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We derive the analytical expression of the time-averaged correlation function of a quantum system
in the case of a triadic Cantor set energy spectrum. We generalize the method used and discuss
the connection between the presence of scaling symmetries in physical systems and the typical log-
periodic behaviour of some quantities. As examples, we discuss the case of the participation ratio
and of the RMS displacement for a triadic Cantor set spectrum, as well as the spontaneous emission
for a two level atom coupled to a self-similar fractal spectrum. We also present some numerical
results obtained recently for polaritons in a Fibonacci potential with an associated Cantor like
spectrum, which support the theoretical results.

I. INTRODUCTION

During the past decades, there has been a growing in-

terest for Schroedinger operators H = − ~2

2m∆ + V (r)
with a Cantor set like spectrum, e.g. a perfect, nowhere
dense set (for a review, see [1], and more recently [2]). In
the context of quantum dynamics for systems verifying
such a Hamiltonian, a typical behaviour for some physical
quantities, such as the auto-correlation function (time-
averaged return probability), has been identified. More
precisely, it has been shown ([3],[4]) that, in the case of a
Cantor set spectrum, the auto-correlation function C(t)

decreases as : t−D
µ
2 , where Dµ

2 is a correlation dimension
with respect to the measure µ of the spectrum, although
a full analytical expression had not been derived so far.
A slightly different quantity, the spatial correlation func-
tion Cs(l, µ) =

∫
K×K

θ(l − |x− y|)dµ(x)dµ(y), with θ the

Heaviside function, K the spectrum and dµ the measure
associated to the K, has been derived more precisely for
a Cantor set spectrum ([5]), showing that this quantity
is a power law tdK (dK being the fractal dimension of the
Cantor set) modulated by log-periodic oscillations.

We recently studied numerically the auto-correlation
function for a gas of cavity polaritons placed in a Fi-
bonacci potential and with a Cantor set like energy spec-
trum [6]; we found in this case that C(t) has a log-
periodic behaviour.

In this paper, we study the dynamics of a quantum sys-
tem whose energy spectrum is described by a self-similar
measure µ, e.g. such that there exists a set of contractive
similarities {φj} and probability weights {πj} such that
for any continuous function f , one has :∫

f(x)dµ(x) =
∑
j

πj

∫
f(φj(x))dµ(x)

We shall focus on the case of a set of two linear similari-
ties, with π1 = π2 = 1

2 :∫
f(x)dµ(x) =

1

2

∫
f(a1x) +

1

2

∫
f(a2x+ b)

Cantor sets are examples of such spectra, and occur in
many cases. We will therefore analyse in detail the case

of a triadic Cantor set ; we shall derive the exact analyt-
ical expression of the auto-correlation function C(t), and
show that it is of the form :

C(t) =

(
t

τ

)−dK
g(ln(t/τ))

where dK = ln(2)
ln(3) is the fractal dimension [7] of the triadic

Cantor set, τ a time scale a g a periodic function.
We first give a detailed calculation of C(t), then dis-

cuss its behaviour and the similarity with numerical re-
sults obtained with the Fibonacci cavity. Furthermore,
we will generalize the method, which is in fact appropri-
ate for the study of systems described by a self-similar
measure (fractals), and gives an intuition of how the frac-
tal properties translate through these quantities or func-
tions. We will finally discuss a few examples in quantum
dynamics.

II.

A triadic Cantor set is constructed as follows :
start with a segment [0,εmax], divide it in three equal
parts, and remove the central one, e.g. the segment
[εmax/3, 2εmax/3], then repeat the process with the two
remaining segments, and so on. After an infinite number
of iterations, we are left with a set of separated points,
of zero Lebesgue measure.

In this paper, K will denote a triadic Cantor set con-
structed from [0, 1].

We now consider a one dimensional quantum system
described by the state vector |ψ(t)〉 and evolving with the

Hamiltonian H = − ~2

2m
d2

dx2 + V (x). We assume that the
energy spectrum of H is a triadic Cantor set. Note that,
since all Cantor sets are homeomorphic to the triadic
Cantor set ([17]), the results and methods can be adapted
to any Cantor set spectrum.

The system is initially in a state described by |ψ(t =
0)〉 = |ψ0〉. After a time t, the state vector |ψ(t)〉 is given
by :

|ψ(t)〉 = e−iĤt/~|ψ0〉
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We shall also use the spectral decomposition of |ψ(t)〉
over an orthonormal basis of eigenfunctions {|φ(ε)〉} of
H,|φ(ε)〉 being the eigenfunction associated with the en-
ergy ε :

|ψ(t)〉 =

∫
spectrum

g(ε)e−iεt/~|φ(ε)〉dµ̃(ε)

where g(ε) is the projection of |ψ0〉 on |φ(ε)〉, and dµ̃ a
measure defined on the spectrum.

To go further, we need to define an appropriate mea-
sure on the spectrum. The triadic Cantor set K has a
zero Lebesgue measure. However, in our case, the inte-
grated density of states, e.g. the integral of ρ(ε) over the
spectrum K (we shall generalize to the case of an infinite
Cantor set later), is non zero. Thus, ρ(ε) must be infinite
in every point of K.

We define a measure dµ on K, such that the integrated
density of states N (ε) is given by :

N (ε) =

∫
K

θ(ε− ε′)dµ(ε′)

with θ the Heaviside function. We furthermore suppose
that the density of states is uniform.

Without the loss of generality, we suppose that the
integral of dµ over K equals 1 :

∫
K
dµ = 1. We then

proceed iteratively : starting from a segment [0, 1], we set
ρ(ε) = 1 everywhere ; the integral thus equals 1. Now,
divide the segment in three, remove the central part and
define ρ(ε) to be equal to 3

2 on [0, 13 ] and [23 , 1], and null

on [ 13 ,
2
3 ]. We still have :

∫ 1

0
ρ(x)dx = 1. We repeat this

process infinitely, and thus define dµ as a limit : for any
function f defined on [0, 1], the integral of f over K is :

∫
K

f(x)dµ(x) = lim
n→∞

(
3

2

)n ∑
ajn∈Pn

∫ ajn+3−n

ajn

f(x)dx

where {Pn} is the set of the left edges of the remain-
ing segments after n iterations in the construction of the
Cantor set.

One can show (see annexe) that dµ verifies the follow-
ing important property :

∫
K

f(x)dµ(x) =
1

2

∫
K

f
(x

3

)
dµ(x)+

1

2

∫
K

f

(
x+ 2

3

)
dµ(x)

(1)

This property still holds for multiple integrals ; it be-
comes, for a double integral :
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FIG. 1: Integrated density of states (IDOS) in the case of
a triadic Cantor set energy spectrum. The energies are ex-
pressed in arbitrary unit and the IDOS has been normalised.

∫
K×K

f(x, y)dµ(x)dµ(y)

=
1

4

∫
K×K

f
(x

3
,
y

3

)
dµ(x)dµ(y)

+
1

4

∫
K×K

f

(
x+ 2

3
,
y

3

)
dµ(x)dµ(y)

+
1

4

∫
K×K

f

(
x

3
,
y + 2

3

)
dµ(x)dµ(y)

+
1

4

∫
K×K

f

(
x+ 2

3
,
y + 2

3

)
dµ(x)dµ(y)

III.

Let us now study the dynamics of the system described
in the previous paragraph. There are several physical
quantities which are useful to characterize the evolution
of the system, such as the RMS displacement, the par-
ticipation ratio or the auto-correlation function.

We will focus here on the auto-correlation function,
then discuss briefly the participation ratio and the RMS
displacement.

The auto-correlation function, or time averaged return
probability, C(t), is by definition the time average of the
probability p(t) = |〈ψ(0)|ψ(t)〉|2 to find the system in its
initial state after a time t :

C(t) =
1

t

∫ t

0

|〈ψ(0)|ψ(t′)〉|2dt′

We could directly try to calculate p(t) to study the evo-
lution in time of the system ; however this quantity of-
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ten exhibits fast local oscillations, which could hide the
effects of the fractal feature of the spectrum. Its time
average, on the other hand, yields interesting results, as
we shall see.

We start with the spectral decomposition of |ψ(t)〉 :

|ψ(t)〉 =

∫
spectrum

g(ε)e−iεt/~|φ(ε)〉dµ̃(ε)

The first step is to obtain an integral over K, with a
dimensionless variable, in order to use the measure intro-
duced earlier.

We impose that |ψ(t)〉 is normalized to unity :

〈ψ(t)|ψ(t)〉 =

∫
spectrum

|g(ε)|2dµ̃(ε) = 1

This implies that |g(ε)|2 →ε→∞ 0. We will therefore
assume that |g(ε)|2 is non-zero only for a finite number of
triadic Cantor sets, and that it is constant on these sets.
By construction, a finite union of triadic Cantor sets is
also a triadic Cantor set embedded in a larger segment,
say of - Lesbesgue - measure εmax, which without loss
of generality we will assume to originate at zero. Let us
note Kεmax this new set, obtained from K by applying
a dilatation of factor εmax. We can make the change of
variable : λ = ε/εmax with λ ∈ K and define a new
measure :

dµ̃εmax(λ) = |g(ε)|2dµ̃(λεmax)

Assuming that |g(ε)| is uniform, we can consider that
dµ̃εmax(λ) is the measure dµ introduced in the previous
paragraph. To alleviate the notations, we shall now write
: dµ̃εmax = dµ.

Thus :

C(t) = 1
t

∫ t
0
|〈ψ(0)|ψ(t′)〉|2dt′

= 1
t

∫ t
0
|
∫
Kεmax

|g(ε)|2e−iεt′/~dµεmax(ε)|2dt′

A standard calculation then leads to :

C(t) =

∫
K×K

sinc((λ′ − λ)εmaxt/~)dµ(λ)dµ(λ′)

We now make the change of variables : u = εmaxt
~ :

C(t) = C(u) =

∫
K×K

sinc((λ′ − λ)u)dµ(λ)dµ(λ′)

The idea is now to transform this double integral into
a one variable integral, and then to use Mellin transform
and the scaling property (1) of dµ.

Let us do the change of variables : l = |λ′ − λ|, 0 ≤
l ≤ 1, and let dS(l, µ) be the surface (in the sense of dµ)
of the 2 dimensional Cantor dust1 contained in the two
strips of infinitesimal width located at λ = λ′ + l and
λ = λ′ − l (fig. 1).

FIG. 2: 2 dimensional Cantor dust (represented here at the
second step of construction) ; the infinitesimal surface dS(l, µ)
corresponds to the surface of the Cantor dust, in the sense of
dµ, contained in the two red strips.

Since sinc((λ′ − λ)t) can be considered constant on
these strips, we obtain :

C(u) =

∫ 1

0

sinc(lu)dS(l, µ) (2)

We now have to determine dS(l, µ). For this we shall use
Mellin transforms.

Let : MdS(s) =
∫ 1

0
ls−1dS(l, µ) ≡

∫ 1

0
ls−1 dS(l,µ)dl dl be

the Mellin transform of dS(l, µ), which is sometimes re-
ferred to in the literature as the energy integral ([5], [8])

(note that we wrote
∫ 1

0
and not

∫∞
0

: dS(l, µ) is defined
on [0, 1], but can be extended on [0,∞[ if we define it as
equal to 0 outside [0, 1]).

Now, using the definition of dS(l, µ) and the property
(1) :

MdS(s) =

∫ 1

0

ls−1dS(l, µ)

=

∫
K×K

|x− y|s−1dµ(x)dµ(y)

=
1

4

∫
K×K

(
|x
3
− y

3
|s−1 + |x+ 2

3
− y + 2

3
|s−1

)
dµ(x)dµ(y)

+
1

4

∫
K×K

(
|x
3
− y + 2

3
|s−1 + |x+ 2

3
− y

3
|s−1

)
dµ(x)dµ(y)
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MdS(s) =
31−s

2

∫
K×K

|x− y|s−1dµ(x)dµ(y)

+
31−s

2

∫
K×K

|x− y + 2|s−1dµ(x)dµ(y)︸ ︷︷ ︸
γ(s)

Thus :

MdS(s) =
γ(s)

1− 31−s/2

with γ(s) = 31−s

2

∫
K×K |x− y + 2|s−1dµ(x)dµ(y).

The inverse Mellin transform then gives dS(l,µ)
dl :

dS(l, µ)

dl
=

1

2iπ

∫ γ+i∞

γ−i∞
MdS(s)l−sds

=
1

2iπ

∫ γ+i∞

γ−i∞

γ(s)

1− 31−s

2

l−sds

It is important to note that γ(s) has no poles. It is clear
from its definition :

γ(s) =
31−s

2

∫
K×K

|x− y + 2|s−1dµ(x)dµ(y)

Since for all x, y ∈ [0, 1], the inequality 1 ≤ 2−x+ y ≤ 3
holds, |x−y+2|s−1 is well defined and bounded on K×K
for any s ∈ C, and thus γ(s) is well defined and has no

poles. The only poles of γ(s)

1− 31−s
2

l−s are the {sn}n∈Z such

that : 1 − sn = ln(2)
ln(3) + 2iπn

ln(3) . We now apply the residue

theorem :

dS(l, µ)

dl
=
∑
n

[
s− sn

1− 31−s

2

l−sγ(s)

]
s=sn

=
ldK−1

ln(3)

∑
n

l
2iπn
ln(3) γ

(
1− dK −

2iπn

ln(3)

)
︸ ︷︷ ︸

γn

where we used :

lim
s→sn

s− sn
1− 31−s

2

=
1

ln(3)

and with dK = ln(2)
ln(3) and

γn =

∫
K×K

|x− y + 2|−dK−
2iπn
ln(3) dµ(x)dµ(y)

Inserting this expression in (2), we get :

C(u) =
1

ln(3)

∑
n∈Z

γn

∫ 1

0

ldK−1l2iπn/ ln(3)γnsinc(lu)dl

=
u−dK

ln(3)

∑
n∈Z

γnu
−2iπn/ ln(3)

∫ u

0

vdK−1+2iπn/ ln(3)sinc(v)dv

with the change of variable : v = ul. Since∫ u
0
vd+

2iπn
ln(3)
−1sinc(v)dv quickly converges to∫∞

0
vdK+ 2iπn

ln(3)
−1sinc(v)dv, one can replace

∫ u
0

by∫∞
0

.

(More precisely : |
∫ u
0
vdK+ 2iπn

ln(3)
−1sinc(v)dv −∫∞

0
vdK+ 2iπn

ln(3)
−1sinc(v)dv| = O(udK−1))

Using :∫ ∞
0

vdKn+
2iπn
ln(3)
−1sinc(v)dv

= sin
(π

2
(dK,n − 1)

)
Γ

(
dK,n +

2iπn

ln(3)
− 1

)
with Γ the Euler gamma function, and dK,n = dK + 2iπn

ln(3)

one finally finds, for u >> 1 (see fig. (3)):

C(u) =
u−dK

ln(3)

∑
n

γnu
− 2iπn

ln(3) sin
(π

2
(dK,n − 1)

)
Γ(dK,n−1)
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FIG. 3: Auto-correlation function in the case of a triadic Can-
tor set spectrum, in log-scale (log base 10).
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We can prove (see annexe) that the coefficients in the
expression (3) decay at least like 1

n3/2−d :

|γn sin

(
π

2
(d+

2iπn

ln(3)
− 1)

)
Γ(d+

2iπn

ln(3)
−1)| = O

(
1

n3/2−d

)

IV.

The analytical expression (4) of the auto-correlation
function is the main result of this paper which we shall
now discuss.

We find that C(u) is of the form : C(u) = u−dKg(u),

with dK = ln(2)
ln(3) the fractal dimension of the triadic Can-

tor set K and

g(u) =
∑
n∈Z

γnu
− 2iπn

ln(3) sin
(π

2
(dn − 1)

)
Γ (dn − 1)

with dn = d + 2iπn
ln(3) , a log-periodic function. The pres-

ence of the fractal dimension dK in the exponent is con-
sistent with previous work on the asymptotic behaviour
of the auto-correlation function for a Cantor spectrum :
C(t) ≈t→∞ t−dk([3], [4]).

The log-periodicity is the signature of the scaling sym-
metry of the spectrum. To see this, note that C(t)
is in fact the spectral average, for the measure dµ, of
the wavelet transform sinc : C(t) =

∫
K×K sinc((λ′ −

λ)εmaxt/~)dµ(λ)dµ(λ′). Since the spectrum has a scal-
ing symmetry, one would have expected to find a log-
periodic behaviour for the sinc-wavelet transform, at
least locally (e.g. for the quantity : Clocal(t, λ) =∫
K

sinc((λ′ − λ)εmaxt/~)dµ(λ)). It was less obvious that
the log-periodicity would remain after averaging over the
spectrum ; this is due to the fact that we chose the den-
sity of modes and the distribution |g(ε)|2 to be uniform,
and that the set has a unique scaling factor. In other
words, in the case of a superposition of triadic Cantor
sets for example, it is not certain that these oscillations
would survive the averaging.

Let us now highlight the similarity between the theo-
retical graph of C(t) for a triadic Cantor set spectrum
(fig. (3), (4)) and the numerical results obtained with
the Fibonacci cavity (more details are available in [6]) fig.
(5). In this experiment, cavity polaritons are confined in
wire cavities, consisting of λ/2 layers, using Bragg mir-
rors for the confinement in the vertical direction. The
lateral dimension of the 200µm long wires are modulated
quasi-periodically : the modulation consists in two wire
sections (letters) A and B, of equal length but different
width ; these letters are arranged in a finite sequence, Sj ,
obtained recursively using the following Fibonacci like
algorithm : Sj>2 = [Sj−1Sj−2] and S1 = B, S2 = A
where [Sj−1Sj−2] is the concatenation of the sequences
Sj−1 and Sj−2. The sequence S∞ becomes rigorously
quasi-periodic as j tends to infinity. We used a fi-
nite sized cavity, however, we observed the features of
the fractal spectrum predicted by the theory : namely,

FIG. 5: Auto-correlation function of the wave paquet in the
Fibonacci cavity ; numerical results for an initial gaussian

wave paquet : ψ(x, t = 0) ∼ e−2(x−x0)
2/w2

0 . The graphs cor-
respond to different values of w0, with identical x0.

gaps densely distributed and an integrated density of
states N(ε) well described by a scaling form of the type
N(ε) = εln a/ ln bF ( ln ε

ln b ) and which follows the gap la-
belling theorem. The photon modes are described by
a 2D scalar wave equation with vanishing boundary con-
ditions on the boundary of the wire. This 2D problem is
then reduced to a 1D Schroedinger equation with an ef-
fective quasi-periodic potential, translating the geometry
of the cavity. The equation was then solved numerically
(using the transfer matrix formalism) and some useful
quantities were plotted : the IDOS, the participation ra-
tion, the RMS displacement and the time-averaged re-
turn probability. The latter is given fig. (5).

We found that the participation ratio and the return
probability evidence a log-periodicity, which would be
expected as a signature of the fractal spectrum.

V.

Let us now discuss the method used in a more general
way, to highlight the connection between the presence of
a scaling symmetry in a physical system and the typical
form of certain quantities. We see from the calculation
that the scaling property of the spectrum leads naturally
to a specific behaviour of some physical quantities defined
as integrals over the spectrum - power law modulated by
log-periodic oscillations.

Consider a system having a fractal spectrum, charac-
terized by a scaling property, which is expressed through
a condition of the kind (1) verified by the measure.

One can show (see annexe) that a function f verifying
a functional equation of the type :

f(x) =
1

b
f(ax) + g(x)
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is (under some conditions on g) of the form :

f(x) = xln(b)/ ln(a)G

(
lnx

ln a

)
(3)

with G a 1-periodic function.
Now, in the case of a fractal F described by a measure

µ such that :∫
F

f(x)dµ(x) =
∑
n∈N

1

bn
f(anx)dµ(x)

for some an ∈ R, bn ∈ R∗, then any function Ψ(t) defined
by an integral : Ψ(t) =

∫
F
h(x, t)dµ(x) will satisfy :

Ψ(t) =
∑
n∈N

1

bn

∫
F

h(anx, t)dµ(x)

If furthermore h(x, t) can be expressed as a function of
xαtβ , α, β ∈ C, β 6= 0 : h(x, t) = ψ(xαtβ), then :

Ψ(t) =
∑
n∈N

1

bn

∫
F

ψ(anx
αtβ)dµ(x)

=
∑
n∈N

1

bn

∫
F

h(x, a1/βn t)dµ(x)

=
∑
n∈N

1

bn
Ψ(a1/βn t)

=
1

bj
Ψ(a

1/β
j t) + Φ(t)

with Φ(t) =
∑
n∈N−j

1
bn

Ψ(a
1/β
n t). Thus, if the Mellin

transforms of Φ(t) and Ψ(t) exist and have overlapping
domains of definition, and if the Mellin transform of Φ(t)
has no poles, then Ψ(t) will be of the form :

Ψ(t) = tln(bj)/ ln(a
1/β
j )G

(
ln t

ln a
1/β
j

)

with G 1-periodic.
More generally, this also occurs whenever we can rear-

range the integral in order to have :
∫
F
h(αx, t)dµ(x) ∝∫

F
h(x, βt)dµ(x).

Thus, we see in the case of quantum dynamics that,
since the energy ε and the time t are conjugate variables,
it is likely that a time dependant quantity defined as
an integral over the spectrum (through the spectral de-
composition for instance) of a function defined using the
evolution operator eiHt/~ or of any function which cou-
ples ε and t, will be of the form (5). This is well verified
for C(t).

VI.

Let us now give an overview of the other physical quan-
tities which do or should evidence such a behaviour ; we

also discuss the RMS displacement, commonly studied in
quantum dynamics.

We discuss first the time-averaged participation ratio,
usually studied to get information on the dynamics of a
quantum system. Moreover, this quantity was studied
numerically for the Fibonacci cavity and the results sup-
port the idea of a log-periodic feature. By definition, the
participation ratio is :

Pψ =
1∫

espace
|〈x|ψ〉|4dx

This quantity reflects the localization in space of the wave
function ψ(x, t) : if the state is localized, then Pψ ' 0 ; if
it is extended, then Pψ ' 1 [9]. Taking its time-average,
to have a time-dependent quantity, we define :

Pψ(t) =
1

t

∫ t

0

dt′∫
espace

|〈x|ψ(t′)〉|4dx

Now, using Green functions, we can show [10] that :

|ψ(x, t)| =

∣∣∣∣∣∣
∫

space

∫
spectrum

e−iεtφ(x, ε)∗φ(x′, ε)ψ(x′, 0)dx′dµ(ε)

∣∣∣∣∣∣
|φ(ε)〉 being the eigenfunction of the Hamiltonian asso-
ciated with the energy ε. The calculation has not yet
completely been carried through, since sufficient infor-
mation on the behaviour of the space correlation term
φ(x, ε)∗φ(x′, ε) is still missing. However, two ideas can
be considered.

The first one is to obtain an approximate expression
of the participation ratio by finding an upper and lower
bound for

∫
φ(x, ε)∗φ(x′, ε)dµ(ε). In fact, it has been

established ([11], [12]) for a lot of diffusive processes that
the non-diagonal Green function G(x, x′, t) verifies :

Ft(c1, c2, x, x
′) ≤ G(x, x′, t) ≤ Ft(c3, c4, x, x′)

with

Ft(ci, cj , x, x
′) =

ci
tds/2

e
−cj

(
|x−x′|dw

t

) 1
dw−1

where c1, c2, c3, c4are positive constants, dw the walk di-
mension which occurs in the dispersion relation 〈x2(t)〉 =

t2/dw , ds the spectral dimension such that ds =
2df
dw

and

df the Hausdorff dimension [13] of the space in which
the diffusive process takes place. These bounds hold for
diffusive processes ; however, it could be possible to use
the same logic for the case of Schroedinger’s equation,
since the difference with the diffusion equation lies in the
factor i in the time derivative.

The second idea is the following : it is an empirical
numerical result that, in the case of a euclidean manifold,
the eigenfunctions {φ(r, ε)} of the Laplacian verify (see

[12] and references therein) : φ(r, ε)∗φ(r’, ε) = f
(
|r−r’|
lε

)
,
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where (...) denotes the average over the points r, r’ such
as |r − r’| =constant and f is some function. This has
recently been used for a Laplacian defined on a fractal
[12]. Assuming furthermore that, by analogy with the
euclidean case, the relation between lε and ε is of the form
: lε ∝ εα, we are able to obtain an analytical expression
of the participation ratio, with the expected log-periodic
feature.

A numerical simulation would therefore be interesting
in order to verify this conjecture. This requires, in our
case, a system such that the Laplacian has a triadic Can-
tor set spectrum, or any self-similar fractal spectrum.

We shall now briefly discuss the RMS displacement,
another quantity commonly studied both in quantum dy-
namics - spreading of the wave packet - and in diffusive
processes. First note that, since the above method (which
led to the expression of the auto-correlation function),
uses the linearity of the integral, it is obvious that it is
unlikely to work for the RMS

∆x =
√
〈(x(t)− x0)2〉 =

√∫
space

(x(t)− x0)2|ψ(t, x)|2dx

because of the square root. However, we should obtain
interesting results for the moment of order 2 :

(∆x)2 = 〈(x(t)− x0)2〉 =

∫
space

(x(t)− x0)2|ψ(t, x)|2dx

Although a numerical study, in the case of the Fibonacci
cavity, did not give encouraging results, note that this
quantity is very close to∫
space

(x(t)− x0)2|ψ(t, x)|2dx

=

∣∣∣∣∣∣
∫

space

∫
spectrum

e−iεtφ(x, ε)∗φ(x′, ε)ψ(x′, 0)dx′dµ(ε)

∣∣∣∣∣∣
2

and that using the assumptions discussed for the partici-
pation ratio about the behaviour of φ(r, ε)∗φ(r’, ε) should
also lead to interesting results.

Furthermore, the case of a Hamiltonian with a one-
scale Cantor set spectrum has been solved numerically
in the tight-binding approximation [14], and it was found
that the moments 〈(x(t)− x0)α〉 have a log-periodic be-
haviour.

One can also use this method to derive the decay prob-
ability of a two level atom coupled to a fractal spectrum
([15]). We show in this case that Fermi’s golden rule does
not hold, and that the decay probability of the atom from
an energy level Ei to an energy Ef ±∆E is of the form
(5). In this case, the log-periodic oscillations coud be
interpretated as a signature of the topological properties
of the spectrum : a closed, nowhere dense set with no
isolated point.

To finish, let us discuss briefly the question of turbu-
lent diffusion, which was found to be related to fractals.

A powerful tool for the study of turbulent diffusion is
the method of breakdown coefficients, bdc, (see [16] and
references therein). If a turbulent system happens to
have a physically distinguished scale factor (for instance,
unstable eddies breaking up in typically always the same
number of smaller eddies), then the moments of the bdc’s
have a log-periodic behaviour (namelly, a power law mod-
ulated by log periodic oscillations) [16]. It is interesting
to note that these log-periodic oscillations were derived
with a very different approach - starting from a function-
nal relation obtained in the frame of statistical physics.
Thus, two very different physical problems (turbulence
and quantum dynamics) led to a similar observation :
there is a deep connection between the topological prop-
erties of self-similar sets and the occurence of anomalous
log-periodic behaviour of statistical and dynamical quan-
tities.

VII. CONCLUSION

In summary, we derived the analytical expression of
the auto-correlation function C(t) in the case of a triadic
Cantor set energy spectrum, and found that it is of the

form : C(t) =
(
t
τ

)−dK
g(ln(t/τ)) where dK = ln(2)

ln(3) is

the fractal dimension of the triadic Cantor set, τ a time
scale a g a periodic function. We generalize the method
and discuss the connection between the presence of self-
similar structures or features in a physical system and
the typical log-periodic behaviour of certain quantities.
In particular, the participation ratio and the moment of
order 2 are likely to have such a behaviour for a one-scale
Cantor set spectrum ; we are at the moment researching
on these topics. The method developped also led to some
first theoretical results for the spontaneous emission of a
two level atom coupled to a fractal spectrum ; numerical
and experimental work should be pursued in the near
future.
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Annexe

Scaling property of the measure dµ

Let f be an integrable function defined on [0, 1], with
real or complex values.

We derive here the following property :∫
K

f(x)dµ(x) =
1

2

∫
K

f
(x

3

)
dµ(x)+

1

2

∫
K

f

(
x+ 2

3

)
dµ(x)

By definition :∫
K

f(x)dµ(x) = lim
n→∞

(
2

3

)n ∑
ajn∈Pn

∫ ajn+3−n

ajn

f(x)dx

︸ ︷︷ ︸
In(f(x))

with Pn the set of the left edges of the remaining seg-
ments at the nth step of the construction of the triadic
Cantor set. One can directly check that the sequence
(Pn)n follows the recurrence property :

Pn =
1

3
Pn−1 ∪ {

2

3
+

1

3
Pn−1}

Therefore :

In(f(x)) =

(
2

3

)n ∑
ajn∈Pn

∫ ajn+3−n

ajn

f(x)dx

=

(
2

3

)n ∑
ajn−1

∈Pn−1

∫ ajn−1
/3+3−n

ajn−1
/3

f(x)dx

+

(
2

3

)n ∑
ajn−1

∈Pn−1

∫ 2
3+ajn−1

/3+3−n

2
3+ajn−1

/3

f(x)dx

=

(
2

3

)n ∑
ajn−1

∈Pn−1

∫ ajn−1
+3−n+1

ajn−1

f
(u

3

) du
3

+

(
2

3

)n ∑
ajn−1

∈Pn−1

∫ ajn−1
+3−n+1

ajn−1

f

(
v + 2

3

)
dv

3

=
3

2

1

3

[
In−1

(
f
(u

3

))
+ In−1

(
f

(
2 + v

3

))]

But : limn→∞ In−1
(
f
(
u
3

))
=
∫
K
f
(
u
3

)
dµ(u) and

limn→∞ In−1
(
f
(
2+v
3

))
=
∫
K
f
(
2+v
3

)
dµ(u), so finally :∫

K

f(x)dµ(x) =
1

2

∫
K

f
(x

3

)
dµ(x)+

1

2

∫
K

f

(
x+ 2

3

)
dµ(x)

This completes the proof.

Log-periodicity of functions verifying : f(x) =
1
bf(ax) + g(x)

Let f : R → C verifying a functional equality of the
kind :

f(x) =
1

b
f(ax) + g(x) (4)

Let’s show that f is of the form :

f(x) = xln(b)/ ln(a)G

(
lnx

ln a

)
with G 1-periodic.

We begin by taking the Mellin transform of (3) (assum-
ing that the domain of definition of the Mellin transforms
of f and g have a non empty intersection) :

Mf =

∫ ∞
0

f(x)xs−1dx

=
1

b

∫ ∞
0

f(ax)xs−1dx+

∫ ∞
0

g(x)xs−1dx

=
1

b

∫ ∞
0

f(u)
(u
a

)s−1 du
a

+Mg(s)

So :

Mf (s) =
Mg(s)

1− a−s

b
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and by taking the inverse Mellin transform :

f(x) = 1
2iπ

∫ c+i∞
c−i∞ Mf (s)x−sds

= 1
2iπ

∫ c+i∞
c−i∞

Mg(s)

1− a−sb
x−sds

Assuming now that Mg has no poles, the residue for-
mula finally yields :

f(x) =
∑
n∈Z

[
(s− sn)Mg(s)x

−s

1− a−s

b

]
s=sn

( sn = − ln a
ln b −

2iπn
ln b , poles of

Mg(s)

1− a−sb
)

= xln(b)/ ln(a)
∑
n∈Z

cnx
2iπn/ ln b

︸ ︷︷ ︸
G(x)

which is what we wanted to prove.

Asymptotic behaviour of the coefficients

We prove here that the coefficients in the expression
(??) decay at least like 1

n3/2−d :

|γn sin

(
π

2
(d+

2iπn

ln(3)
− 1)

)
Γ(d+

2iπn

ln(3)
−1)| = O

(
1

n3/2−d

)
To see this, let us start with

| sin(π2

(
d+ 2iπn

ln(3) − 1)
)

Γ(d + 2iπn
ln(3) − 1)| ; we have

([14]) :

lim
n→∞

|Γ(d+
2iπn

ln(3)
−1)| =

√
2πe−(d−1)e−

2π2n
2ln(3)

(
2πn

ln(3)

)d− 3
2

Furthermore, since | sin(π2 (d + 2iπn
ln(3) − 1))| ∼n→∞

e
2π2n
2 ln(3) e1−d/2, one has :

| sin(
π

2
(d+

2iπn

ln(3)
− 1))Γ(d+

2iπn

ln(3)
− 1)| = O

(
1

n3/2−d

)

Let us now study γn. By definition :

γn =

∫
K×K

dµ(x)dµ(y)

|2− x+ y|dn

= lim
k→∞

(
3

2

)2k ∑
ajk ,aj′k∈Pk

∫ ajk+3−k

ajk

∫ aj′
k
+3−k

aj′
k

dxdy

|2− x+ y|dn

with dn = ln 2
ln 3 + 2iπn

ln 3 and Pk = {ajk} the set of the
left edges of the remaining segments after k iterations in
the construction of the triadic Cantor set K. Since K
is embedded in [0, 1], and since for all x, y ∈ [0, 1] the
inequality 2 > x−y holds, one can suppress the absolute
value in the integral. Now, for all x, y ∈ [0, 1], one has :
1 ≤ 2− x+ y ≤ 3, so | 1

|2−x+y|dn | =
1

|2−x+y|d < 1.

Thus :

|γn| <
∫
K×K

dµ(x)dµ(y)

|(2− x+ y)dn |
<

∫
K×K

dµ(x)dµ(y) = 1

and so : |γn| = O(1). Numerically, it seems that we
even have : |γn| = O

(
1
n

)
, but this has not been proven

rigorously.

We therefore obtain finally that, at least :

|γn sin

(
π

2
(d+

2iπn

ln(3)
− 1)

)
Γ(d+

2iπn

ln(3)
−1)| = O

(
1

n3/2−d

)

1 obtained by iteration of the following process : start with
a full square, divide it in 9 equal squares and keep only the

four at the corners of the initial square ; see fig.(2)


