M and
simplify the expression

M "' = . [M sin NP Msin(N ——1)P]sinP

1
[2M cosP sin NP —I sin NP

sin

—M(sin NP cosP cosNP sin—P)]
1 A

[M sin(N+ 1)P —I sin NP].
sin

We now observe that (A3) and (Al) are precisely the same
except that N~N+ 1 in Eq. (A3). Since we have shown that
the formula is true for N= 1 and N= 2, and that the formula
is true for N+ 1, given it holds for N, our proof for general N
is complete.

APPENDIX B: CONSTRUCTING M
FOR THE UNIT CELL

In general, constructing the transfer matrix M for an arbi-
trary unit cell, (n(x):xc [O,d]), as in Fig. 1, requires the
solution of the Helmholtz Eq. (1) in the interval x e [O,d).
This solution will, when the appropriate boundary conditions
at X=O and d are imposed, give the transmission coefficient
and reflectance coefficients t and r, respectively, needed to
construct M as per the general formula, Eq. (16). For a large
class of functions n(x), the solution to Eq. (1) is known in
terms of relatively simple special functions. For example, if
the dielectric profile e(x) is linear, i.e.,
n (x) = e(x) = mx+ b, then M is expressible in terms of Airy
functions.

For a large class of practical problems, the unit cell has
the form of a series of steps, namely, n(x) =n;, where
x E [x, i,x;); with i e ( l, . . . ,m) —taking xo = 0 and x = d,
and also assuming each n; is a dispersionless constant. The
transfer matrix for such an index potential will always be the
product of matrices of only two types. The first is a discon-
tinuity matrix 6; that transfers the field amplitude left to
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right across the n; —+n interface. The second is a propagation
matrix II(p, ), where p;= n—,a;(tu/c) is the phase that accu-
mulates as the field propagates left to right a distance
a, —= ~x,

—x; i~ in the constant n, region between the (i —1)st
and ith interfaces. These matrices have the form [23]

and

(8 la)

(a)

( e /PI'

II(p;) —=

0
(8 lb)

respectively, where 8,—=-,'(1 ~n;/n, ). By comparing Eq.
(Bla) to the general transfer matrix form given by Eq. (11),
we see that 6; =1It; and 8', =r; It;, where t; and r; are
the n;~n interface transmission and reflectance coeffi-
cients, given by [19]

I I I I I I I

I I I I I I I I

I I I I I I I I

I I I I I I I I

I I l I I I I I

0 cj

and

2nJ

n;+n,

n; —n
I"

n. +n.
l J

(82a)

(82b)

FIG. 10. Here we show how to use the elementary transfer ma-
trices of Appendix B to construct an N-period dielectric stack, com-
posed of two-layer unit cells. In (a) we represent the unit-cell matrix
product, Eq. (B7).This unit cell generates the N-period stack in (h),
as per Eq. (16) for M .

We define special double-transmission and double-reAection
coefficients, T» and R», by

shown in Fig. 10(a). Now we want to choose our matrices for
M so that M is the correct matrix for an W-period,
multilayer stack. The choice is

4n)n2
T12 t12f21 (n, +n, )

'2 0 (83a) M —= II(p) Lkt2II(q) 62i (87)

R» I 12~2].
n, —n, l'
n i+ n2)

(83b)

or

M—=i„II(—q) i„II(—&), (Bg)

A A A A

(commutativity), (84a)

A A

(transitivity), (84b)

6;,6J;= I (identity) . (84c)

The II obey

II(0)= II(p) II( —p) = I (identity),

II(p+2~) = II(p) (periodicity).

(85a)

(85b)

such that T»+ R&2=—1. The 4 matrices have the following
useful proper ties:

where p—=n, azoic and q=n2bcolc, where a and b are the
layer thicknesses (a b+=d), and cu the frequency of light
impinging on the stack. Recall that M„as per Eq. (10),
propagates right to left, whereas the II and 6—defined
above —propagate left to right, hence the need for starting
with M ', and using the matrix identity (AB) '=—B 'A ', as
well as Eqs. (84c) and (85a). The index potential corre-
sponding to M is shown in Fig. 10(b). Note that, in order to
be consistent with Eq. (88), this potential must be "sand-
wiched'* between the half-infinite regions (—~,0) and
[Nd, ~), both of index n, . Now, carrying out the matrix
product for M, Eq. (88), using the definition of 5 and II,
Eqs. (Bla) and (8 lb), we arrive at the two-layer unit cell M,
whose elements are

Using these simple matrices, an arbitrary unit-cell matrix
M for a steplike index profile n(x) can be constructed. To
illustrate how this is done, we now construct M for a two-
layer unit cell to be used in constructing a simple dielectric
stack with alternating indices n, and n2. Consider the index
profile

1

» 21e—=M =~+~+e ~p q)+a-~-e'~p-~)» 2&e

t 21 12 21e-=M =s+s- -'~p+~&+a-a+ -'(p-q)
&z z&e

(89a)

(89b)

n(x) = ni, x c [O,a)
n2 x ~ [a,a+ b),

(86) where M22=M», and M, 2= M2i, as per Eq. (11).We have
p= n, atu/ct q= n2btu/c, and 8, —=—(—1 ~n, /n )/2, as before.
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Note that at this point these formulas are valid for an arbi-
trary two-layer unit cell. Making the additional assumption
that

(810)

(19) and (24), respectively, will be valid for these modified
unit-cell parameters, giving the symmetric-sandwiched quan-
tities Ttv and pz. Using Eq. (C2), and following a procedure
similar to that used in Sec. IV, we can derive x„, yz,
(»—=x»/(x»+y»), and r/„= y»/(—x„+y») from t»= x»—+iy».2 2 2 2

For simplicity, we also define

where co= co/co0, requires that light at midgap frequency f170

accumulates vr/2 radians of phase in each of the n1 or n2
layers. This demand gives us, of course, the quarter-~ave
stack condition [19].

APPENDIX C: SYMMETRIC SANDWICHING

f=2ro, lm —.
t

(C3)

Doing this, we find that the formulas relating ( and r/, for the
original unit cell, to (» and t/», for the effective unit cell in
the sandwiched case, are

Here, we show how our formulation for p~ and group
velocity U&=1/pz can be generalized to allow the PBG
structure to be embedded in a material with arbitrary index
of refraction n0. To achieve our result, we simply "sand-
wich" the previously described transfer matrix M between
the appropriate discontinuity matrices A0, and 610 as de-
fined in Appendix B. Referring back to Eq. (16), we have

A A 1 A A

bpiM Ato= . [AoiMhtosin NP
sin

AoiILLiosin(N 1)P]. (Cl)

1 l. 1 I r) Rot—+ 2I,r01Im-
t» tot t

hatt

t* (C2)

where Tpi = tpitip= 4non i/(no+ ni), rpi = (np ni)/2

(no+ n t), and Ro, —= IrotI, are the no~n, interface transmis-2

sion and refiection coefficients, as per Eqs. (82) and (83).
Here, t and r are the unit-cell coefficients, as before. At this
point we note that the net effect of symmetric sandwiching
on M is to modify the value of t to t~ for the effective unit
cell. Therefore, if we can calculate the modified values of (»,
g, r/», and r/», from t», the equations for T~ and p~, Eqs.

A A

%e now need to calculate the quantities 601MA10 and

601IA1o . We know that a general transfer matrix has the
form given in Eq. (11).After multiplying together the matri-
ces 601IA10 as per Appendix 8, we get the identity matrix I
as a result, so the second term in Eq. (Cl) remains un-

changed. Next, we calculate the quantity 601MA»—=M~. If
we multiply the matrices together and extract the (M»)» el-
ement, using Eq. (11), we get the relation

(C4a)

1
V»= I:(1+Rot) V f1-

T01
(C4b)

P"21
( 1 e !1TQl)

T21
(C5)

where co= co/co0, with co0 at midgap. From this, we are able
to generate f:

~01~21f=2 sin7rco,
12

(C6)

Since we have now found f, we have all the information for
computing r/» and also r/», via Eq. (C4b). Since (»=(, (»'

= (', from Eq. (C4a), we are prepared to calculate p tv for the
symmetric sandwich, using the effective t„,Eq. (C2), instead
of t in Eq. (24) for piv.

Note that in the case of an asymmetric sandwich,

M~ =601M h&3, with n0@n3, this trick cannot be used
since AotIci, 3=AQ341, in Eq. (Cl). In this case the formula
for p~ must be rederived from scratch, or a numerical
matrix-multiplication scheme should be used, as per Sec. II.

The final thing we have to do then is to calculate f, which
entails finding 1/t. To do this, we use the transfer matrix for
a quarter-wave stack unit cell. The complete transfer matrix
for the unit cell is generated by multiplying together the
appropriate propagation and discontinuity matrices, as out-
lined in Appendix B. For a quarter-wave unit cell we have,
from Eqs. (89b) and (810),
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