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The electronic properties of the Octogonal tiling, a quasiperiodic tiling of codimension 2, are
studied numerically and theoretically. The energy spectrum as a function of the magnetic flux
through the system (the Hofstadter butterfly) displays a rich gap structure, which is being analysed.
A relevant parameter of the system, the effective mass, is identified and studied numerically. The
magnetic susceptibility is studied.

Introduction

Definition of quasicrystals ; remarquable physical
properties1. Studied a lot during the 80’s2, with a revival
of interest today : new experimental and numerical tools,
which allow to study the still ill understood magnetic and
electronic properties of quasiperiodic structures. More-
over, quasiperiodic tilings of codimension 2, such as the
Octogonal tiling, have not been studied much.

The model

Construction of the Octogonal tiling

The Octogonal tiling is obtained by the cut and project
method. Periodic approximants are constructed with the
same method, using the Octonacci sequence : O1 = 1

O2 = 2
Ok+1 = 2Ok +Ok−1

The Octonacci sequence verifies : limn→∞
On+1

On
= 1+

√
2.

Note that the Octogonal tiling is composed of square
and diamond tiles, of identical edge lengths and of rel-
ative surfaces

√
2. By slightly modifying the projection

direction, one can obtain a similar tiling, constituted of
three types of tiles (small squares, big squares and dia-
monds), s.t. the big square and diamond tiles have same
surface, and that the ratio rs of the surfaces of the big
square and small square tiles is rationnal. This trans-
formation is essential in order to obtain the complete
spectral picture in the presence of a magnetic field, as it
will be detailed later. Fig. 1 show the approximant of
order three, with rs = 2.

Tight-binding model

Tight-binding Hamiltonian :

H =
∑
〈i,j〉

ti,j |i〉〈j| (1)

FIG. 1: Approximant of order 3

where 〈i, j〉 denotes a couple of sites, |i〉, |j〉, closest
neighbours (e.g. connected by an edge), and ti,j is the
coupling amplitude. We set ti,j = −1.

In the presence of a magnetic field, one must add a
Peierls phase term3 to the coupling amplitude :

ti,j → te−iθi→j = te−i2π
∫ j
i
dl·A

where A is a potential vector associated to the magnetic
field B = ∇×A.

Spectral properties

In this section, we study the spectral property of the
Octogonal tiling. We use a tiling with tiles of rational rel-
ative surfaces ; in this case, the energy spectrum becomes
a periodic function of the flux, and we obtain a complete
Hofstadter butterfly by scanning over one period of the
flux.

Hofstadter butterfly

In the presence of a uniform magnefic field, perpendic-
ular to the plane of the tiling, gaps appear in the energy
spectrum. In the case of the square lattice, the graph of
the spectrum as a function of the magnetic flux is called
the Hofstadter butterfly4. By analogy, we shall use the
term Hofstadter butterfly for the Octogonal tiling.

In open boundary conditions, fig. 2, any value of the
magnetic flux is permitted. However, the spectrum is
poluted by the energies associated to edge modes ; to
avoid this, we shall now focus on the periodic boundary
conditions case.
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FIG. 2: Hofstadter butterfly for the order 5 approximant,
open boundary conditions.

FIG. 3: Hofstadter butterfly for the order 5 approximant,
periodic boundary conditions.

In the case of periodic boundary conditions (fig. 3), we
need to add a phase term to the coupling coefficients in
the Hamiltonian (1), in order to take into account the ef-
fect of the magnetic translation operator (see appendices
for details).

Note that the butterflies have the symmetry E → −E
(bipartite tiling), and f → 1 − f (time-reversal symme-
try).

Discuss quantitatively the level crossing by the edge
modes.

The butterflies display a rich gap structure, which we
shall now describe and discuss.

Gap labeling

To characterize and quantify the gaps in the Hofstadter
butterfly, we turn to the Wannier diagram, fig. 4. It
displays reveals gaps of three different types : some asso-
ciated to the quantum hall effect (integer slopes), some
associated to the quasiperiodic order (zero slope), and

some a combination of the two. Only the gaps of the
first type resist disorder.
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FIG. 4: Wannier diagram for the approximant d’ordre 3, PBC
; the red lines correspond to the Landau levels. X-axis : av-
erage flus per tile f = Pk+2Gk

Nk
; Y-axis : fraction of the

number of modes under the successive gaps of the spectrum

N ′(f, g) =
N

f
(g)

Ntot
.

Connection with the Octonacci sequence

At some particular values of the flux, the Hofstadter
butterfly displays extra Landau levels. Those particular
values are related to the Octonacci sequence.

Landau levels broadening

The Landau levels near f = 0 resist disorder, and are
due purely to the magnetic field.

Broadening of the Landau levels :
- thickness goes to zero fast for square lattice ;
- idem for Rauzy tiling (ref. letter by Jean Noël and

Julien) : ∼ e−
1
f ;

- Octonacci : ∼ f ;

Ground state localization properties

Effective mass

We wish to identitfy relevant parameters of the prob-
lem. The presence of Landau levels suggests an effective
mass ; remind that the energy levels of an electron in
vacuum are, in the presence of a uniform magnetic field
B :

En = ~
eB

mL

(
n+

1

2

)
, n ∈ N
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FIG. 5: Orbital magnetic susceptibility χ(µ) at T = 0.2, in
units of t

φ2
0
, as a function of the chemical potential µ (units of

t), for the approximant of order 5 ; blue : PBC ; red : OBC.

However, due to the slow narrowing of the Landau lev-
els, it is unclear whether this picture still holds. Numeri-
cally, if we chose to measure the slope of the line passing
through the middle of the levels, we observe that the nu-
merical values seem to converge to zero as the size of the
approximant goes to infinity.

Another approach : the effective mass derived from the
effective mass tensor. This quantity is field independant,
as it is derived from Bloch’s Hamiltonian :

H0(k) = eik·̂rH0e
−ik·̂r

where H0 is the Hamiltonian of the periodic boundary
conditions problem, at zero magnetic field.

Magnetic susceptibility

To study the magnetic properties of the system, we
study the magnetic susceptibility (fig. 5):

χ = − 1

V

∂2Ω

∂B2

∣∣∣∣
B→0

= − 1

V

∑
n

∂2En(B)

∂B2

∣∣∣∣
B=0

nF (En − µ)

+

[
∂En(B)

∂B

∣∣∣∣
B=0

]2
n′F (En(B)− µ)

with

Ω(T, µ,B) = − 1

β

∑
n

ln
(

1 + e−β(En(B)−µ)
)

(2)

the grand potential in the grand ensemble formalism.

Conclusion
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