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We study the dynamics of a wave packet for a triadic Cantor spectrum K. The scaling symmetry
of the spectrum translates into the characteristic log-periodic feature of relevant physical quantities.
Using Mellin transform, we derive the analytical expression of the time-averaged return probability,
which is universal for any system with a Cantor spectrum. This result is supported by numerical
results obtained recently for polaritons in a Fibonacci potential. We give a more thorough analysis
in the case of the tight-binding model, in which case the dynamics of the system depend essentially
on the Fourier transform on a Cantor set of monomes xk, namely : hk(t) =

∫
K
e−ixtxkdµ, k ∈ Z,

which carry the fingerprint of the spectral fractal feature.

Introduction

During the past decades, there has been a growing in-

terest for Schroedinger operators H = − ~2

2m∆ + V (r)
with a Cantor set like spectrum, e.g. a perfect, nowhere
dense set (for a review, see [1], and more recently [2]). In
the context of quantum dynamics for systems verifying
such a Hamiltonian, a typical behaviour for some physi-
cal quantities, such as the time-averaged return probabil-
ity (auto-correlation function), has been identified. More
precisely, it has been shown ([3],[4]) that, in the case of
a Cantor set spectrum, the time-averaged return proba-
bility C(t), defined as :

C(t) = 〈|〈ψ(0)|ψ(t)〉|2〉 =
1

t

∫ t

0

|〈ψ(0)|ψ(t′)〉|2dt′

decreases as : t−D
µ
2 , where Dµ

2 is a correlation dimension
with respect to the measure µ of the spectrum, although
a full analytical expression had not been derived so far.
The spatial correlation function Cs(l, µ) =

∫
K×K

θ(l−|x−

y|)dµ(x)dµ(y), with θ the Heaviside function, has been
derived more precisely for a Cantor set spectrum ([5]),
showing that this quantity is a power law tln 2/ ln 3 ( ln 2

ln 3
being the fractal dimension of the Cantor set) modulated
by log-periodic oscillations.

In this paper, we study the dynamics of a quantum
system whose energy spectrum is a triadic Cantor set K.
In section I, we describe the scaling symetry of the spec-
trum and analyze how it translates in terms of measur-
able physical quantities ; using Mellin transform, we de-
rive the exact analytical expression of the time-averaged
return probability, and we obtain the following asymp-
totic expression for t→∞ :

C(t) ∼t→∞ t−dKGper(ln t)

where dK = ln 2
ln 3 is the fractal dimension [7] of the tri-

adic Cantor set and Gper a periodic function. In this
paper, when not specified, Gper will denote a periodic
function of the logarithm of the argument. This means
that C(t) is asymptotically a scaling function, carry-
ing the fingerprint of the self-similar fractal spectrum.

We also present numerical results obtained with polari-
tons in a Fibonacci cavity [6], which support the the-
ory. We then discuss how the scaling symmetry of the
spectrum affects other dynamical quantities. The typical
log-periodic feature should naturally appear when taking
the time-average of dynamical quantities. However, the
fingerprint of the fractal is also visible on some instan-
taneous quantities, such as the root-mean displacement
(RMS). To show this, we study in Section II the tight-
binding model ; we show that in this case, the eigenfunc-
tions can be seen as polynomials of the energy, and that
the dynamics depend essentially on the Fourier transform
(on a Cantor set) of monomials : hk(t) =

∫
K
e−ixtxkdµ,

k ∈ Z. In fact, the wave-function is a linear combina-
tion of the hk(t). Using Mellin transform, we show that
: 〈hk(t)∗hl(t)〉 ∼t→∞ t−dKGk,l(ln t) with Gk,l(ln t) a pe-
riodic function. This implies that time-averaged physi-
cal dynamical quantities, such as the time-averaged root

mean displacement 〈∆x(t)〉 = 1
t

∫ t
0

√∑
k k

2|ψ(k, t′)|2dt′

or the participation ratio, 〈Pr(t)〉 = 1
t

∫ t
0

dt′∑
k |ψ(k,t′)|4 , dis-

play the characteristic behaviour discussed earlier and
carry the fingerprint of the scaling symmetry of the spec-
trum.

I

The triadic Cantor set, denoted K in this paper, is
constructed as follows : start with the segment [0,1], di-
vide it in three equal parts, and remove the central one,
e.g. the segment [1/3, 2/3], then repeat the process with
the two remaining segments, and so on. After an infinite
number of iterations, we are left with a set of separated
points, of zero Lebesgue measure.

We now consider a one dimensional quantum system
described by the state vector |ψ(t)〉 and evolving accord-

ing to the Hamiltonian H = − ~2

2m
d2

dx2 +V (x). We assume
that the energy spectrum of H is a triadic Cantor set.

The system is initially in a state described by |ψ(0)〉 =
|ψ0〉. After a time t, the state vector |ψ(t)〉 is given by :

|ψ(t)〉 = e−
iHt

~ |ψ0〉 (1)



2

We shall also use the spectral decomposition of |ψ(t)〉
over an orthonormal basis of eigenfunctions {|φ(ε)〉} of
H. |φ(ε)〉 is an eigenfunction associated with the energy
ε :

|ψ(t)〉 =

∫
K

g(ε)e−iεt/~|φ(ε)〉dµ̃(ε)

with g(ε) = 〈ψ0|φ(ε)〉, and dµ̃ a measure defined on the
spectrum. To alleviate the notations, we shall set ~ = 1.

To go further, we need to define an appropriate mea-
sure on the spectrum. The triadic Cantor set K has a
zero Lebesgue measure. However, in our case, the inte-
grated density of states, e.g. the integral of the density
of states ρ(ε) over the spectrum K, is non zero. Thus,
ρ(ε) must be infinite in every point of K.

We define a measure dµ on K in the following way : we
suppose that the density of states is uniform, and that
the integrated density of states, N (ε) =

∫
K
θ(ε−ε′)dµ(ε′)

with θ the Heaviside function, is bounded. Without loss
of generality, we impose :

∫
K
dµ(ε) = 1. We then proceed

iteratively : starting from a segment [0, 1], we set ρ(ε) = 1
everywhere ; the integral thus equals 1. Now, divide the
segment in three, remove the central part and define ρ(ε)
to be equal to 3

2 on [0, 1
3 ] and [ 2

3 , 1], and null on [ 1
3 ,

2
3 ].

We still have :
∫ 1

0
ρ(x)dx = 1. We repeat this process

infinitely, and thus define dµ as a limit : for any function
f defined on [0, 1], the integral of f over K is :

∫
K

f(x)dµ(x) = lim
n→∞

(
3

2

)n ∑
ajn∈Pn

∫ ajn+3−n

ajn

f(x)dx

where {Pn} is the set of the left edges of the remain-
ing segments after n iterations in the construction of the
Cantor set.

One can show (see appendix) that dµ verifies the fol-
lowing important property :

∫
K

f(x)dµ(x) =
1

2

∫
K

f
(x

3

)
dµ(x)+

1

2

∫
K

f

(
x+ 2

3

)
dµ(x)

(2)

This property still holds for multiple integrals ; it be-
comes, for a Cantor product set (Cantor dust1, see fig.
(2)) :

∫
K×K

f(x, y)dµ(x)dµ(y)

=
1

4

∫
K×K

f
(x

3
,
y

3

)
dµ(x)dµ(y)

+
1

4

∫
K×K

f

(
x+ 2

3
,
y

3

)
dµ(x)dµ(y)

+
1

4

∫
K×K

f

(
x

3
,
y + 2

3

)
dµ(x)dµ(y)

+
1

4

∫
K×K

f

(
x+ 2

3
,
y + 2

3

)
dµ(x)dµ(y)

(2bis)

Note that the measure µ is a special case of a self-
similar measures m, e.g. such that there exists a set of
contractive similarities {φj} and probability weights {πj}
such that for any continuous function f , one has :∫

f(x)dm(x) =
∑
j

πj

∫
f(φj(x))dm(x)

Cantor sets correspond to the case of two linear similar-
ities, with π1 = π2 = 1

2 :∫
f(x)dm(x) =

1

2

∫
f(a1x)dm(x)+

1

2

∫
f(a2x+b)dm(x)

The methods developed hereafter can easily be translated
for any self-similar measure.

Let us now study the dynamics of the system described
by :

i
∂|ψ(t)〉
∂t

= H|ψ(t)〉

There are several physical quantities which are useful
to characterize the evolution of the system, such as the
RMS displacement, the participation ratio or the return
probability.

We will focus first on the time-averaged return proba-
bility.

The time averaged return probability, or auto-
correlation function, C(t), is by definition the time av-
erage of the probability p(t) = |〈ψ(0)|ψ(t)〉|2 to find the
system in its initial state after a time t :

C(t) =
1

t

∫ t

0

|〈ψ(0)|ψ(t′)〉|2dt′

We could directly try to calculate p(t) to study the evo-
lution in time of the system ; however this quantity often
exhibits fast local oscillations, which could hide the ef-
fects of the fractal feature. Its time average, on the other
hand, yields interesting results.
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FIG. 1: Integrated density of states (IDOS) in the case of
a triadic Cantor set energy spectrum. The energies are ex-
pressed in arbitrary unit and the IDOS has been normalised.

We start with the spectral decomposition of |ψ(t)〉 :

|ψ(t)〉 =

∫
K

g(ε)e−iεt|φ(ε)〉dµ̃(ε)

We impose that |ψ(t)〉 is normalized to unity :

〈ψ(t)|ψ(t)〉 =

∫
K

|g(ε)|2dµ̃(ε) = 1

We shall assume that |g(ε)| is non-zero and constant
on a bounded subset of the spectrum, and that this sub-
set is the triadic Cantor set. We therefore consider that
|g(ε)|2dµ̃(ε) (the spectral measure of the initial state) is
the measure dµ introduced in the previous paragraph.

Thus :

C(t) = 1
t

∫ t
0
|〈ψ(0)|ψ(t′)〉|2dt′

= 1
t

∫ t
0
|
∫
K
e−iεt

′
dµ(ε)|2dt′

A standard computation then leads to :

C(t) =

∫∫
K×K

sinc((ε′ − ε)t)dµ(ε)dµ(ε′) (3)

FIG. 2: 2 dimensional Cantor dust (represented here at the
second step of construction) ; the infinitesimal surface dS(l, µ)
corresponds to the surface of the Cantor dust, in the sense of
dµ, contained in the two red strips.

The idea is now to transform this double integral into
a one variable integral, and then to use Mellin transform
and the scaling property (2) of dµ.

Let us do the change of variables : l = |ε′−ε|, 0 ≤ l ≤ 1,
and let dS(l, µ) be the area (in the sense of dµ) of the
2-dimensional Cantor dust contained in the two strips of
infinitesimal width located at ε = ε′ + l and ε = ε′ − l
(fig. 2).

Since sinc((ε′−ε)t) can be considered constant on these
strips, we obtain :

C(t) =

∫ 1

0

sinc(lt)dS(l, µ) (4)

We now have to determine dS(l, µ). For this we shall use
Mellin transforms.

Let : MdS(s) =
∫ 1

0
ls−1dS(l, µ) =

∫ 1

0
ls−1 dS(l,µ)

dl dl be
the Mellin transform of dS(l, µ), which is sometimes re-
ferred to in the literature as the energy integral ([5], [8])

(note that we wrote
∫ 1

0
and not

∫∞
0

: dS(l, µ) is defined
on [0, 1], but can be extended on [0,∞[ if we define it as
equal to 0 outside [0, 1]).

Now, using the definition of dS(l, µ) and the property
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(2) :

MdS(s) =

∫ 1

0

ls−1dS(l, µ)

=

∫
K×K

|x− y|s−1dµ(x)dµ(y)

=
1

4

∫
K×K

(
|x
3
− y

3
|s−1 + |x+ 2

3
− y + 2

3
|s−1

)
dµ(x)dµ(y)

+
1

4

∫
K×K

(
|x
3
− y + 2

3
|s−1 + |x+ 2

3
− y

3
|s−1

)
dµ(x)dµ(y)

=
31−s

2
MdS(s) + γ(s)

with

γ(s) =
31−s

2

∫
K×K

|x− y + 2|s−1dµ(x)dµ(y)

Thus :

MdS(s) =
γ(s)

1− 31−s/2

The inverse Mellin transform then gives dS(l,µ)
dl :

dS(l, µ)

dl
=

1

2iπ

∫ γ+i∞

γ−i∞
MdS(s)l−sds

=
1

2iπ

∫ γ+i∞

γ−i∞

γ(s)

1− 31−s

2

l−sds

It is important to note that γ(s) has no poles. This
is clear from its definition : since for all x, y ∈ [0, 1],
the inequality 1 ≤ 2 − x + y ≤ 3 holds, |x − y + 2|s−1

is well defined and bounded on K × K for any s ∈ C,
and thus γ(s) is well defined and has no poles. Hence,

the only poles of γ(s)

1− 31−s
2

l−s are the {sn}n∈Z such that :

sn = 1− dK − 2iπn
ln 3 . To alleviate the notations, we write

dK,n = dK + 2iπn
ln 3 . We now apply the residue theorem

dS(l, µ)

dl
=
∑
n

[
s− sn

1− 31−s

2

l−sγ(s)

]
s=sn

(5)

=
ldK−1

ln 3

∑
n

l
2iπn
ln 3 γ(1− dK,n)︸ ︷︷ ︸

γn

(6)

where we used :

lim
s→sn

s− sn
1− 31−s

2

=
1

ln 3

and where

γn =

∫
K×K

|x− y + 2|−dK,ndµ(x)dµ(y) (7)

Inserting (5) in (4), and with the change of variable v =
tl, we get :

C(t) =
1

ln 3

∑
n∈Z

γn

∫ 1

0

ldK−1l2iπn/ ln 3sinc(lt)dl

=
t−dK

ln 3

∑
n∈Z

γnt
−2iπn/ ln 3

∫ t

0

vdK,n−1sinc(v)dv

Since ∫ t

0

vdK,n−1sinc(v)dv

=

∫ ∞
0

vdK,n−1sinc(v)dv +O(udK−1)

and since :∫ ∞
0

vdK,n+ 2iπn
ln 3 −1sinc(v)dv

= sin
(π

2
(dK,n − 1)

)
Γ (dK,n − 1)

with Γ the Euler gamma function, we obtain finally :

C(t) = t−dK
∑
n∈Z

t−
2iπn
ln 3 an

[
1 +O(t−1)

]
with an = 1

ln 3γn sin
(
π
2 (dK,n − 1)

)
Γ(dK,n − 1), and

asymptotically (see fig. (3), (4)):

C(t) ∼t→∞ t−dK
∑
n∈Z

ant
− 2iπn

ln 3
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FIG. 3: Auto-correlation function in the case of a triadic Can-
tor set spectrum, in log-scale (log base 10).

We can prove by standard computation that :

an =|n|→∞ O
(

1

|n|3/2−dK

)
Let us now discuss the expression of C(t). We find

that, asymptotically, C(t) is of the form :

C(t) = t−dKGC(ln t)
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FIG. 4: Auto-correlation function multiplied by ud in the case
of a triadic Cantor set spectrum, in log-scale (log base 10).
This function is log-periodic in u, of period ln 3.

with

GC(ln t) =
∑
n∈Z

ane
− 2iπn

ln 3 ln t

a periodic function of ln t. The presence of the fractal
dimension dK in the exponent is consistent with previous
work on the asymptotic behaviour of the time-averaged
return probability for a Cantor spectrum : C(t) ∼t→∞
t−dk([3], [4]).

The asymptotic behaviour of C(t) could have been in-
tuited by the following observation : using the scaling
property of the measure, we find that :

C(t) =
1

2
C

(
t

3

)
+

1

2

∫∫
K×K

sinc

(
x− x′ + 2

3
t

)
dµ(x)dµ(x′)

(8)
When t → ∞, the second term of the sum on the right
tends to zero, since for all x, x′ in K, 1 < x− x′ + 2 < 3.
Thus, asymptotically :

C(t) ∼t→∞
1

2
C

(
t

3

)
which leads naturally to having C(t) of the form :

C(t) ∼t→∞ t−dKGper(ln t)

This means that C(t) is asymptotically a scaling function,
with the scaling numbers of the Cantor set.

Qualitatively speaking,

C(t) =

∫
K×K

sinc((ε′ − ε)t)dµ(ε)dµ(ε′)

is the wavelet transform of the spectrum, acting like a
magnifying glass ; as t goes to infinity, the surface of
integration is narrowed due to the sinc function, and de-
creases like t−dkGper(ln t), as we saw by calculating the
area variation dS(l, µ). Thus, we expect to observe this
typical behaviour in other dynamical quantities if they

can be expressed as integrals over the spectrum ; in par-
ticular, this should be the case if we look at their time-
average.

Before discussing other quantities, let us highlight the
similarity between the theoretical graph of C(t) for a tri-
adic Cantor set spectrum (fig. (3), (4)) and the numerical
results obtained with the Fibonacci cavity (more details
are available in [6]) fig. (5). In this experiment, cavity
polaritons are confined in wire cavities, consisting of λ/2
layers, using Bragg mirrors for the confinement in the
vertical direction. The lateral dimension of the 200µm
long wires are modulated quasi-periodically : the mod-
ulation consists in two wire sections (letters) A and B,
of equal length but different width ; these letters are
arranged in a finite sequence, Sj , obtained recursively
using the following Fibonacci like algorithm : Sj>2 =
[Sj−1Sj−2] and S1 = B, S2 = A where [Sj−1Sj−2] is the
concatenation of the sequences Sj−1 and Sj−2. The se-
quence S∞ becomes rigorously quasi-periodic as j tends
to infinity. We used a finite sized cavity, however, we
observed the features of the fractal spectrum predicted
by the theory : namely, gaps densely distributed and an
integrated density of states N (ε) well described by a scal-
ing form of the type N (ε) = εln a/ ln bF( ln ε

ln b ) and which is
given by the gap labelling theorem [1]. The photon modes
are described by a 2D scalar wave equation with vanish-
ing boundary conditions on the boundary of the wire.
This 2D problem is then reduced to a 1D Schroedinger
equation with an effective quasi-periodic potential, trans-
lating the geometry of the cavity. The equation was
then solved numerically (using the transfer matrix for-
malism) and some useful quantities were plotted : the
IDOS, the participation ration, the RMS displacement
and the time-averaged return probability. The latter is
given fig. (5).

We also found that the participation ratio and
the return probability evidence the characteristic log-
periodicity.

Let us now discuss the method used in a more general
way, to identify the fingerprint of a scaling symmetry in
certain physical quantities. We see from the calculation
that the scaling property of the spectrum leads naturally
to a specific behaviour of some physical quantities defined
as integrals over the spectrum - power law modulated by
log-periodic oscillations.

In the case of a fractal F described by a measure µ
defined by the following relation (the balance equation
[22]):∫
F

f(x)dµ(x) =

N∑
n=1

∫
F

(
1

bn
f(anx) +

1

cn
f(dnx+ en)

)
dµ(x)

for some an, dn, en ∈ R, bn, cn ∈ R∗, any function Ψ(t)
defined by an integral : Ψ(t) =

∫
F
h(x, t)dµ(x) will sat-

isfy :

Ψ(t) =

N∑
n=1

∫
F

(
1

bn
h(anx, t) +

1

cn
h(dnx+ en, t)

)
dµ(x)
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FIG. 5: Auto-correlation function of the wave paquet in the
Fibonacci cavity ; numerical results for an initial gaussian

wave paquet : ψ(x, t = 0) ∼ e−2(x−x0)
2/w2

0 . The graphs cor-
respond to different values of w0, with identical x0.

If furthermore h(x, t) can be expressed as a function of
xαtβ , α, β ∈ C, β 6= 0 : h(x, t) = ψ(xαtβ), then :

Ψ(t) =

N∑
n=1

∫
F

1

bn
ψ(aαnx

αtβ)

+

N∑
n=1

∫
F

1

cn
ψ((dnx+ en)αtβ)dµ(x)︸ ︷︷ ︸

Φ(t)

=

N∑
n=1

1

bn

∫
F

h(x, aα/βn t)dµ(x) + Φ(t)

=

N∑
n=1

1

bn
Ψ(aα/βn t) + Φ(t)

Now, assuming that the Mellin transforms of Φ(t) and
Ψ(t) (respectively mΦ(s) and mΨ(s)) exist and have over-
lapping domains of definition, we can take the Mellin
transform of the above equation :

mΨ(s) = mΨ(s)

N∑
n=1

a
−sα/β
n

bn
+mΦ(s)

thus :

mΨ(s) =
mΦ(s)

1−
∑N
n=1

a
−sα/β
n

bn

Taking the inverse Mellin transform and using the
residue formula, we may deduce Ψ(t) from the poles of

mΦ(s)

1−
∑N
n=1

a
−sα/β
n
bn

(provided that the inverse Mellin trans-

form converges and that we find a proper contour). Two
cases in particular are of interest :
- if mΦ(s) has no poles, and if the poles {sm}n of

1

1−
∑N
n=1

a
−sα/β
n
bn

are of the form sn = γ + inγ′, then Ψ(t)

is of the form :

Ψ(t) = t−γGper(ln t)

- if mΦ(s) has poles, if the poles {sm}n of 1

1−
∑N
n=1

a
−sα/β
n
bn

are of the form sn = γ + inγ′ and if Φ(t) goes to zero
faster than t−γ when t→∞, then Ψ(t) is asymptotically
of the form :

Ψ(t) ∼t→∞ t−γGper(ln t)

More generally, this also occurs whenever we can rear-
range the integral in order to have :

∫
F
h(αx, t)dµ(x) ∝∫

F
h(x, βt)dµ(x).

Thus, we see in the case of quantum dynamics
that, since the energy ε and the time t are conjugate
variables, it is likely that a time dependent quantity
will be of the form tαGper(ln t). This is well veri-
fied for C(t) : in this case, Ψ(t) = C(t), Φ(t) =
1
2

∫∫
K×K sinc

(
x−x′+2

3 t
)
dµ(x)dµ(x′), and we are in the

case where Φ(t) decreases to zero faster than t−dK . We
also pointed out that time-averaging is equivalent to tak-
ing the wavelet transform of the spectrum. For instance,
the time-average of the amplitude of the wave function

at some point x in space, 〈|ψ(x, t)|2〉 = 1
t

∫ t
0
|ψ(x, t′)|2dt′,

is given by :

〈|ψ(x, t)|2〉 =

∫∫
K

g(ε′)∗g(ε)φε′(x)∗φε(x)sinc((ε−ε′)t)dµdµ

(this is easily seen by using the following expression for
the wave function :

|ψ(x, t)| =

∣∣∣∣∣∣
∫

space

∫
spectrum

e−iεtφ(x, ε)∗φ(x′, ε)ψ(x′, 0)dx′dµ(ε)

∣∣∣∣∣∣
derived in [10]). Since the surface of integration decreases
like t−dkGper(ln t) as t→∞ (due to the sinc), we expect
to have a similar time-dependence for the global quan-
tity. Considering that any dynamical quantity can be
expressed using the wave function, this implies that this
typical behaviour should be common to many quantities.
However, more information about the eigenfunctions is
usually required to study rigorously the dynamics of the
system. We shall illustrate this by discussing now two
other quantities : the root-mean displacement (RMS)
and the participation ratio.

The time-averaged participation ratio is usually stud-
ied to get information on the dynamics of a quantum sys-
tem. It was studied numerically for the Fibonacci cavity
and the results support the idea of a log-periodic feature.
By definition, the participation ratio is :

Pψ(t) =
1∫

space
|〈x|ψ(t)〉|4dx
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It reflects the localization in space of the wave function
ψ(x, t) : if the state is localized, then Pψ ' 0 ; if it is
extended, then Pψ ' 1 [9]. Taking its time-average, to
have a time-dependent quantity, we define :

〈Pψ(t)〉 =
1

t

∫ t

0

dt′∫
space

|〈x|ψ(t′)〉|4dx

The RMS displacement is commonly studied both in
quantum dynamics - spreading of the wave packet - and
in diffusive processes.

∆x =
√
〈(x(t)− x0)2〉 =

√∫
space

(x(t)− x0)2|ψ(t, x)|2dx

Neither of these quantities are pure spectral quantities,
as opposed to C(t) which we managed to express only
in terms of the eigenvalues of the system. Here, more
information about the eigenfunctions φε is required to go
further. To do so, we focused on the tight-binding model.

II

We consider an infinite 1D lattice, with sites k labelled
from 0 to infinity. We define a potential V on this system
such that the discrete Schroedinger operator :

H = −∆ + V

which acts on l2(Z), has a triadic Cantor set spectrum.
The eigenfunctions of H verify :

Hφε(k) = εφε(k)

which becomes, in the tight-binding model :

−φε(k + 1)− φε(k − 1) + 2φε(k) + V (k)φε(k) = εφε(k)

or, using transfer matrices :(
φε(k + 1)
φε(k)

)
=

(
2 + V (k)− ε −1

1 0

)(
φε(k)

φε(k − 1)

)
Imposing φε(0) = 0, we find that the eigenfunctions
{φε}ε∈K , evaluated on the sites k, can be seen as poly-
nomials in ε :

φε(k) = φε(1)pk(ε) (9)

where the polynomials {pk(ε)} are obtained by multiply-
ing the transfer matrices :(

pk(ε) ∗
pk−1(ε) ∗

)
=

k∏
j=1

(
2 + V (k − j)− ε −1

1 0

)
The {pk(ε)} verify the recurrence relation :

pk+1(ε) = (2 + V (k)− ε)pk(ε)− pk−1(ε)

with initial conditions :

{
p1(ε) = 1

p2(ε) = 2 + V (1)− ε We are

interested in the evolution of a wave packet, described by
the normalized wave function ψ(t), evolving according to
:

i
∂|ψ(t)〉
∂t

= H|ψ(t)〉

The wave function is initially localized at the site 1 :
〈k|ψ(0)〉 = δ(k − 1). At time t, the system is in the
state : |ψ(t)〉 = e−iHt|ψ(0)〉, and the value of the wave
function at site k is given by :

|ψ(k, t)| =
∫
K

φε(1)∗φε(k)e−iεtdµ

Using (8), we obtain :

ψ(k, t) =

∫
K

φε(1)∗φε(k)e−iεtdµ̃(ε)

=

∫
K

|φε(1)|2pk(ε)e−iεtdµ̃(ε)

=
∑
j≤k

cj,k

∫
K

εje−iεtdµ(ε)

with pk(x) =
∑

0≤j≤k cj,kx
j and where we defined, as

in the previous section, the local measure associated to
the state |ψ〉 : dµ(ε) = |φε(1)|2dµ̃(ε). Thus, the dynam-
ical behaviour of the system depends essentially on the
functions :

hk(t) =

∫
K

e−iεtεkdµ(ε)

aka the Fourier transforms on K of the moments xk. The
wave function is therefore given by :

ψ(k, t) =
∑
j≤k

cj,khj(t) (10)

Expanding the exponential in hk(t), we obtain :

hk(t) =
∑
n≥0

(−it)n

n!
µn+k (11)

with µn =
∫
K
xndµ.

The fingerprint of the scaling symmetry of the spec-
trum is carried by the µn =

∫
K
xndµ. It can be shown

that, for n→∞ (see [20])

µn = n− ln 2/ ln 3F
(

lnn

ln 3

)(
1 +O

(
1

n

))
where F is a log-periodic function of period 1.

The hk(t) do not verify a scaling property (of the form
f(x) = bf(ax)) ; however, there is a structure and there
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are some scaling invariance.
First, the hk(t) verify the recurrence relation :

hk(t) =

∫
K

e−iεtεkdµ

=
3−k

2

∫
K

e−iεt/3εkdµ+
3−ke−i2t/3

2

∫
K

e−iεt/3(ε+ 2)kdµ

=
3−k

2
hk(t/3) +

3−k

2
e−i2t/3

k∑
j=0

(
k

j

)
hj(t/3)2k−j

From this relation, we can show by recurrence that the
zeroes of hk(t) is the set :

Zk = {tm,k =
π

2
(2m+ 1)3k+1,m ∈ Z}

Thus, the zeroes of hk(t) are those of hk−1(t/3), as
illustrated in fig. (6).

50 100 150 200 250 300

0.2

0.4

0.6

0.8

1.0

FIG. 6: Numerical curves of |h0(t/9)| (blue), |h1(t/3)| (red)
and |h2(t)| (yellow).

Moreover, the hk(t) all have local maxima at points
of the form mn,l = nπ3l. It was not proven rigorously
for k > 0 (the case k = 0 is straightforward, the detail
is given in the appendix), but the numerics support this
assumption and one can intuitively understand why it is
so from the definition of hk(t) :

hk(t) =

∫
K

xke−ixtdµ = lim
n→∞

3n

2n

∑
ajn∈Kn

∫ ajn+3−n

ajn

xke−ixtdx

|hk(t)| is maximal at points t such that the phase e−ixt

varies as little as possible as x goes through K. K is
composed of real numbers which have only 0 and 2 in
there decomposition in base 3, e.g. x =

∑
k≥1

βk
3k

with

βk ∈ {0, 2}. Now, for t = nπ3l, we see that for any x ∈ K
whose decomposition in base 3 has only 0 after the l first
terms, we have e−ixt = 1 : the phase does not change.

Using (11), we can show that, at these local maxima,
the amplitude of the functions hk(t) decreases with k.
We wish now to examine how this structure translates in
terms of physical dynamical quantities.

Although the hk(t) are not scaling functions, the re-
lations between the zeroes of hk and the behaviour at
the local maxima justify the numerical observation that,
approximately, hk(t) ∝ hk−1(t/3).

This almost scaling relation translates to the RMS. In
fact, since ψ(k, t) =

∑
j≤k cj,khj(t), we can deduce that

: ψ(k, 3t) ≈
∑
j≤k cj,khj−1(t) ≈ ψ(k − 1, t). Thus :

∆x(3t)2 =
∑
k≤1

k2|ψ(k, 3t)|2

≈
∑
k≥1

k2|ψ(k − 1, t)|2

≈ ∆x(t)2

This implies that ∆x(t)2 should display a log-periodic
structure. Numerically, ∆x(t) is a power-law modulated
by oscillations, which have a log-periodic envelope of pe-
riod ln 3 ; inside the envelope, the period of the oscilla-
tions increases with time, which is consistent with the
behaviour of hk(t) under the transformation t→ t

3 . The

numerics show that : ∆x(t) ≈
√

2∆x(t/3) (see fig. (7)).
However, it is difficult to derive exactly the expres-

sion of ∆x(t)2, since it requires more information on the
wave function ψ(k, t) (more precisely, on the coefficients
ck). More can be said about the dynamics if we take the
average in time, as we shall now see.

We study first 1
t

∫ t
0
|ψ(k, t′)|2dt′, which narrows down

to the study of the quantities :

1

t

∫ t

0

h∗k(t′)hl(t
′)dt′

Since |ψ(k, t)|2 is real, we need only to consider the

real part of 1
t

∫ t
0
h∗k(t′)hl(t

′)dt′, which we note fk,l(t). A
standard calculation leads to :

fk,l(t) = <
(

1

t

∫ t

0

h∗k(t′)hl(t
′)dt′

)
=

∫∫
K×K

xkx′lsinc((x′ − x)t)dµ(x)dµ(x′)

Note that f0,0(t) is the time-averaged return probabil-

ity C(t) = 1
t

∫ t
0
|〈ψ(0)|ψ(t′)〉|2dt′, which we derived ear-

lier.

For the calculation of C(t), we used the change of vari-
able l = |x− x′| and reduced the problem to calculating
the area dS(l, µ). The log-periodic behaviour comes from
the expression of dS(l, µ).

If we make the approximation that : sinc(xt) = 1 for
|xt| < π and sinc(xt) = 0 elsewhere, we get the following
approximate expression for C(t) :

C(t) =

∫ π/t

l=0

dS(l, µ) = t− ln 2/ ln 3
∑
n

αnt
−2iπn/ ln 3
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FIG. 7: RMS for a triadic Cantor spectrum, in loglog scale ;
blue : ∆x(t), green : ∆x(t/3).

which accounts for the typical asymptotic behaviour,
although the coefficients αn are a little bit different from
the coefficients in the exact expression.

If we apply the same reasoning for

fk,l(t) =

∫∫
K×K

xkx′lsinc((x′ − x)t)dµ(x)dµ(x′)

we find :

fk,l(t) ≈
∫∫
|x−x′|<π

t

xkx′ldµ(x)dµ(x′)

Applying now a similar reasoning as for C(t) (see ap-
pendix), we find that :∫∫
|x−x′|<π

t

xkx′ldµ(x)dµ(x′) = t−dK
[
Gk,l(ln t) +O

(
1

t

)]
(12)

with Gk,l(ln t) =
∑
n∈Z

t2iπn/ ln 3

α−2iπn/ ln 3c0,n,k,l a log-periodic

function of period ln 3. Thus, fk,l(t) satisfies, asymptot-
ically, the scaling relation (see fig. (10)) :

fk,l(t) ∼t→∞
1

2
fk,l(t/3)

100 101 102 103
100

101

102

FIG. 8: RMS for a triadic Cantor spectrum, in loglog scale ;
blue : ∆x(t), green :

√
2∆x(t/3).

Since the Gk,l(ln t) are all log-periodic with the same
period, we conclude that the wave function has the fol-
lowing asymptotic behaviour :

1

t

∫ t

0

|ψ(k, t′)|2dt′ ∼ t−dKGper(ln t)

with Gper(ln t) of period ln 3 (see fig. (11)).
Let us now study the time-averaged RMS :

〈∆x2(t)〉 =
1

t

∫ t

0

∆x2(t′)dt′ =
∑
k≥0

k2〈|ψ(k, t)|2〉

Since 〈|ψ(k, t)|2〉 has, asymptotically, a log-periodic
component, so does 〈∆x2(t)〉. A scaling analysis adapted
from [12] shows furthermore that : 〈∆x2(t)〉 ∼ tdK , which
is consistent with the numerics (fig. (12)). Thus, we find
that the time-averaged RMS is a scaling function, and
has the asymptotic form :

〈∆x2(t)〉 ∼t→∞ tdKGper

(
ln t

ln 3

)
To finish, we discuss briefly the participation ratio.

The numerics suggest that the instantaneous participa-
tion ratio does not seem to have a log-periodic structure,
but its time-average displays a log-periodicity (see fig.
(9)).
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FIG. 9: Time-averaged participation ratio for a triadic Cantor
spectrum (blue) ; lower-bound t− ln 2/ ln 3/ ln t (green) ; loglog
scale.

Conclusion

We identified the fingerprint of a self-similar spectrum
in the dynamics of a quantum system. Due to the scal-
ing symmetry of the spectrum, some physical dynamical
quantities are scaling functions, meaning they are of the
form : f(t) = tαGper(ln t) with α ∈ R and Gper periodic.
Thus, the scaling symmetry of the spectrum is visible in
dynamical quantities through the presence of a power-law
modulated by log-periodic periodic oscillations. Using
the Mellin transform, we derived the analytical expres-
sion of the time-averaged return probability C(t), which
is universal for any system with a Cantor spectrum. We
found that C(t) is asymptotically a scaling function, of
the form :

C(t) =t→∞ t−dKGC(ln t)

where dK = ln 2
ln 3 is the fractal dimension of the triadic

Cantor set and GC a periodic function which we calculate
exactly. This result is supported by numerical results
obtained recently for polaritons in a Fibonacci potential.

We gave a more thorough analysis in the case of
the tight-binding model, in which case the dynamics of
the system depend essentially on the Fourier transform

100 101 102 103
10−3

10−2

10−1

100

FIG. 10: Loglog scale graphs of f1,2(t) (green) and 1
2
f1,2(t/3)

(blue)

on a Cantor set of monomials xk, namely : hk(t) =∫
K
e−ixtxkdµ, k ∈ Z, which carry the fingerprint of the

spectral fractal feature. We showed that, in this model,
the time-average of the wave function has, asymptoti-
cally, the expression of a scaling function, which accounts
for the log-periodic behaviour of the time-averaged RMS
and participation ratio.

Appendix

Maxima of h0(t) for the triadic Cantor set

Using the sclaing symmetry of the spectrum :∫
k

f(x)dµ(x) =
1

2

∫
K

f
(x

3

)
dµ(x)+

1

2

∫
K

f

(
x+ 2

3

)
dµ(x)

(13)
we find that :

h0(t) =

∫
K

e−iεtdµ

=
1

2

∫
K

e−iεt/3dµ+
e−i2t/3

2

∫
K

e−iεt/3dµ

=
1 + e−i2t/3

2
h0(t/3)
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FIG. 11: Loglog scale graphs of |ψ(3, t)(t)|2 (green) and

t− ln 2/ ln 3 (blue)

By repeating this process, and using h0(0) =
∫
K

1dµ =
1, we find the exact expression of h0(t) :

h0(t) =
∏
k≥1

1 + e−i2t/3
k

2
(14)

thus :

|h0(t)| =
∏
k≥1

cos t/3k (15)

The derivative :

|h0(t)|′ = −
∑
k≥1

3−k sin t/3k
∏
j 6=k

cos t/3j (16)

is null for t of the form : t = mn,l = πn3l, with n ∈ Z
and l ∈ N∗.

Derivation of
∫∫
|x−x′|<π

t
xkx′ldµ(x)dµ(x′)

Let us note : rk,l(t) =
∫∫
|x−x′|<π

t
xkx′ldµ(x)dµ(x′).

We give a full analytical expression for rk,l(t) and show

100 101 102 103
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FIG. 12: Loglog scale graphs of 〈∆x2(t)〉 (blue) and
2〈∆x2(t/3)〉 (green)

that :

rk,l(t) = t− ln 2/ ln 3

[
G(ln t) +O

(
1

t

)]
We follow a similar method as for C(t).
First, we calculate the infinitesimal area dSk,l(u, µ),

which is the integral of xkyl, for the measure dµ, on the
two strips y = x+u and y = x−u (red strips on fig. 1) :

dSk,l(u, µ) =

∫
K

(xk(x+u)lθ(1−u−x)+xk(x−u)lθ(x−u))dµ(x)

To derive dSk,l(u, µ), we study the poles of its Mellin
transform and apply the residue theorem. The Mellin
transform is :

mk,l(s) =

∫ 1

0

us−1dSk,l(u, µ) =

∫∫
K×K

xkyl|x−y|s−1dµdµ

We now show by recurrence that the poles of mk,l(s) is
the set :

Sk,l = {1− ln 2

ln 3
− j +

2iπn

ln 3
; j ∈ [|0, k + l|], n ∈ Z}

Initialization :
m0,0(s) =

∫∫
K×K |x− y|

s−1 has been calculated for C(t)



12

and has poles at

S0,0 = {1− ln 2

ln 3
+

2iπn

ln 3
;n ∈ Z}

Inductive step :
using the symmetry of the measure, we find :

mk,l(s) =

∫∫
K×K

xkyl|x− y|s−1dµdµ

=
31−s−(k+l)

4

∫∫
K×K

xkyl|x− y|s−1dµdµ

+
31−s−(k+l)

4

∫∫
K×K

(x+ 2)k(y + 2)l|x− y|s−1dµdµ+Rk,l(s)

with

Rk,l(s) =
31−s−(k+l)

4

∫∫
K×K

(x+ 2)kyl|x− y + 2|s−1dµdµ

+
31−s−(k+l)

4

∫∫
K×K

xk(y + 2)l|x− y − 2|s−1dµdµ

which has no poles. Expanding the second term :

mk,l(s) =
31−s−(k+l)

4

∫∫
K×K

xkyl|x− y|s−1dµdµ

+
3−(k+l)

3s−14

k∑
i=0

l∑
j=0

(
k

i

)(
l

j

)
2k+l−i−j

∫∫
xiyj |x− y|s−1dµdµ

+ Rk,l(s)

=
31−s−(k+l)

2
mk,l(s)

+
31−s−(k+l)

4

k∑
i=1

l∑
j=1

(i,j)6=(k,l)

(
k

i

)(
l

j

)
2k+l−i−jmi,j(s) +Rk,l(s)

Thus, the poles of mk,l(s) is the set of the poles of
all the mi,j(s) with i ≤ k and j ≤ l, plus the set of

complex points {1− ln 2
ln 3 − (k + l) + 2iπn

ln 3 ;n ∈ Z}. Using
the induction hypothesis, we conclude that the poles of
mk,l(s) is the set :

Sk,l = {1− ln 2

ln 3
− j +

2iπn

ln 3
; j ∈ [|0, k + l|], n ∈ Z}

which completes the proof.
Now, we apply the inverse Mellin transform and use

the residue formula to find dSk,l(u, µ) :

dSk,l(u, µ) =
1

2iπ

∫ γ+i∞

γ−i∞
u−smk,l(s)ds

=

k+l∑
j=0

∑
n∈Z

cj,nu
j+α−1−2iπ/ ln 3

with α = ln 2
ln 3 and

cj,n,k,l = Rk,l

(
1− ln 2

ln 3
− j +

2iπn

ln 3

)
+

k∑
i=1

l∑
i′=1

i+i′ 6=j

(
k

i

)(
l

i′

)
2k+l−i−jmi,j

(
1− ln 2

ln 3
− j +

2iπn

ln 3

)

By integration, we obtain rk,l(t) :

rk,l(t) =

∫ 1/t

0

dS(u, µ)

=

k+l∑
j=0

∑
n∈Z

∫ 1/t

0

cj,n,k,lu
j+α−1−2iπ/ ln 3

= t−α
k+l∑
j=0

∑
n∈Z

cj,n,k,l
t−j+2iπn/ ln 3

α+ j − 2iπn/ ln 3

Thus :

rk,l(t) = t−α
[
G(ln t) +O

(
1

t

)]
with G(ln t) =

∑
n∈Z

t2iπn/ ln 3

α−2iπn/ ln 3c0,n,k,l.
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1 obtained by iteration of the following process : start with
a full square, divide it in 9 equal squares and keep only the

four at the corners of the initial square


