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Retarding subdiffusion and accelerating superdiffusion governed
by distributed-order fractional diffusion equations
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We propose diffusionlike equations with time and space fractional derivatives of the distributed order for the
kinetic description of anomalous diffusion and relaxation phenomena, whose diffusion exponent varies with
time and which, correspondingly, cannot be viewed as self-affine random processes possessing a unique Hurst
exponent. We prove the positivity of the solutions of the proposed equations and establish their relation to the
continuous-time random walk theory. We show that thedistributed-order time fractional diffusion equation
describes the subdiffusion random process that is subordinated to the Wiener process and whose diffusion
exponent decreases in time~retarding subdiffusion!. This process may lead tosuperslow diffusion, with the
mean square displacement growing logarithmically in time. We also demonstrate that the distributed-order
space fractional diffusion equation describes superdiffusion phenomena with the diffusion exponent increasing
in time ~accelerating superdiffusion!.
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I. INTRODUCTION

Recently, kinetic equations with fractional space and ti
derivatives have attracted attention as a possible tool for
description of anomalous diffusion and relaxation pheno
ena, see, e.g., Refs.@1–4# and references on earlier studi
therein. It was also recognized@5–9# that the fractional ki-
netic equations may be viewed as ‘‘hydrodynamic’’~that is,
long-time and long-space! limit of continuous-time random
walks ~CTRW! @10#, a model that was successfully applie
to describe anomalous diffusion phenomena in many ar
e.g., turbulence@11#, disordered media@12#, intermittent cha-
otic systems@13#. Kinetic equations have two advantag
over a random walk approach: first, they allow one to e
plore various boundary conditions~e.g., reflecting and/or ab
sorbing! and, second, to study diffusion and/or relaxati
phenomena in external fields. Both possibilities are diffic
to realize in the framework of CTRW.

There are three types of fractional kinetic equations:
first one, describing Markovian processes, contains equat
with fractional space or velocity derivative; the second o
describing non-Markovian processes, contains equat
with fractional time derivative; and the third class, natura
contains both fractional space and time derivatives, as w
However, all three types are suitable to describe time ev
tion of the probability density function~PDF! of a very nar-
row class of diffusion processes, which are characterized
a unique diffusion exponent showing time dependence of
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characteristic displacement~e.g., of the root mean square!
@1#. These processes are also called fractal, or self-affine
cesses, and are characterized by the exponentH, called the
Hurst exponent, which depends on the order of fractio
derivative in the kinetic equation. We recall that the stoch
tic processx(t) is self-affine, or fractal, if its stationary in
crements possess the following property@14#:

x~ t1kt!2x~ t !5
d

kH@x~ t1t!2x~ t !#, ~1!

wherek and H are positive constants. The sign5
d

implies
that the left and the right hand sides of Eq.~1! have the same
PDFs.

As a possible generalization of fractional kinetics, we p
pose fractional diffusion equations in which the fraction
order derivatives are integrated with respect to the orde
differentiation ~distributed-order fractional diffusion equa
tions!. They can serve as a paradigm for the kinetic desc
tion of the random processes possessing a nonunique d
sion exponent and hence, a nonunique Hurst exponent.
processes with a time-dependent Hurst exponent are beli
to provide useful models for a host of continuous and n
stationary natural signals; they are also constructed explic
@15–17#. Ordinary differential equations with distributed
order derivatives were proposed in the works by Cap
@18,19# for generalizing the stress-strain relation of inelas
media. In Refs.@20#, @21#, the method of the solution base
on the generalized Taylor series representation was propo
A basic framework for the numerical solution of distribute
order differential equations was introduced in Ref.@22#. Very
recently, Caputo@23# proposed the generalization of th
Fick’s law using the distributed-order time derivative.
©2002 The American Physical Society29-1
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II. DISTRIBUTED-ORDER TIME FRACTIONAL
DIFFUSION EQUATION

We write the distributed order time fractional diffusio
equation for the PDFf (x,t) as

E
0

1

dbtb21p~b!
]b f

]tb 5D
]2f

]x2 , f ~x,0!5d~x!, ~2!

wheret andD are positive constants,t is given in seconds
andD is given in units of cm2/sec,p(b) is a dimensionless
non-negative function, and the time fractional derivative
orderb is understood in the Caputo sense@24#,

]b f

]tb 5
1

G~12b!
E

0

t

dt8~ t2t8!2b
] f

]t8
. ~3!

If we set p(b)5d(b2b0), 0,b0<1, we arrive at time
fractional diffusion equation, whose solution is the PDF
the self-affine random process with the Hurst exponent eq
to b0/2. The PDF is expressed through the Wright functi
@25#. The diffusion process is then characterized by the m
square displacement

^x2~ t !&[E
2`

`

dx x2f ~x,t !5
2

G~b011!
Dt12b0tb0. ~4!

This formula provides the generalization of the correspo
ing formula for classical diffusion valid atb051. For
b,1, Eq. ~4! describes the process of slow diffusion,
subdiffusion.

Let us now prove that the solution of Eq.~2! is a PDF.
The derivation here parallels the method used in Ref.@26#,
see also Ref.@27#. Its aim is to show that the random proce
whose PDF obeys Eq.~2! is subordinated to the Wiener pro
cess. Returning to Eq.~2! and applying the Laplace and Fou
rier transforms in succession,

f̂̃ ~k,s!5E
2`

`

dx eikxE
0

t

dt e2stf ~x,t !, ~5!

we get from Eq.~2!

f̂̃ ~k,s!5
1

s

I ~st!

I ~st!1k2Dt
, ~6!

where

I ~st!5E
0

1

db~st!bp~b!. ~7!

We note that under the conditions described above the fu
tion I (st) is completely monotonic on the positive real ax
i.e., it is positive and the signs of its derivatives alternate.
rewrite Eq.~6! as follows:

f̂̃ ~k,s!5
I

s E0

`

du e2u@ I 1k2Dt#5E
0

`

du e2uk2DtG̃~u,s!,

~8!
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where

G̃~u,s!5
I ~st!

s
e2uI~st! ~9!

is the Laplace transform of a functionG(u,t) whose proper-
ties will be specified below. Now,f (x,t) can be written as

f ~x,t !5E
2`

` dk

2p
e2 ikxE

Br

ds

2p i
estE

0

`

du e2uk2DtG̃~u,s!

5E
0

`

du
e2x2/4pDt

A4puDt
G~u,t !. ~10!

The functionG(u,t) is the PDF providing the subordinatio
transformation, from time scalet to time scaleu. Indeed, at
first we note thatG(u,t) is normalized with respect tou for
any t. Using Eq.~9! we get

E
0

`

du G~u,t !5Ls
21E

0

`

duF I

s
e2uIG5Ls

21F1

sG51, ~11!

where Ls
21 is an inverse Laplace transformation. Now,

prove the positivity ofG(u,t), it is sufficient to show that its
Laplace transformG̃(u,s) is completely monotonic on the
positive real axis@28#. The last statement arises from th
observation thatG̃(u,s) is a product of two completely
monotonic functions,I /s and exp(2uI). The monotonicity of
the former is obvious, whereas the monotonicity of the lat
is an elementary consequence of the criterion 2 in Ref.@28#,
Chap. XIII, Sec. 4. Thus, we may conclude that the solut
of Eq. ~2! is a PDF, and that the random process, whose P
obeys a distributed-order time fractional diffusion equatio
is subordinated to the Gaussian process using operati
time.

III. SUBDIFFUSION WITH RETARDATION
AND SUPERSLOW DIFFUSION

Let us concentrate on the behavior of the second mom
of the PDF, that is, on the mean square displacement~MSD!.
Using Eq.~6!, we get

^x2&~ t !5H 2
]2 f̂ ~k,t !

]k2 J U
k50

52DtLs
21H 1

sI~st!J . ~12!

Consider two fractional exponents in Eq.~2!, namely, let

p~b!5B1d~b2b1!1B2d~b2b2!, ~13!

where 0,b1,b2<1, B1.0, B2.0. Inserting Eq.~13! into
Eq. ~12! we get, denotingb15B1tb1, b25B2tb2:
9-2
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^x2&~ t !52DtLs
21H 1

s~b1sb11b2sb2!J
5

2Dt

b2
Ls

21H s2b121

b1

b2
1sb22b1J . ~14!

Recalling the Laplace transform of the generalized Mitta
Leffler functionEm,n(z), m.0, n.0, which can be conve
niently written as@24#

Lt$t
nEm,n~2ltm!%5

sm2n

sm1l
, Res.xulu1/m, ~15!

we get from Eq.~14!,

^x2&5
2Dt

b2
tb2Eb22b1 ,b211S 2

b1

b2
tb22b1D . ~16!

To get asymptotics at smallt, we use an expansion, which i
in fact, the definition ofEm,n(z), see Ref.@29#, Chap. XVIII,
Eq. ~19!,

Em,n~z!5 (
n50

`
zn

G~mn1n!
, ~17!

which yields, in the leading order for the MSD,

^x2&'
2Dt

B2G~b211! S t

t D b2

}tb2. ~18!

For larget we use the following expansion valid on the re
negative axis, see Ref.@29#, Chap. XVIII, Eq. ~21!,

Em,n~z!52 (
n51

N
z2n

G~2mn1n!
1O~ uzu212N!, uzu→`,

~19!

which yields

^x2&'
2Dt

B1G~b111! S t

t D b1

}tb1. ~20!

Sinceb1,b2 , we have the effect ofdiffusion with retarda-
tion. We also note that the kinetic equation with two fra
tional derivatives of different orders appears quite natura
when describing subdiffusive motion in velocity fields@30#.
In this case the orders of derivatives areb andb21, so that
the situation differs from the one discussed above.

Now we consider a simple particular case which, in so
sense, is opposite to the cases considered above. Name
put

p~b!51, 0<b<1. ~21!

Inserting Eq.~21! into Eq. ~7! we get

I ~st!5
st21

ln~st!
, ~22!
04612
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and, using then Eq.~12!,

^x2&52DtH ln
t

t
1g1et/tE1S t

t D J , ~23!

whereg50.5772... is the Euler constant, and

E1~z!5E
z

`

dy
e2y

y
~24!

is the exponential integral. Using now the expansions va
on the positive real axis, see Ref.@31#, Eqs. ~5.1.11! and
~5.1.51!, respectively,

E1~z!52g2 ln z2 (
n51

`
~2z!n

nn!
, z→0 ~25!

and

E1~z!'
e2z

z (
n50

N

~21!n
n!

zn , z→`, ~26!

we get, retaining the main terms of the asymptotics at sm
and large times, respectively,

^x2&'H 2Dt
t

t
ln

t

t
, t→0

2Dt ln S t

t D , t→`.

~27!

Thus, at small times we have slightly anomalous superdi
sion, whereas at large times we havesuperslow diffusion.

The superslow diffusion, for which MSD grows logarith
mically with time, ^x2(t)&} lnnt, was observed in the Sina
model @32#, in aperiodic environments@33#, and in an iter-
ated map@34#. The superslow diffusion was also found n
merically in an area preserving a parabolic map on a cylin
@35#. Up to now, it was unclear, whether this type of anoma
~‘‘strong anomaly,’’ by terminology of Ref.@34#! can be de-
scribed within the framework of fractional kinetics. The e
ample presented above demonstrates that the distribu
order fractional kinetic equations can serve as a tool for
description of a strong diffusional anomaly.

The formula~27! can be generalized to the case

p~b!5H 1

b22b1
, 0<b1<b<b2<1

0, otherwise,

~28!

and*0
`db p(b)51. Inserting Eq.~28! into Eq. ~7! and then

into Eq. ~12!, we get

^x2&~ t !5
2Dt

b22b1
Ls

21H ln~st!

s@~st!b22~st!b1#J
52

2Dt

b22b1
H d

dd
Ls

21F s2d2b1

sb22b121G J S t

t D U
d51

.

~29!
9-3
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Recalling Eq.~15!, the MSD can be written as

^x2&5
2Dt

b22b1
S t

t D b2H lnS t

t DEb22b1 ,b211S S t

t D b22b1D
2S d

dd
Eb22b1 ,b21dS S t

t D b22b1D D U
d51

J . ~30!

Using Eq.~17!, we get an expansion for^x2& at smallt,

^x2&5
2Dt

b22b1
S t

t D b2

(
n50

` S t

t D n~b22b1!H lnS t

t D1c~„11b2

1n~b22b1!…%G21@11b21n~b22b1!#, ~31!

wherec(n)5d„ln G(n…/dn is the c function. At larget we
explore the asymptotics valid on the real positive axis,
Ref. @29#, Chap. XVIII, Eq. ~22!,

Em,n~z!5
1

m
z~12n!/m exp~z1/m!2 (

n51

N
z2n

G~n2mn!

1O~ uzu212N!. ~32!

Using Eq.~32!, Eq. ~30! takes on the form

^x2&'
2Dt

b22b1
S t

t D b1

(
n50

N S t

t D 2n~b22b1!H lnS t

t D2c„11b2

2n~b22b1!…J G21@11b22n~b22b1!#. ~33!

If we setb150, b251 in Eqs.~31! and~33!, then we arrive
at the same expansions that are obtained by inserting
~25! and ~26! into Eq. ~23!, respectively. In particular, the
leading terms of the series~31! and ~33! at b150, b251
coincide with Eq.~27!.

IV. RELATION TO THE CONTINUOUS-TIME RANDOM
WALK THEORY

The fractional diffusion equations with a given order
fractional time derivative are closely connected to the CTR
processes with the power-law distribution of waiting tim
between the subsequent steps@1,8#. Now we establish the
connection between the distributed-order time fractional
fusion equations and more general CTRW situations. Re
the basic formula of the CTRW in the Fourier-Laplace spa
@11#,

f̂̃ ~k,s!5
12w̃~s!

s

1

12 ĉ̃~k,s!

, ~34!

where w̃(s) is the Laplace transform of the waiting-tim

PDF w(t), and ĉ̃(k,s) is the Fourier-Laplace transform o
the joint PDF of jumps and waiting timesc(j,t). Assume
04612
e
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the decoupled joint PDF,c(j,t)5l(j)w(t), and that the
jump length variance is finite, that is, the Fourier transfo
of l~j! is

l̂~k!'12Dtk2 ~35!

to the lowest orders ink. Then, we consider the situations
which mean waiting time diverges, that is, at larget the
waiting time PDF behaves as

w~ t !'tb/t11b, 0,b,1, ~36!

and, consequently,

w̃~s!'12~st!b ~37!

at smalls. If b is constant, then inserting Eqs.~37! and~35!
into Eq. ~34! and making an inverse Fourier-Laplace tran
form, we arrive at the time fractional diffusion equatio
Now let us consider the case whenb fluctuates. Indeed, for
example, in the model called the Arrhenius cascade, whic
inspired from studies of disordered systems, the uniqub
appears only under the assumption that the random trap
time is related to the random height of the well by t
Arrhenius law@36#. In a more realistic model, this law give
only the average value of the trapping time. Thus, we m
speculate that in order to take into account the fluctuation
the trapping time, we can introduce the conditional PDF

w~ tub!'tb/t11b, ~38!

and the PDFp(b), as well. Now, we have the relation

w~ t !5E
0

1

dbp~b!w~ tub!, ~39!

where@0;1# is the whole interval for variations ofb. We note
that all waiting-time distributions withb>1 correspond to a
similar behavior described by the first-order derivativ
Then, for thew̃(s) we have, instead of Eq.~37!,

w̃~s!'12E
0

1

db~st!bp~b!, p~b!>0, E
0

1

dbp~b!51.

~40!

Inserting Eqs.~40! and ~35! into Eq. ~34! we arrive at Eqs.
~6! and ~7!. Thus, we see that the weight functionp(b) has
the meaning of the PDF.

The model with fluctuatingb is, of course, only one of the
possible interpretations of Eq.~39!: the nonexact power-law
behavior of the waiting-time PDF can physically have ve
different reasons. In particular, the representation~39! allows
us to considerregularly varying waiting-time PDFs, i.e.,
those which behave asw(t)}t212bg(t) at t→`, where
g(t) is a slowly varying function, e.g., any power of lnt @28#.
We are also able to consider waiting-time PDFsw(t) that
show an approximately scaling behavior with the expone
changing with time. For such distributions the effective PDF
p(b) can be determined, and thus such nonperfectly sca
CTRWs can be described through distributed-order diffus
9-4
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equations. The formal inversion of Eq.~39! can follow by
noting thattw(t) taken as a function of lnt is the Laplace
transform of the function

f~b!5H tbp~b!, 0<b<1

0, 1,b,`.

Indeed,

tw~ t !5E
0

`

db f~b!t2b5E
0

`

db f~b!exp~2b ln t !

5Lb$f~b!%~ ln t !.

The functionf~b! is thus given by

f~b!5Lu
21$euw~eu!%.

The value oft can then be found through the normalizati
condition *0

`f(b)t2b51, which then defines the functio
p(b). The description of the process through the distribut
order diffusion equation is possible whenever this function
non-negative and concentrated on 0<b<1.

V. DISTRIBUTED-ORDER SPACE FRACTIONAL
DIFFUSION EQUATION

Now we turn to another type of fractional equatio
namely,distributed-order space fractional diffusion equatio
which, in dimensional variables, takes on the form

] f

]t
5E

01

2

da D~a!
]a f

]uxua
, f ~x,0!5d~x!, ~41!

whereD is a ~dimensional! function of the order of the de
rivative a, and the Riesz space fractional derivative]a/]uxua

is understood through its Fourier transformF̂ as

F̂S da f

]uxuaD52ukua f̂ . ~42!

If we setD(a)5Ka0
d(a2a0), then we arrive at the spac

fractional diffusion equation, whose solution is a Le´vy stable
PDF of the self-affine stable process whose Hurst expon
is equal to 1/a0 . The PDF is expressed in terms of the Fox
H function @37,38#. In the general caseD(a) can be repre-
sented as

D~a!5 l a22DA~a!, ~43!

wherel ~in centimeters! andD ~in cm2/sec! are dimensional
positive constants,A is a dimensionless non-negative fun
tion of a. The equation that follows for the characteris
function from Eq.~41! has the solution
04612
-
s

nt

f̂ ~k,t !5expH 2
Dt

l 2 E
0

2

da A~a!~ uku l !aJ . ~44!

Note that the normalization condition

E
2`

`

dx f~x,t !5 f̂ ~k50,t !51 ~45!

is fulfilled.
Consider the simple particular case

A~a!5A1d~a2a1!1A2d~a2a2!, ~46!

where 0,a1,a2<2, A1.0, A2.0. Inserting Eq.~46! into
Eq. ~44! we have

f̂ ~k,t !5exp$2a1ukua1t2a2ukua2t%, ~47!

where a15A1D/ l 22a1, a25A2D/ l 22a2. The characteristic
function ~47! is the product of two characteristic functions
the Lévy stable PDFs with the Le´vy indexesa1 , a2 , and the
scale parametersa1

1/a1 anda2
1/a2, respectively. Therefore, the

inverse Fourier transformation of Eq.~47! gives the PDF
which is the convolution of the two stable PDFs,

f ~x,t !5a1
21/a1a2

21/a2t21/a121/a2

3E
2`

`

dx8La1,0S x2x8

~al t !
1/a1DLa2,0S x8

~a2t !1/a2D ,

~48!

whereLa(x) is the PDF of the symmetric Le´vy stable law
possessing the characteristic function

L̂a,0~k!5exp~2ukua!. ~49!

The PDF given by Eq.~48! is, obviously, positive, as the
convolution of two positive PDFs. The PDF will be als
positive, if the functionA(a) is represented as a sum ofN d
functions multiplied by positive constants,N is a positive
integer. Moreover, ifA(a) is a continuous positive function
then discretizing the integral in Eq.~41! by a Riemann sum
and passing to the limit we can also conclude on the pos
ity of the PDF.

VI. SUPERDIFFUSION WITH ACCELERATION

Since the mean square displacement diverges for the L´vy
stable process, the anomalous superdiffusion can be cha
terized by the typical displacementdx of the diffusing par-
ticle @39#,

dx }^uxuq&1/q, ~50!

where^uxuq& is theqth absolute moment of the PDF obeyin
Eq. ~41!. For the stable process with the Le´vy index a

^uxuq&5H C~q;a!tq/a, 0,q,a,2

`, q>a,
~51!
9-5
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where the coefficient

C~q;a!5
2

pq
~Kat !q/asinS pq

2 DG~11q!GS 12
q

a D
~52!

was obtained in Ref.@39#. To evaluate theqth moment for
the case given by Eq.~46!, q,a1 , we use the following
expression, see e.g., Ref.@40#:
ac

c
th
th
h
e

th
ed

l.

a

04612
^uxuq&5
2

p
G~11q!sinS pq

2 D E
0

`

dk~12Re f̂ ~k,t !!2q21.

~53!

We insert Eq.~47! into Eq. ~53! and expand in series eithe
exp(2a1 ukua1t) or exp(2a2ukua2t), with subsequent integration
overk. As the result, for theqth moment we have expansion
valid at q,a1 and for small and large times, respectively
^uxuq&5
2

pq
~a2t !q/a2 sinS pq

2 DG~11q!GS 12
q

a2
D H 11

q

GS 12
q

a2
D

3 (
n51

`
~21!n11

a2n!
a1

na2
2na1 /a2GS na12q

a2
D tn~12a1 /a2!J , t→0, ~54!

^uxuq&'
2

pq
~a1t !q/a1sinS pq

2 DG~11q!GS 12
q

a1
D H 11

1

GS 12
q

a1
D

3 (
n51

N
~21!n11

a1n!
a2

na1
2na2 /a1GS na22q

a1
D t2n~a2 /a121!J , t→`. ~55!
the
f im-

ul
ect
he
the
.
for
One can see, that at small times the characteristic displ
ment grows ast1/a2, whereas at large times it grows ast1/a1.
Thus, we havesuperdiffusion with acceleration.

VII. CONCLUSIONS

In summary, we believe that the distributed-order fra
tional diffusion equations can serve as a useful tool for
description of complicated diffusion processes, for which
diffusion exponent can change in the course of time. Furt
investigations are needed to establish the connection betw
proposed kinetics and multifractality. On the other hand,
development of numerical schemes for solving distribut
e-

-
e
e
er
en
e
-

order kinetic equations and for modeling sample paths of
random processes governed by these equations is also o
portance.
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