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The energy spectrum of a tight-binding Hamiltonian is studied for the two-dimensional quasiperi-
odic Rauzy tiling in a perpendicular magnetic field. This spectrum known as Hofstadter butterfly
displays a very rich pattern of bulk gaps that can be labeled by four integers, instead of two integers
for periodic systems. The role of phason-flip disorder is also investigated in order to extract the
genuinely quasiperiodic property. This geometric disorder is found to only preserve main quantum
Hall gaps.

PACS numbers: ??

Quasicrystals are nonperiodic solids that never-
theless feature long-range order [1]. In reciprocal
space, this order is characterized by resolution-
limited Bragg peaks in the diffraction pattern. In
real space, the order is related to the nonperiodic
repetitivity of local environments. After the ini-
tial burst of interest in the 80’s and 90’s, there
is a recent revival of activities on the transport
properties of quasicrystals mainly due to new ex-
perimental realizations of artificial quasiperiodic
lattices with phonons, cold atoms [2], photons
[3], polaritons [4] or microwaves [5]. These new
tools allows one to experimentally address ques-
tions that were impossible to settle in solid state
(metallic alloys) quasicrystals, such as the label-
ing of gaps and the measure of the energy spec-
trum or the nature of the eigenstates wave func-
tions.

A current trend consists in connecting the prop-
erties of quasicrystals to that of topological insu-
lators (see, e.g., Refs. [3, 6]). In one dimension,
integers used to label the gaps of the Fibonacci
chain have been related to Chern numbers [7].
Although, there still is a controversy on whether
one-dimensional quasicrystals are truly topolog-
ical insulators themselves or whether this is a
property of a family of such quasicrystals [8], just
as quantized adiabatic pumping in one dimension
is actually related to the integer quantum Hall
effect (IQHE) in two dimensions.

In the present theoretical work, we use the or-
bital response of electrons to a magnetic field to
probe the quasiperiodic order in a simple two-
dimensional tight-binding model. In particular
we study the energy spectrum in a magnetic field,
i.e., the Hofstadter butterfly [9]. We show that
the gap labeling in this case involves both the
topological numbers of the IQHE and integers re-
lated to the irrationals used in the construction
of quasicrystals.

Rauzy and random tilings.— Rauzy tilings can be

FIG. 1. A piece of the isometric Rauzy tiling (left) trans-
formed into a random tiling (right) via a random sequence of
phason flips (middle). The red dot indicates the center of the
inversion symmetry which is broken after flips.

seen as generalizations of the Fibonacci chain to higher
dimensions [10]. These codimension-1 quasicrystalline
tilings are built using the celebrated cut-and-project
method [11–13]. In the following, we consider the two-
dimensional Rauzy tiling and its approximants whose
construction is based on the Tribonacci sequence defined
as

Rn+1 = Rn +Rn−1 +Rn−2, ∀n ∈ N, (1)

with R0 = R1 = 1, and R2 = 2. The order-k approxi-
mant contains Rk+1 sites and, after a proper ordering
of the sites (according to their position in the perpen-
dicular space in the cut-and-project construction), its
connectivity matrix has a Toeplitz-like structure with
bands starting at positions (Rk−2, Rk−1, Rk) [10]. This
rhombus tiling contains 3, 4, and 5-fold coordinated
sites. In the quasiperiodic limit, their densities are
given by ρ3 = ρ5 = 2 θ−3 and ρ4 = 1− ρ3 − ρ5, where
θ ' 1.839 is the so-called Tribonacci constant defined
as the Pisot root of the equation x3 = x2 + x+ 1. As
any codimension-1 tiling, Rauzy tiling approximants only
possess an inversion symmetry associated with the center
of the one-dimensional acceptance zone.

In its original construction [10], the Rauzy tiling has
three different types of tiles (corresponding to the pro-
jections of the cubic-lattice faces onto the parallel space)
with incommensurate areas. However, one can deform



2

E
n
er
g
y

0 1
θ3

1
θ2

1
2

1
θ

1 0 1
2

1
−4

0

+4

f f

FIG. 2. (Color online) Left: Hofstadter butterflies of the isometric Rauzy tiling on a torus with R15 = 5768 sites (left) and of
a random tiling obtained after 2.107 flips (right). Arrows indicate some fluxes around which Landau levels are found with a
nonvanishing Hall conductivity.

the tiling such that all areas become identical by changing
the projection direction in the cut-and-project algorithm.
This isometric version of the Rauzy tiling displayed in
Fig. 1 is especially well-suited to the problem under study
[14] (see below). Moreover, we will also pay attention to a
structural disorder induced by phason flips which consist
in locally changing neighbors of 3-fold coordinated sites
as depicted in Fig. 1. This does not change the number of
links in each direction. As argued in Ref. [15] one needs
to perform about N2/2 flips to fully disorder a tiling with
N sites. After such a rearrangement of links, one obtains
a random tiling with 3, 4, 5, and 6-fold coordinated sites.

Model and symmetries.— For simplicity, we consider a
single-orbital tight-binding Hamiltonian

H = −
∑
〈i,j〉

tij |i〉〈j|, (2)

where the sum is performed over nearest-neighbor sites.
When a magnetic field B perpendicular to the tiling
is introduced, the hopping term from site i to site
j is modified according to the Peierls substitution

tij → tij e−
2iπ
φ0

∫ j
i
dr·A(r) where A is a vector potential

such that B = ∇ × A. In the following, we use the
following units: tij = 1, ~ = 1, e = −2π so that the
flux quantum φ0 = h/|e| = 1, and the nearest neighbor
distance a = 1. We also introduce the reduced flux per

plaquette f = φ/φ0 = ±|B|A, where A =
√
3
2 a

2 is the
area of an elementary rhombus.

SinceA is the same for all rhombi, the spectrum of H is
periodic with f (at least for open boundary conditions).
Consequently, one can restrict the study to f ∈ [0, 1].
The spectrum is also obviously unchanged when the field
direction is reversed (f ↔ −f). In addition, since the lat-
tice is bipartite, the spectrum is symmetric with respect

to 0. For periodic boundary conditions, this symmetry is
broken due to odd cycles encircling the torus that destroy
bipartiteness. Similarly, in the presence of a magnetic
field, fluxes are present in the torus and destroy the pe-
riodicity with f . However, these two symmetry-breaking
effects become negligible in the thermodynamic limit.

Boundary conditions and gauge choice.— Since the pi-
oneering work of Hofstadter on the square lattice [9],
the spectrum of H as a function of f , dubbed “Hofs-
tadter butterfly”, has been analyzed for many periodic
two-dimensional systems (triangular lattice [16], honey-
comb lattice [17], flat-band lattices [18], dice lattice [19],
kagomé lattice [20],...) unveiling very rich features. The
simplicity of these structures allows one to study the but-
terfly directly in the thermodynamical limit using suit-
able choices for the vector potential A. For quasiperi-
odic systems, one needs to consider a finite size system
and, for any gauge choice, two problems arise. First,
the incommensurability of tile areas breaks the periodic-
ity of the butterfly with f , as originally discussed in the
Penrose lattice [21]. Second, as for any other system, if
one considers open boundary conditions, edge states pre-
vent one from identifying the bulk gaps as discussed in
Refs. [6, 14].

In the present work, we solve these two issues by (i) de-
forming the tiling to deal with identical tile areas (see dis-
cussion above) and (ii) by considering periodic boundary
conditions. This latter condition can always be fulfilled
at the price of restrictions on the accessible reduced flux
f (see supplementary material). Indeed, the total flux
through the system must be an integer [22, 23]. Thus,
for a tiling with N identical plaquettes on a torus, f
must be a multiple of 1/N . Note that, in the isometric
Rauzy tiling on a torus, the number of plaquettes equals
the number of sites. In the following, we consider a unit



3

N
o
rm

a
li
ze
d
in
te
g
ra
te
d
d
en

si
ty

o
f
st
a
te
s

0 1
2

0

1
2

f

(0,−3,−2, 2)

(0, 2, 1,−1)

(0,−1,−1, 1)

(0,−4,−3, 3)

(0,−1, 1, 0)

(0, 1, 0, 0)

(0,−2,−2, 2)

(0,−2, 0, 1)

(0, 3, 1,−1)

(0, 0,−1, 1)

(0,−2, 2, 0)

FIG. 3. (Color online) Wannier diagram of the isomet-
ric Rauzy tiling on a torus with R16 = 10609 sites. Red
lines highlight main IQHE gaps (ν, 0, 0, 0), green lines in-
dicate some (ν = 0)-gaps, and magenta lines illustrate gaps
(ν, 1 − ν, 0, 0). Symmetries allow one to restrict the relevant
range of f and N to [0, 1/2]. Only gaps larger than 2.10−2

are shown. This diagram and the gap labeling are unchanged
for larger approximants.

cell of an approximant with periodic boundary conditions
and perform numerical diagonalization of H for systems
up to R19 = 66012 sites.

Hofstadter butterfly and Wannier diagram— The zero-
field energy spectrum of the Rauzy tiling has been dis-
cussed in Refs. [24, 25]. Contrary to the Penrose tiling
[26] or the octagonal tiling [27], the spectrum of the pure
hopping model (2) is gapless (see supp. mat.). In the
presence of a magnetic field, the spectrum has been com-
puted for open boundary conditions [6, 14] but, despite
some efforts to get rid of them, edge states fill the bulk
gaps emerging for nonvanishing fields so that it is im-
possible to analyze the nontrivial characteristics butter-
fly. By contrast, as shown in Fig. 2 (left), a very rich
gap structure is unveiled when considering the system on
a torus. We emphasize that all gaps visible are stable
when increasing the order of the approximant so that,
up to the image resolution, this butterfly should be con-
sidered as the one of the (infinite) quasiperiodic isomet-
ric Rauzy tiling. As in most Hofstadter butterflies, one
observes the presence of Landau levels arising from band
edges separated by IQHE gaps. As usual, these levels are
broadened when the system is disordered. Nevertheless,
as can be seen in Fig. 2 (right), the phason-flip disorder
is sufficiently weak to preserve these IQHE gaps while
destroying the fine structure.

To go beyond and in the absence of an exact map-

ping of the Schrödinger equation onto a Harper-like
equation [9], we focus on the analysis of gap structure.
To this aim, we compute the so-called Wannier diagram
[28] obtained by plotting, for an energy E inside a gap,
the normalized integrated density of states N (E, f), i.e.,
the number of levels below E divided by the total number
of levels, as a function of f (see Fig. 3).

Gap labeling.— In the quasiperiodic limit, any gap can
be labeled with four integers (ν, u, v, w). Indeed, inte-
grating the Středa formula [29] for the Hall conductivity
at energy E inside a gap

σ = e
∂N (E, f)

∂φ
= −e

2

h
ν, (3)

one finds N (E, f) = νf + N (E, 0), where ν is an
(topologically-invariant) integer [30, 31]. This linear de-
pendence is directly observed in Fig. 3. For open bound-
ary conditions, ν counts the number of edge states, as
recently discussed in Ref. [6] for the Rauzy tiling. Since
(i) the normalized integrated density of states is a mul-
tiple of 1/Rk+1 for the order-k approximant and (ii)
three consecutive Tribonacci numbers are coprime inte-
gers, Bézout’s identity guarantees that there exists an
integer triplet (u, v, w) such that

N (E, 0) = u
Rk−1
Rk+1

+ v
Rk
Rk+1

+ w. (4)

Although we have no rigourous proof, we found that
(u, v, w) do not depend on k. Thus, in the quasiperiodic
limit (k →∞), one straightforwardly gets:

N (E, f) = ν f + u θ−2 + v θ−1 + w. (5)

Note that this result could certainly be obtained,
in a more sophisticated way, using the gap-labeling
theorem [32]. Moreover, it is clear that this line of rea-
soning can be applied to any other cut and project tiling
built on a Pisot number (Penrose, octagonal, icosahe-
dral,...).

The Wannier diagram reveals the existence of es-
sentially different types of gaps associated either to
quasiperiodic order (destroyed by flips) or to IQHE (pre-
served by flips). Indeed, as can be seen in Fig. 2, only
IQHE gaps (u = v = 0) [30] survive disorder. Gaps
identified in Ref. [6] belong to this family (see red lines
in Fig. 3). However, in the quasiperiodic case, many
other gaps are observed in the diagram (see Fig. 3).
Among them, one may distinguish the one existing at
f = 1/2 where time-reversal symmetry implies a vanish-
ing Hall conductivity. Such gaps are also found for many
other fluxes (see green lines in Fig. 3), but they might
be considered as a curiosity. Indeed, to our knowledge,
(ν = 0)-gaps have only been observed so far in the Lieb
[33] and in the dice lattice [19]. A general existence con-
dition of these gaps is still lacking.
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Finally, there exists some irrational fluxes in the vicin-
ity of which one finds gaps and Landau levels that are
destroyed by disorder but have a nonvanishing Hall con-
ductivity (ν 6= 0). These fluxes are thus deeply related to
quasiperiodic order and play a role similar to the rational
fluxes in the Hofstadter butterfly of periodic crystals [9].
As for the gaps, one can label these fluxes in the ther-
modynamical limit according to f = p θ−2 + q θ−1 + r.
These special irrational fluxes are also local minima of
the ground-state energy as a function f as for rational
fluxes in periodic systems (see Ref. [34] for an experimen-
tal observation of this phenomenon in the square lattice).
For illustration, we show three examples in Fig. 2 corre-
sponding to (p, q, r) = (1, 0, 0), (0, 1, 0), and (−1,−1, 1).
The Landau-level fan for f = θ−2 is displayed in Fig. 3
(magenta lines). At this stage, we cannot prove that all
possible sets of (p, q, r) give rise to such singularities but
we conjecture it is so.

Landau levels and effective mass.— To better charac-
terize the IQHE gaps, let us focus on Landau levels that
arise from band edges (see Fig. 2). In the zero-flux limit,
the excitation energy of the n-th Landau level ∆En can
be well fitted by

∆En = ~
|eB|
m

(
n+

1

2

)
=

4πf√
3m

(
n+

1

2

)
, ∀n ∈ N,

(6)
where 1/m = 1.957(2) is the inverse effective mass of the
electron. As expected, for the order-k approximant and
a given flux f , the degeneracy of each Landau level is
given by Rk+1 f . However, when f increases, the degen-
eracy of these levels is lifted since lattice effects lead to
a broadening as discussed in Ref. [35] for crystals.

There are several ways to understand the surprising
emergence of an effective mass in nonperiodic systems
(see Supp. Mat.). One possibility is to consider an infi-
nite approximant structure with Rk+1 sites per unit cell
and to compute, for f = 0, the inverse effective mass
tensor α of the lowest-energy band. Practically, one di-
agonalizes the Bloch Hamiltonian H(k) = e−ik·r̂Heik·r̂,
where k is the Bloch wave vector and r̂ is the position
operator. One then expands the dispersion relation of
the lowest-energy band in the vicinity of k = (0, 0):

ε(k) ' ε0 +
1

2
αijkikj , (7)

where ε0 = −4.115008(1) is the ground-state en-
ergy. Denoting α1 and α2 the eigenvalues of α,
the average inverse effective mass is then given by
1/mT =

√
α1α2 = 1.95735(1). This effective mass is re-

lated to the Thouless conductance [36, 37] for the lowest-
energy band through g ∼ 1/mT . Actually, it may appear
fortuitous that mT matches m so well as it is computed
from the curvature of a single band whereas Landau lev-
els are built from Rk+1 f bands. This result is due to a
finite stiffness of the ground-state energy with respect to

boundary conditions (Thouless energy [36]). This finite
stiffness stems from the extended nature of the ground
state that we have explicitly checked.

In the disordered case, the situation is different. As al-
ready mentioned, Landau levels broaden so that, even in
the zero-flux limit, a precise determination of the effec-
tive mass is harder. On the one hand, we get 1/m ' 2 by
a bruteforce fit of the Landau-level slope. On the other
hand, for f = 0 and since the system is disordered, one
expects all states to be localized [37] and we indeed find
that 1/mT ∝ e−L/ξ when increasing the linear system
size L and with a localization length ξ ∼ 30a. From that
respect, phason disorder should be considered as a weak
disorder. When the cyclotron radius is smaller than the
localization length, i.e., f � ξ−2, energy levels are insen-
sitive to the magnetic field. In the opposite case, broad
Landau levels show up as can be seen in Fig. 2.

Conclusion.— In the present work, we obtained
bulk Hofstadter butterflies for the quasiperiodic
and the disordered Rauzy tiling. The clean but-
terfly has a complicated structure involving sev-
eral types of gaps related either to the magnetic
field (IQHE) or to quasiperiodic order or to both.
Random phason flips are shown to disorder the
tiling and to wash out the inner structure of the
butterfly: only main IQHE gaps remain. For
the clean Rauzy tiling, we have carefully checked
that our results are size converged, which seems
to be related to the delocalized nature of eigen-
states in the Rauzy tiling. For future work, it
would therefore be interesting to test these ideas
higher-codimension quasicrystals such as the oc-
tagonal or the Penrose tiling, that have critical
eigenstates [39].

We have found that all gaps in the clean butter-
fly are labeled by four integers. This is in contrast
to periodic systems, for which only two integers
are required [38]. The number of integers needed
to label gaps depends on the nature of the ir-
rational involved in the construction of the qua-
sicrystal. We also provide a first example of gap
labeling involving both IQHE and the quasiperi-
odicity. At the moment, only integers related
to IQHE have a clear topological interpretation
[30, 31].

Many open questions are raised by comparing
the butterfly of a quasicrystal and that of a peri-
odic system. For example, why do gaps close at
finite fluxes instead of crossing the whole Wan-
nier diagram? Why is an obvious self-similarity
nor present in the butterfly? Is its spectral mea-
sure finite?
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portance of magnetic translations and E. Akkermans, A.
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SUPPLEMENTARY MATERIAL

PERIODIC BOUNDARY CONDITIONS AND
MAGNETIC FIELD: MAGNETIC

TRANSLATIONS

A difficulty in computing the energy spectrum of a
quasiperiodic (or random) tiling in the presence of a per-
pendicular magnetic field is that one has to work with a
finite-size system. Indeed, one cannot use Bloch’s theo-
rem, as in the case of a periodic lattice, in order to di-
rectly work in the thermodynamic limit. Working with a
finite-size system, one has to make a choice for boundary
conditions. Open boundary conditions are useful in the
sense that any magnetic field is possible. But one draw-
back is that bulk levels are mixed with edge levels. In the
present work, we are interested in bulk properties and,
in particular, we want to clearly identify bulk gaps. We
therefore want to impose periodic boundary conditions.

A standard approach is to make a gauge choice for
the vector potential (such as Landau gauge) and then to
try to impose that the Peierls phase matches the periodic
boundary conditions. This is actually very inefficient and
usually strongly restricts the allowed values of magnetic
fluxes that are allowed [6]. In particular, it does not allow
one to compute the equivalent of a Hofstadter butterfly.

However, there is a general result known as mag-
netic translations that can help us [23, 35]. Magnetic-
translation operator are a generalization of the usual
translation operators when a magnetic field is present.
Indeed, when the hopping amplitudes of a tight-binding
Hamiltonian are dressed with Peierls phases, the result-
ing Hamiltonian H no longer commutes with transla-
tion operators Taj where a1 and a2 are unit cell vectors
of an approximant (the total area of the sample being
|a1 × a2|). This is due to the appearance of the vector
potential A, which is non-uniform even when the mag-
netic field is. However, H still commutes with magnetic
translation operators

Taj = ei2πχaj
(r̂)Taj , (8)

with

χaj (r) =

∫ r

0

dr′ · [A(r′ − aj)−A(r′)], (9)

which are product of a gauge transformation ei2πχaj
(r̂)

and of a translation operator Taj , where r̂ denotes the
position operator. Magnetic translation operators along
the two directions a1 and a2 do no commute in general.
They only commute if the total magnetic flux across the
sample Nf is a multiple of the flux quantum φ0. There-
fore, f must be a multiple of 1/N where N is the number
of elementary plaquettes. For simplicity, we assume here
that all tiles have the same area.

A concrete implementation of the “magnetic transla-
tion trick” is to make a specific gauge choice, to compute

http://dx.doi.org/10.1143/JPSJ.36.959
http://dx.doi.org/10.1143/JPSJ.36.959
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the Peierls phase on every link of the open boundary sys-
tem and then to include both a Peierls phase and the
gauge transformation phase on the stitches needed to
realize periodic boundary conditions, i.e., on the links
needed to glue the open system into a torus.

One way of checking the constraint on the flux is to
compute the trace of H4, which is related to closed paths
of length 4 on the tiling. This gives

Tr H4 = (N−1) cos[2πf ]+cos[(1−N)2πf ]+const, (10)

The two first terms mean that there are N−1 tiles encir-
cling a flux f and one tile that encircles a flux (N − 1)f .
The last term is independent on f and is due to self re-
tracing paths that do not encircle any flux. One sees
that for an arbitrary f , all tiles but one are threaded by
the same flux. However when Nf is an integer p then
(1−N)f = f = p

N modulo 1 and this last tile is equiva-
lent to all others. This explains the restriction to f = p

N .
It is important to realize that this trick can

be implemented in any gauge, in contrast to the
claim made in [40]. We have explicitly checked
that by implementing a family of Landau gauges

A = B(x cos θg + y sin θg)(cos θguy − sin θgux), (11)

parametrized by an angle θg. A subtle point is
that varying θg is not rigorously speaking a pure
gauge transformation since, on a finite-size sys-
tem with periodic boundary conditions, there is
not only a magnetic flux in each tile but also on
large paths that encircle the torus. Whereas the
former flux is independent on θg, the latter de-
pends on it. Therefore the energy spectrum is
not strictly speaking independent on θg. How-
ever, this effect is small and vanishes in the ther-
modynamic limit.

ZERO-FIELD DENSITY OF STATES AND
EFFECTIVE BAND EDGE MASS

In this section, we present an alternative way of defin-
ing an effective band edge mass for a tiling. To this aim,
we start by briefly discussing the zero-field thermody-
namic density of states

ρ(µ, T ) =
∑
α

1

4T
sech2Eα − µ

2T
, (12)

plotted in Fig. 4, where T is the temperature, µ the chem-
ical potential and {Eα} are the energy eigenvalues. Here,
we set the Bolzmann constant kB = 1. Temperature is
used to smoothen the density of states and corresponds
to a box width of ∆E ' 3.53 T .

At high temperatures, clean and disordered cases co-
incide for all chemical potentials (see Fig. 4). At low
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FIG. 4. Thermodynamic density of states per site ρ(µ, T )/N
at temperature T as a function of the chemical potential µ
for (a) the Rauzy tiling; (b) the random tiling. Results are
size-converged.

temperatures, the agreement remains good (and the den-
sity of states smooth) near band edges, but there is a
strong disagreement near the band center. In the disor-
dered case, the density of states is smooth, apart from
a zero-energy delta peak corresponding to less than 1%
of very localized states around 6-fold coordinated sites
(see Ref. [? ] for a description of these states in the dice
lattice). In the clean case, the low-temperature density
of states has a lot of structure related to the presence of
pseudo-gaps.

In the main text, we have defined an effective (band-
edge) mass from the band structure. An alternative way
consists in fitting the smoothed band-edge normalized
integrated density of states in zero-field N (E, f = 0)
assuming a parabolic band edge. This amounts to write

N (E, f = 0) =
mρ

2π

√
3

2
(E − ε0), (13)

where the zero-field ground-state energy in the clean case
is ε0 = −4.115008(1) whereas ε0 = −4.08(1) in the dis-
ordered case. Fitting the effective mass with this ex-
pression, one gets 1/mρ = 1.95(1) in the clean case and
1/mρ = 1.9(1) in the disordered case. However, mρ and
m discussed in the main text are identified through the
Onsager semiclassical quantization of closed cyclotron or-
bits [41]

N (En, f = 0) =

(
n+

1

2

)
f. (14)

Using Eqs. (13-14), one indeed finds

En − ε0 =
4πf√
3mρ

(
n+

1

2

)
, ∀n ∈ N, (15)

which is similar to Eq. (6) provided mρ = m. We thus
have two independent ways to compute this effective
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mass: a direct fit of the Landau level that gives m, and
a fit of N (E, f = 0) according to Eq. (13) that gives
mρ. If both approaches are in good agreement for the
clean case, results for the disordered case are less precise.
A better analysis would require an average over a large
number of disorder configurations but this is beyond the
scope of the present work.

A third approach to compute this effective mass is dis-
cussed in the main text. It relies on a quadratic expan-
sion of the lowest-energy band near its minimum and
gives an effective mass mT related to the Thouless con-
ductance. For the Rauzy tiling, the effective mass ten-
sor α has two different eigenvalues α1 = 2.38173(1) and
α2 = 1.60857(1) yielding 1/mT =

√
α1α2 = 1.95735(1).

In a periodic system, the different band edge masses
would all be exactly equal m = mρ = mT. Here it is
only approximatively true for the clean quasiperiodic case
with 1

m '
1
mρ
' 1

mT
' 1.95(2) and is not true for the

disordered case for which 1
m '

1
mρ
' 1.9� 1

mT
→ 0.

ANISOTROPY OF THE EFFECTIVE MASS
TENSOR

As we now show using a variational approach, the
anisotropy in the mass tensor (α1/α2 ' 1.481) can be
understood as resulting from the anisotropy in link ori-
entations in the tilings. An effective low-energy and
long-wavelength dispersion can be obtained from
the average slope in the cut and project method.
We find that this dispersion relation

E(k) ' −2

3∑
j=1

tj cos(k · δj), (16)

is that of an anisotropic triangular lattice with
hopping amplitudes tj (where the nearest neigh-

bor vectors are defined as δ1 = (1, 0), δ2 = (− 1
2 ,
√
3
2 )

and δ3 = (− 1
2 ,−

√
3
2 )) reflecting the stoichiome-

try of the link orientations: t1 = 1 − θ−1, t2 =
1− θ−3, t3 = 1− θ−2. In the long wavelength limit
|k| � 1/

√
N , the dispersion relation can be ap-

proximated by a parabola E(k) ' E(0) + 1
2αijkikj,

where E(0) = −
∑
j tj = −4, which defines an in-

verse effective mass tensor αij. Its two eigenval-
ues α1, α2 give an average inverse effective mass
1
mcl

=
√
α1α2 ' 1.9715 and an anisotropy α2

α1
' 1.405.

Both quantities are in fair agreement with those
derived from the first mini-band (see the main
text). It is remarkable that the same long wave-
length approximation describes both the clean
and the disordered Rauzy tiling as they share the
same average slope in the cut and project method.

The LL width ∆En also contains interesting in-
formation. The relative width ∆En/(En+1 − En)
goes to zero when f → 0, so that LL are almost as
well defined as in a periodic crystal for which it is
known that the width ∝ exp(−#/f) (see [16] and
references therein). Also, there are obvious cusps
in the relative width that correspond to particu-
lar fluxes such as f = θ−2.

Also the LL width has increased. In particu-
lar, the relative width now diverges in the zero
flux limit, as expected for continuum LL that are
broadened by disorder (∆En ∝

√
f [42]). These

are the Landau bands familiar in the context of
IQHE in a weakly disordered 2D electron gas.
Cusps in the relative width have also been washed
out by phason disorder.
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