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Critical wave functions and a Cantor-set spectrum of a one-dimensional quasicrystal model
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The electronic properties of a tight-binding model which possesses two types of hopping matrix
element (or on-site energy) arranged in a Fibonacci sequence are studied. The wave functions are ei-
ther self-similar (fractal) or chaotic and show "critical" (or "exotic") behavior. Scaling analysis for
the self-similar wave functions at the center of the band and also at the edge of the band is per-
formed. The energy spectrum is a Cantor set with zero Lebesque measure. The density of states is

singularly concentrated with an index ae which takes a value in the range [cte'",az'"]. The fractal
dimensions f(ae) of these singularities in the Cantor set are calculated. This function f(ae)
represents the global scaling properties of the Cantor-set spectrum.

I. INTRODUCTION

There is much current interest in quasiperiodic struc-
tures. These systems are intermediate between the com-
pletely periodic perfect crystals and the random or disor-
dered amorphous solids. Undoubtedly, a major push to-
ward understanding them was given by the experiments of
Shechtman et al. ,

' which seem to show some evidence for
a quasicrystal in the material Alo 86Mno &4. The theoreti-
cal understanding of these structures is based on the non-
periodic tiling of the two-dimensional plane first intro-
duced by Penrose and described by Gardner. The papers
of de Bruijn are probably the most complete investigation
in print. ' The first suggestion that a Penrose tiling
might serve as a model for a physical system was made by
MacKay. ' A particularly simple quasicrystal structure
is obtained by projecting a higher-dimensional lattice.

Electronic properties of the two-dimensional Penrose
lattice were studied by several groups. ' ' Kohmoto and
Sutherland' found localized states which are infinitely
degenerate at the center of the spectrum. These states are
localized due to the lattice topology and form rings of
various dimensions (ring states).

A one-dimensional version of quasicrystals can be ob-
tained by projecting a two-dimensional square lattice onto
a line. For a choice of angle between the line and an edge
of the square lattice whose tangent is an inverse of the
golden mean P '=(v 5 —1)/2, we obtain a Fibonacci lat-
tice which is quasiperiodic or, more precisely, almost
periodic. The separation of successive lattice points in the
Fibonacci lattice takes one of the two values A and B.
The sequence of A's and B's is the Fibonacci sequenceS, which is constructed recursively as follows:
SJ+&——ISJ &, S~. I for j&1 with So ——I13I and S~ ——IA I.
An alternative method for constructing the Fibonacci se-
quence is to use the "inflation" transformation A ~B'A',
B~A'. It is easy to check that S~ with A and B is
transformed to SI+ &

with A ' and B', hence, the two

tt. + i+ tt. t+ l'. tt. =Ett. , (1.2)

where the potential V„ takes two values arranged in the
Fibonacci way. This equation was actually studied by two
groups' before the discovery of the tenfold Bragg pat-
tern by Shechtman et al.

Although it seems that there is no simple transforma-
tion between (1.1) and (1.2), Kohmoto and Banavar ' ob-
tained a renormalization-group (RG) equation for (1.1)
which is the same as the one originally obtained by
Kohmoto, Kadanoff, and Tang' (KKT) and Ostlund,
Pandit, Rand, Schellnhuber, and Siggia for (1.2). There-
fore, we would expect the same properties in the localiza-
tion problem (energy spectrum, wave function, etc. ) for
the two models. The tight-binding model (1.1) was also
studied numerically by Lu, Odagaki, and Birman, Nori
and Rodriguez, and Fujita and Machida. The vibra-
tional problem for the one-dimensional quasicrystal was
studied using the KKT renormalization-group method in
Ref. 21 and by Luck and Petritis. These models are ex-
amples of the almost periodic Schrodinger equation,
which has been of considerable interest to mathemati-
cians as well as to physicists.

The Cantor-set spectrum for the quasiperiodic model
has a rich structure. In fact, it has scaling properties
which come from criticality of the system. For the locali-
zation problem, there are three types of wave functions:

methods above produce the same Fibonacci sequence.
A natural, and the simplest, model for electronic prop-

erties of the one-dimensional quasicrystal is a tight-
binding equation

tn+ lttn+1+ n0n —I 0n r

where g„denotes the wave function at the nth site and

I t; I is the Fibonacci sequence with two kinds of hopping
matrix elements t„and tz. This is an off-diagonal ver-
sion of an almost periodic Schrodinger equation,
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localized (normalizable), extended (unnormalizable), and
critical. These three types of wave functions uniquely
correspond to point, absolutely continuous, and singular
continuous spectra, respectively. Therefore, the spectral
property determines the type of wave function.

Kohmoto and Ostlund and Pandit' studied local scal-
ing of the spectrum of a quasiperiodic model which is
known to have a transition between localized and extend-
ed states. ' (This model is called Harper's equation or al-
most Mathieu equation. } These works show that existence
of scaling for a spectrum intrinsically comes from a criti-
cality, i.e., a singular continuous spectrum. Recently,
Tang and Kohmoto investigated the global scaling prop-
erties of the spectrum for the above model. They used the
method of Halsey, Jensen, Kadanoff, Procaccia, and
Shraiman which was originally applied to the analysis of
fractal sets appearing at the onset of chaos.

In this paper we investigate the one-dimensional quasi-
crystal model. Scaling aspects of the energy spectrum and
the electronic states are emphasized. Strong evidence is
presented for the spectrum being purely singular continu-
ous. For this type of a spectrum, wave functions are
"critical" or "exotic" and are neither localized nor extend-
ed in a standard fashion.

In Sec. II the KKT method to obtain the Cantor-set
spectrum using a dynamical map is explained. In order to
obtain the wave function, we need further analysis of the
renormalization-group equation. This is discussed in Sec.
III ~ The critical wave functions are analyzed in Sec. IV,
and Sec. V contains the global scaling analysis of the
Cantor-set spectrum. Section VI is a summary.

E —V~ —1

(2.4)

and

E —Vg —1

(2.5)

Let us define MJ by

M~ =M(F) )M(FJ —1) . M(2)M(1) (2.6)

where F& is a Fibonacci number given by a recursion rela-
tion FJ-+I Fj+Fj I for j) 1 with F0 ——FI ——1. The ma-
trix MJ generates a wave function at the Fibonacci num-
ber site. Since a Fibonacci sequence is constructed as
SJ+~——ISJ ~, S&. I for j) 1 with SD ——IB I and S& ——IA ], it
can be shown that MJ obeys

M~+i ——Mq IMJ for j & 1, (2.7)

with M0 ——M~ and M, =M, .
The matrix recursion relation (2.2) can be regarded as a

kind of renormalization-group equation. Recall the
second and equivalent way to construct a Fibonacci se-
quence by the inflation A ~B'A ', B~A '. The transfer
matrix is transformed as MJ(A, B)~MJ+&(A', B'), where
M~(A, B) is a product of the E~ transfer matrices of Mz's
and Mz's being arranged in a Fibonacci sequence, and
MJ + ~(A ',B') is defined similarly.

Once MJ is calculated, a wave function at a Fibonacci
number site is obtained as

II. RENORMALIZATION-GROUP METHOD
OF KOHMOTO, KADANOFF, AND TANG

PF +1

0F,
=MJ (2.8)

A. Diagonal model

The (discrete) almost periodic Schrodinger equation
(1.2) can be written as

=M(n)
'Pn —1

(2.1)

where M(n) is a transfer matrix,

M(n) =
E —V„—1

0 (2.2)

Successive applications of the transfer matrices give
values of the wave function at arbitrary sites as

0%+1
=M(X)M(X —1) M(2)M(1) . (2.3)

N 0

Therefore, solving the Schrodinger equation is completely
equivalent to calculating products of transfer matrices.

For the Fibonacci lattice, the potential V„ take two
values V~ and V~, and the sequence of M(n)'s is a Fi-
bonacci sequence with two matrices

In this section we review the KKT method which is
applied to the diagonal model (1.2) and the off-diagonal
model (1.1). (See also a parallel work of Ostlund et al. )

In order to obtain an energy spectrum, we look for ener-
gies where corresponding solutions g„do not grow ex-
ponentially. This leads to a condition that the modulous
of the eigenvalue of Mj should be unity as j~ ao. Note
that Mj depends on an energy E. Since the determinant
of M& is unity (unimodular), the condition for F. to be in
the spectrum is that

~

TrMJ
~

(2 or, in a relaxed version,
that TrM& is bounded as j~ oo, where Tr is a trace of a
matrix.

The matrix recursion relation (2.7) can be considered to
be a discrete dynamical system (mapping). Since M~ is a
real 2&&2 matrix with unit determinant (SL(2, R )), three
real numbers are needed to specify Mz. Hence (2.7) is a
six-dimensional mapping. As we will see later, a constant
of motion exists for this map and the dimensionality is ac-
tually reduced to 5. A five-dimensional mapping is a very
complicated problem to study. As explained above, the
energy spectrum is determined from the behavior of a
projection of an orbit in five dimensions to a trace of Mj.
Once a five-dimensional orbit giving a bounded TrM& is
found, then the corresponding energy is in the spectrum
and the wave function is obtained from the five-
dimensional orbit.

Here we state a key theorem which enables us to merely
study a two-dimensional dynamical system to determine
the spectrum. Moreover, as will be seen in the next sec-
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tion the reduced dynamical system dictates the full!
dynamical system.

Th ' C nsider a set of matrices Mj E SL(SL(2 R)eorem, . o
or SL(2, C), jH Z, which satisfies MJ+, ——MJ ~ ~, t en

TrMj+ &
——TrMj TrMj &

—TrMJ

A f hown in the Appendix. To our knowledgeproo is s
this rather surprising and simple property of a set o
unimodular matrices was not known previously.

Define

from the four noncompact manifolds. This is an unphysi-

electronic problem concerned. However, recent y u
1 d t d out that dynamics of a spin under a quasi-
periodically pulsed magnetic field is described y e
mapping with —1 & I &0.

B. Off-diagonal model

The tight-binding equation (1.1) is written as

1

xj ———, TrMj,

then the theorem implies

(2.9)

with

=M(n + l, n)
n —1

(2.17)

(2.10)X ) =2XjXj )
—Xjj+

and the initial condition for this reduced subdynamical

system can be taken as

E/t„+ &

—t„/t„+ &

M(n + l, n) =
0 (2.18)

x, = 1, x 0
——(E —Vp ) l2,

and

xi ——(E —V~)/2 . (2. 1 1)

B defining a three-dimensional vector r~ = (xj,y~, z~ )

) (2.10) and (2.11) are alternatively writ-=(xj)x~+),xq+p,
ten as

This roblem is a little bit more complicated than the pre-is pro em i

vious diagonal model since the transfer matrix . e-trix (2.18) de-
d t bonds n and n + l. [Compare with (2.2).)

of RGHowever, it is possible to obtain the same type o
21equation.

First note that there are three types of transfer ma-
trices,

E/4 —1

r)+ )
——F(r) ),

with an initial condition

E —Vg E —Vq
—1 (x —1 y —1 ~ —1)

(2.12)

(2.13)
and

1 0

—4/tw
0

where F is a nonlinear map in three dimension explicitly
given by

E/t~ —tg /tg

0 (2.19)

and

xj,——y, y, =z On the other hand, we would like to have two types of

Zj+ )
=2+jzj —Xj (2.14)

The mapping (2 10) or (2.11) has a constant of motion

2 2 2 (2.15)I =xj +yj +zj 2xj+jzj-

By a direct substitution using (2.3), it can be shown that I
is indeed independent of j. The initial condition (2.11)
gives the value of I to be

I = —.( V~ —~a)1 2 (2.16)

lues of the11 s that the difference of the two values
s it shouldotential is a key parameter of this problem as it s ou

be, and it remains invariant under the RGh RG transformation.
Th t t of motion I determines a two-dimensionale cons an
manifold on which an orbit remains. The mani o
noncom pact orf I 0 An example is shown in Fig.
At I =0, the middle part of the manifold becomes corn-

h the four noncompact manifolds at a
single point, respectively. This case corresponds to
V~ = Vz and the model is simply a periodic (wit period
1) one-band mo e an ed 1 d th complete solution is available
rather trivially. or

'
ll . F I 0 the middle part is detached

FIG. 1. Example of the manifolds for I =0.2. There are six
saddle points, B C D, E, and F. The points B, D, and F
are located at the antipodal positions of E, 2, and C, respective-
ly. These points are the six-cycle of the trace map.
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and (2.20)

A=BA .

Two important observations here are the following: (i)
Both of the two basic bond units B and A begin with a
bond A and (ii) a single bond is used twice in a string of
transfer matrices consisting of MA&, M», and M~A.
Guided by these, we define

matrices to have a simple recursion relation. The Fi-
bonacci sequence does not allow two consecutive bonds of
type B, and so M&A is always followed by MA&. Instead
of bonds B and A, we choose a bond A (which follows B)
and two consecutive bonds BA to be basic units for the
off-diagonal Fibonacci lattice. Since (A, BA) and (B,A)
are related by the inflation transformation, one may write
symbolically

mon value of trace are related to each other by such a
Lorentz transformation. Once an orbit of the trace map is
known, a corresponding orbit of the full matrix map is
constructed by Lorentz transformations. This observation
is extremely useful when we analyze wave functions
which correspond to cycles of the trace map. It turns out
that we need only one additional matrix which represents
Lorentz transformation to produce a full orbit of the ma-
trix map from a cycle of the trace map.

The transfer matrices are elements of SL(2, E ), the set
of all real, 2&2 matrices with determinant 1, and hence
invertible. If A, B are two matrices in SL(2, E), then
when we multiply on the left by a third matrix in
SL(2, E ), we have

A, B'~A', B'=C A CB .

Considering the Killing form (B A)=Tr(B 'A)/2 as a
scalar product, we see that it is invariant under both left
and right multip1ication.

Let us introduce a basis for the 2&& 2 matrices as

and (2.21) 7p= 1, %1 =lcd, 1 2=0z, +3=~x ~ (3.1)

M A
—MAgMgA .

Now, we have only two types of transfer matrices and it is
evident from the way they are defined above that a
transfer matrix Mj representing a wave function at a Fi-
bonacci number site F& is given recursively as

Tr(ro)/2=1, while Tr(r~)/2=0, j=1,2, 3 .

Also,

(3.2)

where crz are the Pauli spin matrices. Thus the 'Tj are real.
We note

Mj+1 ——Mj

with an initial condition

(2.22) (70) = —(ri) =(r2) =(73) = 1

The multiplication rules are

(3.3)

M2 M A MABMBA

(2.23}

+1+2— +3 — +27 1~ 72+3 —+1 = 7372

V3 T1 — 72 — 7 1 T3 ~

Then we can write a general matrix A in SL(2, E ) as

(3.4)

The initial condition for the trace map xj+1:2xjxj—xj 2 is given by

1 ta tA 1 E
X 1= +, Xp=

2 tA tg 2

A =y~o+a1z1+ a 2~2+ a 3%3 (3.5)

The coefficients are obtained by projecting out on the ~'s
using the scalar product. The condition that the deter-
minant is 1 translates into the following condition on the
coefficients:

and
y +a1a1 —a2a2 —a3a3 —1

2 (3.6)
1 E

X1 =
2

(2.24)

The constant of motion (2.15) is
2

1 4I=—
4 tA tg

(2.25)

III. STRUCTURE OF THE TRANSFER MATRICES

It was shown in Sec. II that the trace map is sufficient
to obtain the energy spectrum. In order to obtain the
wave functions, however, we need solutions of the full
matrix map. In this section, the structure of the transfer
matrices is investigated. We emphasize the "Lorentz"
transformation of the transfer matrices which leaves a
trace unchanged. Different matrices which have a com-

This suggests that we parametrize the coefficients as

y =cosh(0} cos(y), a
~

——cosh(0) sin(y),

az ——sinh(0) cos(1(), a3 ——sinh(0) sin(g) .
(3.7)

The range of parameters is rr & y & vr, —m & P & F-,
0&0. Thus, the parameter space of y, P has the topology
of a torus. When 0~0, then the torus degenerates into a
circle with the single coordinate y; this corresponds to the
invariant I of the trace map equal to zero.

The scalar product becomes

(B,A ) =xy +b, a, —bzaz —b3a3 boao+b. a . (3.8——)
We have introduced a notation where the bold letter a
represents a Lorentz three-vector with timelike com-
ponent a1 and spacelike components a2, a3. Then the
Lorentz invariant scalar product b-a between Lorentz
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three-vectors is given by

b-a=b&a
&

—b2a2 —b3a3 (3.9)

equivalent by a Lorentz transformation to the original
pair (BI„At, ), or

Note that the "length"
I
a

I
of a is variable, since (Bt+g At+g)=T(Ba Aa)T (3.13)

a a= lal =aial a—2a2 a3a32= = 2 (3.10)

Tr(A )/2=y, Tr(B)/2=x,
and thus are preserved under a Lorentz transformation.
Furthermore,

Tr(8 A )/2=yx —a b=z .

Since x,y and a.b are each Lorentz invariants, the trace of
the product is a Lorentz invariant. (This could also have
been shown directly. )

Furthermore, these three invariants are a complete set
for the matrix pair (B,A). By a complete set of invari-
ants, we mean that if we have another matrix pair,
(8', A ') with the same invariants, then there exists a
unique Lorentz transformation L (up to parity) which will
bring the two pairs into alignment:

(8', A ') =L (8,A )I. (3.12)

We make use of this observation in the following way.
Suppose we find a Q-cycle of the trace map. Since the

traces of three consecutive matrices repeat, this means
that the Lorentz invariants of two consecutive matrices,
say, B~+~ ——M~+~ &

and AI, +& ——MI, +&, repeat as well.
Thus, the Q-times-iterated pair (Bt, +g, At, +t3) is

In particular, a can be either timelike or spacelike, as

I y I
& 1 or & 1. Given the length

I
a

I

& 1, we can deter-
mine y up to a sign by y =+(1—

I

a
I

)' . Therefore, up
to the sign of y, we may parametrize the element 3 by a,
writing A(a). The sign of y we call the parity P(A ) of A.

This emphasis on Lorentz invariance is important, and
the previous consideration is not simply a parametrization
for convenience, for if we consider the Lorentz transfor-
mation of SL(2, R ), they are given as transformations of
the form

A(a)~A'=C(c)A(a)C '(c) =A(a') =A [L(c)a], (3.11)

where L(c) is the three-dimensional Lorentz transforma-
tion with parameter c. These Lorentz transformations
preserve the Lorentz scalar product b.a, and thus the
three-lengths a.a=

I
a

I

. In particular, the ambiguity in
the sign of co is not important, for either choice leads to
the same Lorentz transformation L(c), much in the same
way as the relation between SU(2) and the rotations O(3)
is two-to-one. Furthermore, the Lorentz transformations
preserve the sign or parity of ao. Thus P(A ) and

I
a I, or

equivalently ao, constitute a complete set of invariants of
an element 3 under Lorentz transformations. Finally, we
emphasize that the Lorentz transforrnations include one-
dimensional rotations about the a& axis„as well as boosts
along a two-dimensional velocity vector in the (a2, a3)
plane.

The traces of matrices previously introduced in this pa-
per have a simple relationship to these Lorentz invariants,
for

Since the matrix dynamics is invariant under Lorentz
transformations, if two points on an orbit of the matrix
map a distance Q apart are equivalent by a Lorentz
transformation T, then all pairs of points on the orbit a
distance Q apart are equivalent by the same Lorentz
transformation T. Therefore, we emphasize the impor-
tant point that this Lorentz transformation T is the same
for all k.

Therefore, an invariant set of the matrix map corre-
sponding to the Q-cycle of the trace map is the set of all
distinct pairs of matrices T"(Bt„At,)T ", for all integer
n, and k =1,2, . . . , Q. These sets lie within the Q one-
parameter submanifolds T"(Bt„At,)T ", where the pa-
rameter n is now any real number. More complicated in-
variant sets of the trace map than Q-cycles can likewise be
treated.

We now show how the Lorentz transformation is deter-
mined. Suppose we have a matrix pair (B,A). Apart
from an arbitrary Lorentz frame, it is specified by the set
of three Lorentz invariants, which we take to be
x =Tr(8)/2, y =Tr(A )/2, and z =Tr(8 A )/2 and
denote collectively as the parameter r = (x,y, z). We
choose our Lorentz frame to bring the matrix pair into a
standard alignment, which we take as

0+b1+1+b2+2 bl, b2 & 0,
(3.14)

yro+airi, if Iy I
&1,

yro+a3r» if
I y I

»

( BA') =S[r]( [8r'], A[r'])S '[r] . {3.15)

In words, we start with a pair (8[r],A[r)) in standard
alignment, so that after iteration the pair (8', A') is com-
pletely determined by the parameter r; in particular, the
parameter r' is determined by r through the trace map.
But furthermore, the orientation of the pair (B',3 ') is also
determined uniquely by r, so the Lorentz transformation
S needed to bring the pair (8', A ') into the standard align-
ment (B(r'),A(r')) is uniquely determined by r. This
dependence of S on r we write as S[r]. It is not a
Lorentz transformation L(r) with parameter r; that is
why we denote it by the symbol S[ ] instead of L ( ).

We write this initial pair, in standard alignment, with pa-
rameter r as (B[r],A[r]). The notation is as follows: A
pair (8[r],A [r]) will always denote a matrix pair, in stan-
dard alignment, with parameter r. The brackets are to
distinguish the pair with parameter r from a matrix A (a)
labeled by the Lorentz three-vector which is not in stan-
dard alignment in general. This notation will be followed
in the rest of the paper.

We now iterate the matrix map once to give the new
matrix pair (8', A') = (A,B A ) with parameter r', which is
the old parameter r iterated once by the trace map. This
new matrix pair is not in standard alignment. It can,
however, be brought into standard alignment by a Lorentz
transformation S, so that
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Now, by repeating this procedure each time, as we
iterate the matrix map k times, we obtain

(Mk+~, Mk)=S[r~] . . S[rk](B[rk+&],A[rk+&])

XS [rk] ' ' S [ri1 . (3.16)

The orbit of the trace map is (. . . ,rk, rk ~, . . . , r2, r~).
Thus if we have a Q-cycle of the trace map, so that

r~+ &

——r&, then we can make the identification

T=S[r,] $[r~] . (3.17)

This expression must be invariant if we translate along the
orbit of the trace map.

To summarize then, we have demonstrated the follow-
ing structure and dynamics for the transfer matrices: The
time evolution of the matrices consists of the evolution of
the traces by the trace map, followed by a Lorentz
transformation. Furthermore, the Lorentz transformation
is completely determined by the trace map alone. Thus,
the matrix dynamics is integrable, and we need only con-
centrate our attention on the trace dynamics.

IV. SELF-SIMILAR WAVE FUNCTIONS

FIG. 2. Band structures of (1.1) with t& ——1 and t& ——2.
These are periodic approximations and become a better approxi-
mation to the Cantor-set spectrum as one goes to the right.

This relation is for the sites with a wave function having
increasing peak values which are encountered sequentially
as n is increased. (See Fig. 4.) On the other hand, a(A. )

describes how a measure (defined below) is concentrated
spatially:

S(n)= n a(A. ) (4.2)

Equipped with the (RG) analysis of the transfer ma-
trices described in Secs. II and III, we are ready to under-
stand the critical wave functions. We analyze two impor-
tant wave functions, at the center of the band and the
edge of the bands, respectively. They correspond to the
six-cycle and two-cycle of the trace map, respectively. It
is shown that wave functions corresponding to a cycle of
the trace map indeed have a self-similar structure, and
consequently, they are fractal.

We define two exponents /3 and a(A, ) to characterize
these wave functions. An exponent /3 describes a power-
law behavior of an envelope of a wave function as

(4.1)

exact solution of the off-diagonal model (1.1) at E =0.
For the diagonal model (1.2), we need to find a stable
manifold of the six-cycle of the dynamical map. A par-
ticular value of E which is close to zero puts an initial
point on the stable manifold. This initial point flows into
the six-cycle. Thus the wave function corresponding to
this orbit is governed by the six-cycle at length scales
larger than some distance which is determined by the flow
rate of the orbit into the six-cycle.

The six-cycle governs the wave function of not only the
center of the band but also each center of subcluster of
any energy scale in the Cantor-set spectrum. This proper-
ly comes from the Smale horseshoe structure in the trace
map. '

The matrix six-cycle (1.1) is explicitly given by

0 —1' —e' 0
M( ——

) 0, M2 —— g

m& ~n —nO~

where no is a site where a wave function has the max-
imum value in the neighborhood. When k=2, the mea-
sure

~ P ~

represents a probability for an electron to be
at a site m. We consider general values for A, in a later
analysis.

e
—0 0

M4 ——

e-' 0
0 e g, M6 ——

(4.3)

A. %'ave function at the center of the band

The six-cycle (O, y, 0,0, —y, 0) of the trace map dom-
inates the behavior of the wave function at the center of
the band. ' ' See Fig. 2 for an example of the spectrum.
Actually, the full matrix map also has a six cycle.
Therefore, we have a special case where the Lorentz
transformation described in Sec. IV is unity. Moreover, it
is pointed out in Ref. 21 that the six-cycle represents an

It is easy to check using (2.19) and (2.23) that this six-
cycle represents an exact solution of the off-diagonal
model (1.1) at E =0 with e =tz/t~.

An exponent /3 has been calculated in Ref. 21 and is
given by

P=
~

in(t~/t~ )
~

/in/ =
~

8
~

//nP (4.4)

where P=(V 5+ I)/2 is the golden mean. The reason for
a power-law behavior of the wave function is basically
that
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M3M6 ——

—28 0
0 28

has an eigenvalue which is greater than unity. Hence,
even if the wave function does not grow and only takes
the values +1,+e-+ at Fibonacci sites, it grows as a
power law at non-Fibonacci sites.

Let us calculate a(k). For the sake of simplicity, we
denote

and

B~M j
——M~

A M~ ——M—.
(4.5)

We note the relations 8 =(BA) = —1. These are the de-
fining relations of a discrete group generated by B and A.
Any element g of the group can be written as

g(q, r)=8~A', q =0, 1,2, 3

and (4.6)

r =. . . , —2, —1,0, 1,2, 3, . . . .

Therefore, after we have moved down the lattice n steps,
we need only give the coordinates (q, r) to specify the ele-
ment g of the group, and hence the transfer matrix
M(n) =g.

The quantity we wish to calculate is P (g
~

n) defined as
the number of times M(m) is equal to g(q, r) asI =1,2, . . . , n. %'e shall calculate this quantity by in-
flating n through the Fibonacci numbers, so that starting
from a single matrix A, n takes the values
F3/ + I,k =0, 1,2, . . . . The inflation scheme we use is a
symmetric, two-step similarity transformation of the in-
finite lattice, given by

(4.7)B~B'=ABA, A ~A ' =ABABA .
However, using the defining relations of the group, we

can rewrite these as
B~B'=ABA =8, A ~A'=ABABA = —A . (4.8)

Thus, after an inflation, the point n on the lattice has
moved considerably further down the lattice, to a point
n ', but the matrix M(n) is equal to M (n '), up to a possi-
ble sign change. The sign change depends on whether the
original expression for M(n) contained an even or an odd
number of A' s. But since both the defining relations of
the group, and the inflation transformation only change
the number of A 's by an even number, we can write the
following: If M (n) =g (q, r), then M (n ') =g (q +2r, r).
(Addition for q is modulo 4.)

Clearly it is easier to not even keep track of n and n' at
all, but instead to simply keep track of the number of
M(n) that takes the value g(q, r), since these values are
invariant under inflation. However, inflation does intro-
duce many additional matrices; that is the advantage of
the inflation transformation. Thus, suppose we have
M (n) and this is followed by 8 to give
M(n + 1)=8M(n). Then after inflation, we have
M(n') =+M(n), but this is followed by A, then 8, and fi-
nally by A before we arrive at +M(n ++1)=+8M(n),
the image of M(n) under inflation.

The point is, we need to keep track not only of which

P(g, a;k+1)= g gdT(g, a ~g', a')P(g', a';k) .
g' a'

(4.10)

The equations are considerably simplified by our previous
observation that g(q, r) can only change by at most a sign,
reflected in the parity of q.

The result of multiplying g(q, r) by either 8 or A is
found from the defining relations to be

Bg(q, r)=g(q+1, r), Ag(q, r)=g(q, r+( —1)~) .

(4.11)
We are now ready to determine the coefficients in the

evolution equation by answering the following question:
Suppose we have a transfer matrix g(q, r) and the next
matrix is B, what happens after inflation? %'e symbolize
this situation as a "step" (q, r, B) In place .of 8, after in-
flation we have ABA, so we have the steps

(q +2r, r, A), (q +2r, r +( —1)~,B),
(q+2r+l, r+( —1)',A) .

These all make a contribution to the evolution equation.
On the other hand, if we have a transfer matrix g (q, r)

and the next matrix is A, the step is (q, r, A). Then after
inflation, the single step is replaced by five steps:

(q +2r, r, A), (q +2r, r + ( —1)~,B),
(q +2r + l, r +( —q)~, A ), (q +2r + l, r, B),
(q+2r+2, r, A) .

These then are all the contributions to the evolution equa-
tion.

Collecting together all of these contributions to a given
step (g, a) =(q, r, a) after inflation, we find for the evolu-
tion equation

P(q, r,B;k +1)=P(q —2R —2, r —( —1)~,8;k)
+ P(q —2r —2, r —( —1)~,A;k)
+ P(q —2r —l, r, A;k),

P(q, r, A;k + 1)=P(q —2r, r, A;k) (4. 12)

+ P(q —2r + 1,r —( —1)~,A;k )

+ P(q —2r 2, r, A;k)+P(q ——2r, r,B;k)

+P(q 2r+ 1,r —( —1)—~, A;k) .

element of the group we visit, but also of the matrix by
which we will multiply this element next. Thus, we are fi-
nally led to define the quantity P(g, a;k) as the number of
times M(n) takes the value g =g (q, r), with the next ma-
trix being a =A or B, after having inflated k times. Of
course, we must also specify the initial conditions —what
the lattice was before inflation. We expect, however, that
P approaches a limiting form independent of initial condi-
tions. As we shall see, this is the case. The connection
with the previous distribution is that

P(g
~ +3/+ I ) = g P(g, a;k) (4.9)

a

assuming the inflation starts with the single matrix A.
Next, we write a linear, Markov equation for the evolu-

tion of this distribution under inflation; i.e., we determine
the coefficients in the equation
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These equations are very easy to iterate. We find that
the results are not sensitive to initial conditions. Most im-
portantly, all distribution functions are found to iterate to
a scaling form

[1—&O/»(P')]',
~

A, O
~

&1n(P ),
a(A, ) = '0, A, O & ln(P ),

—4A, O/in(P ), XO (—ln($6) .

(4.23)

P(q, n, a;k)~Pq (z) exp[kf (z)],
with the scaled variable z being given by

—1(z =r/k & 1 .

(4.13)

(4.14)

[However, the singularities are due to the approximation
used for f (x), and will not be present in an exact calcula-
tion, as explained in the Note added in proof ].

The scaling function f(z) is well fit by the expression

f (z) =31n(P)(1—z ), (4.15)

where p is the golden mean, given by p=(v 5+1)/2.
(However, see the Note added in proof at the end of this
paper. )

If we take as our initial wave function for the transfer
matrices either of the two choices

B. Wave function at the edge of the band

Consider a two-cycle of the trace map
x~y~x~y~-

y =J —(J —J)'
(4.24)

1
0+= 0

0
(4.16)

then

M(n)g+ g+(n) =——g (q, r)P+ 8~A "g+——e 'B——~g+ (4.1-7)

and thus

~
P+(n)

~

=e-" (4.18)

To summarize, the distribution of transfer matrices
P (g

~

n ) gives us the distribution of wave functions as
well, and this distribution function approaches the same
universal scaling limit.

After inflation k times, we have a lattice of length
F3/ + I ~P ". The maximum value of the wave func-

tions is e; let us normalize the wave function to this
value, so that

~
g+(n)

~

=e
%'e now calculate a quantity which we expect to scale

as a power of the length of the lattice,
A. a(A, )

m(n
(4.19)

1

&& f dz P(z) exp[kf (z)+kzAO] . (4.20)

Since k is large, this integral can be evaluated by saddle-
point methods, which essentially consist in finding the
maximum zo of the exponential in the interval —1 to l.
Then we have

n ' '=expIk [zokO+ f (zo) —AO]], (4.21)

where n~P ". Substituting the scaling expression for
f(z), we find

r

XO/ln(P ), j iEO~ &ln(P ),
zo —— 1, A.O) ln($ ), (4.22)

—1, AO& —ln(P ) .

Finally, we have as our expression for a(A, ),

This quantity can be expressed in terms of our distribu-
tion functions as

QP(g
~

n)e '"-' e

J =[3+(25+16I)' ]/8, (4.25)

where I is the constant of motion given by (2.16) or (2.25).
We note that x & 1 and y & 1, and the energy which gives
an orbit on the stable manifold of this two-cycle is the
largest in the spectrum. Thus the wave function corre-
sponding to the two-cycle represents the state at the edge
of the spectrum.

Let Mi (j =0, 1,2, . . . ) be the orbit of the full dynami-
cal map corresponding to the trace map. Then,

x for j =0,2,4, . . . ,

y for j =1,3, 5, . . . .

As explained in Sec. III, these matrices are related by a
Lorentz transformation

(4.26)

M,-+,=TM, T-' .

Consider a series of matrices

(4.27)

MpM2Mg . Mp (Mo T) T™——, (4.28)

rn =1,2, 3, . . . . The larger eigenvalue of these matrices
grows algebraically and the envelope of the wave function
is determined at the sites F2, F2+F4, F2+F4+F6, . . . .
Thus an exponent p is calculated once T is determined.
Unfortunately a calculation of T is tedious and it does not
have a compact form. Therefore, we present data for p
numerically calculated from the formula.

The results of a numerical evaluation of the explicit
formula are shown in Fig. 3. The growth of the wave
function at the selected sites F2+F4+ +F2
where m =1,2, 3, . . . , is the peak number and is deter-
mined by the maximum eigenvalue of the corresponding
transfer matrix MOM& Mq of (4.28). This maximum
eigenvalue grows exponentially with the peak number and
depends upon the value of the invariant I. In Fig. 3 we
show the dependence by plotting the logarithm of the
maximum eigenvalue of the transfer matrix of (4.28) di-
vided by the peak number m, as a function of the invari-
ant I, for values of m =1,2, . . . , 10; these are the lower
curves in Fig. 3. The upper curve is the exact calculation
of the limiting behavior, as calculated by the formalism of
Sec. III. Obviously the fit is excellent and the approach to
the limiting curve at I =0 is nonuniform. The connection
with the exponent P is P ln(P ) =ln(maximum eigen-
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value)/(peak height). Thus, Fig. 3 can represent P by
simply changing the vertical scale by a factor of 1/ln(P ).

C. Numerical results for the wave functions

In order to calculate a wave function numerically, we
first need to specify an energy in the spectrum. Since the
energy spectrum is a Cantor set with zero Lebesgue mea-
sure, ' ' it is impossible, in principle, to specify an energy
in the spectrum numerically. And also we do not expect a
smooth change of behavior of a wave function as the ener-

gy is varied in the spectrum. Equivalently, two wave
functions look different at a sufficiently long distance
length scale no matter how small the energy difference.
(This property may have important relevance to quantum
chaos. ) Therefore, we need a careful treatment of numeri-
cal calculations based on the knowledge of the Cantor-set
spectrum which comes from the KKT renormalization-
group method.

The energy spectrum is divided into three subclusters at
each hierarchical step of partition. (See Fig. 2.) There-
fore, a point in the spectrum is specified by an infinite se-
quence of symbols 1, 0, and 1, where 1 represents an
upper subcluster; 0, a middle subcluster; and 1, a lower
subcluster. The sequence IC„j with C„=O for all the
positive integers n represents the center of the band and
we have the six-cycle wave function discussed in Sec.
IVA. Also the sequence [C„j with C„=1 (or 1) for all
the positive integers n represents the edge of the band and
we have the two-cycle wave function of Sec. IV B.

In Fig. 4 the wave function at the middle of the band
E =0 is shown. This wave function corresponds to the
six-cycle and has a code [0,0,0, . . . j. In the successive
figures, the sites are rescaled around the peak. The self-
similarity of the wave function is clearly seen.

The wave function at the edge of the band is shown in
Fig. 5. This wave function corresponds to the two-cycle
and has a code [1,1, 1, . . . j. The self-similarity is clearly
seen in the figures. The quantity S(n) which represents
the concentration of the measure [see (4.2)] with A, =1 for
this wave function is plotted in Fig. 6. The scaling form
of (4.2) is supported by the linear behavior in this lnS(n)

V. GLOBAL SCALING PROPERTIES
OF THE ENERGY SPECTRUM

Local scaling of a spectrum can be defined as follows.
Let E and E+AE both be in the spectrum. If the in-
tegrated density of states behaves as

D(E+bE) D(E) —(bE) —as bE~O, (5.1)

we say that the spectrum has scaling at E with a scaling
index u~.

In Ref. 19, aE is calculated exactly at the center of the
band from the fixed-point analysis of the six-cycle and is
given by

a~(center) = In/ /lne6,

where P is the golden mean (v 5+ 1)/2, and

e, = [ [1+4(1+ I)'] '~'+ 2(1+ I) j
'

(5.2)

(5.3)

versus inn plot. An analytical study of the index a(A. ) for
this wave function has not yet been performed.

An interesting wave function which has a code
[1,1, 1, 1,0,0,0,0, 0, . . . j is shown in Fig. 7. The trace
map corresponding to this wave function starts near the
stable manifold of the two-cycle and then makes a cross-
over to the stable manifold of the six-cycle. Therefore, it
looks similar to the six-cycle wave function at a large
length scale [comparing Fig. 7(a) with Fig. 4], but it looks
similar to the two-cycle wave function at a small length
scale [compare Fig. 7(c) with Fig. 5]. Note that this wave
function is at an energy which is only about 10 away
from the edge.

Finally, we present an example of wave functions which
have a code of random sequence. In Fig. 8, a wave func-
tion with a code {0,1, 1, 1,0, 1, 1,0j is shown from 0 to
F2&

——17711. At this range, the rest of the code does not
influence the shape of the wave function. The concentra-
tion of the measure S(n) is plotted in Fig. 9. Although
there is no apparent scaling„ the wave function does not
seem to be totally random. The understanding of this
type of wave function in relation to quantum chaos still
remains as an important unsolved problem.

E

cU
4&
C4

1

Cb
bD

(cj

E
0

I - invariant

a~(edge) =in/ /lnc2,

where

(5.4)

c.,= [8J —1+[(8J—1)'—4]'~2j/2

with

J=[3+(25+16I)'~ ]/8

(5.5)

is the eigenvalue of the linearized equation around the
six-cycle. The constant of motion I is given in (2.16) or
(2.25).

Since the edge of the spectrum is governed by the two-
cycle, a& is obtained exactly there and given by

FIG. 3. Logarithm of the maximum eigenvalue of the
transfer matrix (4.28) by the peak number rn versus the invari-
ant I, for values m =1 to 10 and the exact limiting curve. The
exponent P is obtained from this curve by dividing by In/ .

is the eigenvalue of the linearized equation around the
two-cycle.

The center of each subcluster also has scaling with the
index aE(center). A point of this type is coded by [C„j
(n =1,2, 3, . . . ) with C; =0 for i &IV, where X is an in-
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55

FIG. 4. Wave function at the center of the spectrum E =0 of (1.1) with t& ——1 and t& ——2. The portion around the maximum limit-

ed by the two arrows in {a) is rescaled and shown in (b). (c) and (d) are rescaled in the same procedure.

teger. (See Sec. IVC.) Also an edge of a subcluster is
coded by a I C„ I with C; = 1 (or 1) for i & N. The number
of these points is infinite, but is only countably infinite.
Since the number of elements in the Cantor-set spectrum
is uncountably infinite, we expect much richer scaling
than that being represented by the indices a~(center) and
aE(edge).

It turns out that every point in the spectrum has scaling
and a scaling index takes a value in a range [aP'",aP'"],
where the maximum value is a~(center) and the minimum
value is aE(edge). The centers are the most rarefied re-
gions and the edges are the most dense regions. There are
infinitely many points in the spectrum which have a given
scaling index ez. A set of these points is fractal and

given a fractal dimension f(aE). The fractal dimension

f (aF ) is a kind of measure of density of points with an
index az. As a function of az, f(aF) is smooth and
represents global scaling properties of the spectrum. Since
the number of points with a~'" ——aE(edge) and
az'" ——az(center) is only countably infinite, the fractal di-
mension f (a~) vanishes there and is positive in between.

Let us calculate f(az) following Ref. 33. First we
make a partition of the spectrum. In Sec. II it is shown
that the spectrum for the quasiperiodic model is given by

l
xJ(E)! (1 as j~oo. [See (2.9), (2.10), and (2.11).] If

we apply this condition for a finite j, the resulting set of
E represents a spectrum of a periodic system with period
F~. As j is increased, this spectrum becomes a better ap-
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DUDE:11111.. . 11. . . CCfDE:11111.. . 11. . .
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CHOP =11111.. . 11. . . COTE:11111.. .. i 1. . .

(c)

CUTE:11111.. . 11. . .

(e)

89

FICy. 5. Same as Fig. 4 for the wave function at the edge of the spectrum E =2.833 956 5.
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FIG. 6. Function S(n) [see (6.2)] for the wave function at the
edge of the spectrum of (1.1) with t~ = 1 and t& ——2.

CUD': 11110000

proximation of the Cantor-set spectrum. We use a spec-
trum of the periodic system as a jth partition of the
Cantor-set spectrum.

For a fixed j, the spectrum consists of I'J bands.
Denote a bandwidth of the ith band by (b,E); Each ba.nd
contains the same number of density of states (measure)
P; = 1/FJ. . Define a partition function by

I qr)=
i (bE; )'

and also a; by

P; =(AE;) ' .

The partition function has a limit

I ( q, r) = lim I )(q, r),
J~ oo

(5.6)

(c)

IIII MILL

CODE=11110000

987

which is either zero or infinity unless ~ is chosen ap-
propriately for a given value of q. Therefore, the condi-
tion I (q, r)=1, for example, specifies a function r(q). It
is argued in Ref. 33 that o.; has a definite limit az asj~~ and the fractal dimension for a set of points having
a given value of az is related to r(q) by a Legendre
transformation

f (a~) = r(q)+qa~ . — (5.9)

In addition, it is conjectured in Ref. 32 that the ex-
istence of f (a~) is a condition of a singular continuous
spectrum. For an absolutely continuous spectrum which
corresponds to extended states, the scaling is "trivial, "
namely, the f aF curve consists of a point f= 1, a~ ——1

and a point f =0, a~ ———,
' . The point f (1)= 1 represents a

measure (density of states) that does not have singular
concentration. The point f ( —,

'
) =0 represents remnants of

Van Hove singularities whose number is at most count-
FIG. 7. Same as Fig. 4 for the wave function at

E =2.833 023 89 (code= I 1, 1, 1, 1,0,0,0,0, . . . I ).
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FIG. 8. Non-self-similar wave function at E =0.267 958
(code= [0, 1, 1, 1,0, T, 1,0, . . . I ).

FIG. 9. Function S(n) for the non-self-similar wave function
of Fig. 8.

ably infinite. For a point spectrum, a measure is more
singularly concentrated than those represented by (5.7).

The f aE curve for t-he present model (1.1) is calculated
using a condition

I j(q, r)/I J (q, r) =1
for sufficiently large values of j and j'. This condition is
numerically more efficient than the condition

lim I J(q, r)=1 .
J~ oo

In Fig. 10 an example of f (aE) computed from a condi-
tion I I2/I » ——1 is shown together with the exact values
of aE'" and aE" from (5.2) and (5.4). The maximum of
f (aE) is a Hausdorff dimension of the Cantor-set spec-
trum. For all the values of coupling (ts/t„=e ) treated,
we obtained a similar f (aE ) curve. However, exact
shapes of the curves depend on the coupling. This numer-
ical work gives a strong support to the conjecture that the
spectrum of the one-dimensional quasicrystal is singular
continuous and the scaling properties depend on the cou-
pling. This is an analogous situation to the low-
temperature phase (Kosterlitz-Thouless phase) of the
two-dimension LY model.

in relation to quantum chaos remains an important un-
solved problem.

The energy spectrum is shown to be a Cantor set with
infinitely many types of scaling. There are infinitely
many points in the spectrum for a given type of scaling.
The fractal dimension for those points is numerically
determined. As a by-product of this analysis, the Haus-
dorff dimension of the spectral set is obtained.

The existence of scaling properties of the wave func-
tions and the energy spectrum shown in this work is con-

CJ. 7

0. 2

VI. SUMMAR Y

The electronic properties of a one-dimensional quasi-
crystal are studied. The wave functions at the center of
the band and the edge of the band are investigated by the
scaling analysis based on the KKT renormalization-group
method. The fractal nature (or self-similarity) and other
critical properties of these wave functions are well under-
stood. Also, the existence of non-self-similar wave func-
tions is shown. An analysis of this type of wave function

FIG. 10. f as curve for the Cantor-set -spectrum of (1.1)
with t& ——1 and t& ——2. + denotes the exact values of aE'" and

maxaz
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sistent with the conjecture that the spectrum of the quasi-
periodic model is purely singular continuous, irrespective
of the coupling constant. The scaling indices change con-
tinuously as the coupling constant is varied.

cVote added in proof A.fter this paper was accepted for
publication, one of the authors (B.S.) succeeded in calcu-
lating exactly the scaling function, as well as the exponent
tz(A. ), for the six cycle. The results agree quantitatively
very well with the numerical results in this paper. How-
ever, qualitatively they differ in that the exact result has
no singularities at the point

~

X9
~

=ln(P ). This differ-
ence arises because of the difficulty in determining from
the numerical results whether the scaling function in fact
vanishes with a large but finite slope, or whether it van-
ishes faster than linearly. These new results are suffi-
ciently involved that they will be published as a separate
paper.
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APPENDIX: DERIVATION OF THE TRACE MAP

Let us regard the recursion Mj+ &

——Mj &Mj as the
transformation (A B)~(A',B') with

3 =ye+a &~&+a&~&+a2~z+a373

8 =xylo+ b
& T~ +b27 2+ b3T3,

(A2)

y —a.a —1, x +b.b= 1 (A3)

which make the determinants of 3 and B unity. Here the
scalar product of three-vectors is defined as

a a=a&a& —a2a2 —a3a3

b-b=b)b) —b2b2 —b3b3
(A4)

Thus the transformation (Al) represents a map in a six-
dimensional space. Let us pick three coordinates x, y,
and u =a b =a

&
b

&

—a 2hz —a 3b3 out of six. It turns out
that (w, x,y) uniquely determines (w', x',y'). Straightfor-
ward matrix multiplication gives

w'=yw+x(1 —y ), x'=y, y'=yx —w . (A5)

Since Mj &

——B, Mj ——3, and Mj+ ~

——Mj ~Mj, we have
TrMj + ] x ' =y =TrMj, and x = —, TrMj &

~ From
(A5) we have

where 7o, 7~, ~p and ~3 are related to the Pauli matrices.
[See (3.1)—(3.4).] The space of A and B are parametrized
by eight numbers (x,y, a~, b t ta2, bz, a3,b3), but we have
two constraints

3'=B3, B'=3, (Al)
TrM +z ——2y" =2(y'x' —w')

where 3, B, A ', and B' are 2 & 2 matrices with unit deter-
minant. We represent them as

=2(2yy' —x)

=TrM~+, TrM& —TrMJ, , Q. E.D.
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