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The electronic properties of the Octagonal tiling, a quasiperiodic tiling of codimension 2, are
studied numerically and theoretically. The energy spectrum as a function of the magnetic flux
through the system (the Hofstadter butterfly) displays a rich gap structure, which is being analysed.
A relevant parameter of the system, the effective mass, is identified and studied numerically. The
magnetic susceptibility is studied.

I. INTRODUCTION

Definition of quasicrystals ; remarquable physical
properties1. Studied a lot during the 80’s2, with a revival
of interest today : new experimental and numerical tools,
which allow to study the still ill understood magnetic and
electronic properties of quasiperiodic structures. More-
over, quasiperiodic tilings of codimension 2, such as the
Octagonal tiling, have not been studied much.

II. THE MODEL

A. Construction of the Octagonal tiling

The Octagonal tiling (or the Amman-Beenker tiling,
discovered by Amman? ) is a two-dimensional quasiperi-
odic tiling, whose diffraction pattern has an 8-fold sym-
metry. It is composed of two types of square and diamond
tiles, of identical edge lengths

√
2 (see fig. (1.a)). It can

be obtained by the cut and project method3 : a sub-
set of the Z4 lattice (points and edges between nearest
neighbors) is projected on a two dimensional plane of R4

directed by irrational vectors ; since we project a four-
dimensional set on a two-dimensional plane, we say that
the tiling is of codimension two. The Octagonal tiling is
infinite, but one can build a series of so called periodic
approximants (periodic tilings) which converge asymp-
totically to the quasiperiodic structure. To simplify, we
will call periodic approximant the unit cell of such a pe-
riodic tiling. We choose here the family of approximants
described in3 ; however other families are available in the
literature (see for example4). The approximants are con-
structed by using rational planes for the projection space.
Their properties (number of tiles and size) are related to
the Octonacci sequence : O1 = 1

O2 = 2
Ok+1 = 2Ok +Ok−1

Solving the recurrence relation, one finds : Ok =
1

2
√

2
(λk − λ′k), with λ = 1 +

√
2 (called the silver mean)

and λ′ = 1 −
√

2 ; the Octonacci sequence thus verifies

: limn→∞
Ok+1

Ok
= 1 +

√
2, . The approximant of order k

contains Nk = O2k+1 +O2k vertices.
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FIG. 1: Approximant of order 3 of the octagonal tiling, (a)
in its original form and (b) after a deformation of the edges,
with rs = 2.
(c) Single phason flip, (d) tiling after N2

2
flips.

Note that the Octagonal tiling is composed of tiles of
relative surfaces

√
2, which is an issue for the problem we

wish to study, namely the spectral properties of the qua-
sicrystal in the presence of a uniform magnetic field per-
pendicular to the tiling (see details in the next section).
Irrational areas of tiles mean that the energy spectrum is
not periodic with the magnetic flux, and we would have
to scan the tiling for all values of the flux f ∈ R+ in order
to obtain the full description of the energy spectrum. To
bypass this difficulty, we slightly modify the projection
direction, and obtain a tiling with the same connectiv-
ity, constituted of three types of tiles (small squares, big
squares and rhombi), s.t. the big square and rhombus
tiles have the same surface, and that the ratio rs of the
surfaces of the big square and small square tiles is ra-
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tionnal (see fig. (1.b)). This transformation does not
change the connectivity between the sites nor the syme-
tries and patterns of the lattice.

In order to study the influence of structural disorder
on the spectral properties of the quasicrystal, we also
construct random tilings obtained from the Octagonal
tiling by flipping tiles at random (see fig. (1.c), (1.d)).
In order to reach maximum disorder for a tiling of N

sites, one needs to perform N2

2 flips5.

B. Tight-binding model

We now wish to study the electronic properties of the
quasicrystal. We consider a spinless electron evolving on
the lattice, in a quasiperiodic potential. For simplicity,
we choose the tight-binding model : the particle is al-
lowed to hop between nearest neighbor sites. In the ab-
sence of magnetic field, the corresponding Hamiltonian
is

H =
∑
〈i,j〉

ti,j |i〉〈j| (1)

where 〈i, j〉 denotes a couple of sites, |i〉, |j〉, closest
neighbours, and ti,j the hopping amplitude.

The energy spectrum of such a system has been studied
in6. Here, we study the effect of an external uniform
magnetic field B, perpendicular to the tiling. In this
case, one must add a Peierls phase term7 to the hoppping
amplitude :

ti,j → te−iθi→j = te−
i2π
φ0

∫ j
i
dl·A

where φ0 is the flux quantum and A is a potential
vector associated to the magnetic field : B = ∇ × A.
Due to the magnefic field, gaps appear in the energy
spectrum ; in the case of the square lattice, the graph of
the spectrum as a function of the magnetic flux is called
the Hofstadter butterfly8. By analogy, we shall use the
term Hofstadter butterfly or butterfly for the Octagonal
tiling. We aim at understanding, theoretically, the
spectral properties of the (infinite size) Octagonal tiling.
However, numerically, we can only study finite size
systems ; we will thus use approximants with periodic
boundary conditions for the numerics.

In the following, we set ti,j = −1, ~ = 1, e = −2π so

that the elementary flux φ0 = h
|e| = 1, and a = 1 the

length of the smallest distance between nearest neigh-
bors. Small tiles have an area a2 = 1, and big tiles have

an area 2a2 = 2. We call f = a2B
φ0

= B the magnetic flux

through a small tile, 2f the flux through a big tile, and

the average flux through a tile f̄ = BĀ
φ0

= 1+
√

2
2 B ≈ 1.2f ,

with Ā = limk→∞
Ak
Nk

; the value of Ā can be easily cal-

culated by using the relation Ak = 2O2
k+1.

In open boundary conditions, any value of the mag-
netic flux is permitted. However, the spectrum is poluted
by the edge modes ; to avoid this, we choose periodic
boundary conditions.

In this case, one needs to insure that the Peierls phases
match the periodic boundary condition ; unfortunately,
only a restricted set of values for the magnetic flux fulfill
this requirement. However, one can try to add a gradient
term in the vector potential A, which does not change
the physics of the system, and s.t. more values for f are
allowed. To derive this gauge transformation we use the
following fact : in the presence of a magnetic field, the
Hamiltonian is no longer invariant under translational
symmetry, because A is not ; however, H commutes with
the magnetic translation operators9 : Tai

= e2iπχ(r̂)Tai
,

i ∈ {1, 2}, where ai are two vectors along which the sam-
ple is translated to obtain a periodic tiling (see fig. 1.a)
and χai

(r) =
∫ r

0
dl ·(A(l−ai)−A(l)). Now, the Hamilto-

nian defined by : H ′i = e−2iπχai
(r̂)He2iπχai

(r̂), i ∈ {1, 2},
describes the same system, and commutes with Ta1 , Ta2
respectively. However, magnetic translation operators
along different vectors a1,a2 do not commute in gen-
eral. They do when the flux through the entire sample is
an integer multiple of φ0. To insure this, we set :

RETROUVER EXPRESSION EXPLICITE DES
TERMES DE SAUT DU HAMILTONIEN.

III. HOFSTADTER BUTTERFLY, WANNIER
DIAGRAM AND GAP LABELING

In this section, we present numerical results and dis-
cuss the gap structure of the energy spectrum.

A. Hofstadter butterfly

As discussed in the previous section, in periodic bound-
ary conditions, we can restrict our study of the energy
spectrum to f ∈ [0, 1]. The butterfly obtained (fig. 2) has
the symmetries predicted from the symmetries of the sys-
tem (symmetry of the spectrum w.r.t. 0, and f → 1− f
symmetry due to both the invariance of the spectrum un-
der f → −f and the 1−periodicity). It displays a very
rich gap structure, which could not be observed in open
boundary conditions. Furthermore, we observe the same
gaps for all the approximants numerically accessible (up
to image resolution), and we predict that the butterfly of
the infinite tiling has the same gap structure.

As expected from the presence of magnetic field, we
observe Landau levels near f = 0, which broaden due
to the lattice potential, both in the ordered (fig. 2) and
disordered (fig. 3) cases (we will discuss the broading
quantitatively in the next section). Note that the Lan-
dau levels are the only gaps which survive the structural
disorder (fig. 3), and are not wiped out by it ; therefore,
the structural disorder induced by the flips is a weak dis-
order.
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FIG. 2: Hofstadter butterfly for the order 5 approximant,
periodic boundary conditions.

FIG. 3: Hofstadter butterfly for the disordered order 4 ap-
proximant, periodic boundary conditions.

B. Gap labeling and Wannier diagram

To characterize the gaps in the Hofstadter butterfly,
we turn to the Wannier diagram (fig. 4), namely the
normalized integrated density of states N (E, f̄) (NIDoS)
in the gaps as a function of the average magnetic flux
through one tile f̄ : if a gap opens at the energy E,
it correpsonds to a point (f̄ ,N (E, f̄)) in the Wannier
diagram.

It is well known that the slopes of the lines of the Wan-
nier diagramm are connected to the Hall conductivity in-
side a gap, as given by the Widom-Streda formula10,11

: σH = e∂N (E,f̄)

∂f̄
= e2

h ν, where ν is a topological invari-

ant integer, called the Chern number. Integrating this
formula, one finds :

N (E, f̄) = νf̄ +N0

where N0 is a constant which depends on the gap. As
argued by12 and13, the gap labeling theorem implies that
the gaps can be labelled using two integers (p, q) in the

thermodynamic limit, and that N0 = p+q
√

2
8 . We ar-

gue that, for finite size approximants, one needs three
integers to label a gap, but that only two remain at the
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FIG. 4: Wannier diagram for the approximant of order 4,
PBC. X-axis : average flux per tile f = Ak

Nk
f ; Y-axis : nor-

malized integrated density of states N (E, f̄).

thermodynamic limit. In fact, adapting the argument
of14 and using the Octonacci instead of the Tribonacci
sequence, we find that, for an approximant of order k,
N0 is of the form :

N0 =
pAk + qAk−1 + r(−1])k

Nk

with (p, q, r) ∈ Z independent of k ; in the thermodynam-
ical limit, only two integers (p, q) remain and we predict
:

N0 =
p+ q

√
2

2

i.e. the integers required to label the gaps correspond to
those of the labeling of1213 which are multiples of four.

COMMENTER FILAMENTS - 3 ENTIERS - CODIM

This labeling allows us to classify the gaps, according
to ν, which is related to the response to an applied mag-
netic field, and q, which accounts for the quasiperiodic
order. The integer p insure that the IDoS is well normal-
ized (N (E, f̄) ∈ [0, 1]). First, gaps labelled by ν 6= 0,
q = 0, which correspond to the main IQHE gaps and are
the only gaps to survive disorder (cf. previous section and
fig.2, 3). Second, gaps labelled by ν 6= 0, q 6= 0, which
form fans reminding the IQHE gaps and are seperated
by Landau levels ; they appear at some specific values of
f̄ , related to the Octonacci sequence, similarly to what
happens at rational fluxes of the Hofstadter butterflies of
periodic tilings158. Finally, gaps labelled by ν = 0, q 6= 0,
which also disappear with disorder and are therefore also
associated to the quasiperiodic order. Although it is ex-
pected, at f = 1

2 , to find gaps with a nul Chern ν number
because of the time-reversal symmetry, the remarkable
point here is to find such gaps at other values of f . Such
gaps seldom appear and have so far ony been observed in
the Lieb tiling16, the dice tiling17 and the Rauzy tiling14.
The condition of existence and the physics of these gaps
are still open questions.
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IV. LANDAU LEVELS AT BAND EDGES

We focus here on the Landau levels which appear at
band edges. Remind that the energy levels of an electron
evolving in a two-dimension plane of surface A are, in
the presence of a uniform magnetic field B :

En = ~ω
(
n+

1

2

)
, n ∈ N

where ω = eB
m and m is the effective mass of the electron ;

each level has a degeneracy |B|Aφ0
. In the presence of a lat-

tice potential, the levels broaden as the flux increases1819;
however, in the case of the Octagonal tiling, the barycen-
tre of the levels in the butterfly can be fitted by a family
of lines expressed by :

En =
2πf

m

(
n+

1

2

)
with 1

m = 2.9(1), a value stable for approximants up
to k = 8 (1607521 sites) ; we predict that this value
remains stable in the thermodynamic limit, which defines
an effective mass for the Octagonal tiling.

It is known that, in the presence of a periodic potential,
the energy levels tend to broaden slowly18,19. A similar

slow broadening, e.g. ∆En
~ω ∝ e−

1
f with ∆En the width

of the n− th level and ~ω the energy difference between
two levels) has been observed for quasicrystals as well14.
Here, we observe a much more important broadening :
limf→0

∆En
~ω = C where C is a constant, C ∈ [0.1, 0.2].

In the disordered case, it has been observed for the Rauzy
tiling that the broadening diverges to infinity? .

V. EFFECTIVE MASS IN ZERO FIELD

As discussed in the previous section, in the zero field
limit, the effective mass of an electron submitted to the
quasiperiodic potential is given by the average slope of
the Landau levels.

We aim here at indentifying an effective mass in zero
field. There exist several ways to define such a quan-
tity (see complementary material in14). A first ap-
proach consists in mesuring the density of state (DoS)
at the band edge. At zero temperature, the DoS is :
ρT=0(E) =

∑
n δ(E − En), with {En} the energy spec-

trum, which is not analytical ; at finite temperature T
however, the DoS is given by : ρT (µ) = −

∑
n n
′
F (En−µ)

with nF (E) = 1
1+eβE

the Fermi distribution function at
chemical potential µ = 0. The DoS at finite temperature
is thus smooth at the band edge, and can be approxi-
mated by the DoS associated to a parabolic dispersion
relation in 2D, a constant equal to

mρ
2π . We find for the

Octagonal tiling : 1
mρ

= 2.9(1), as for the effective mass

calculated with the Landau levels : m = mρ.

Another approach uses the so called effective mass
tensor20. In the case of another quasiperiodic tiling14,
both the Landau levels slope and the effective mass ten-
sor gave consistent values of the effective mass.

The idea is to calculate the effective mass of an elec-
tron of energy ε(k) close to the energy minimum. If the
minimum is reached at k = k0, then the linear term in
k− k0 vanishes when we expand ε(k):

ε(k) = ε(k0)− α(k− k0)2 +O((k− k0)3)

and we define an effective mass mT s.t. : α = ~2

2mT
. The

electron thus responds to a driving fiels as if it had a
mass mT . To derive the effective mass, we calculate the
effective mass tensor, derived from Bloch’s Hamiltonian
:

H0(k) = eik·̂rH0e
−ik·̂r

where H0 is the Hamiltonian of the periodic boundary
conditions problem, at zero magnetic field. To obtain the
effective mass tensor, we develop the dispersion relation
around the center of the first Brillouin, for the first energy
subband :

E1(k) = E1(0) +
1

2
αi,jkikj +O(k2)

where the αi,j define the effective mass tensor :

α =

(
αx,x αx,y
αx,y αy,y

)
and the effective mass mT is given by :

1

mT
=
√

detα

Up to a constant, it can be shown that mT is equal to
the Thouless conducance21, which measures the stiffness
of the ground state energy when one modifies the bound-
ary conditions. More precisely, we wish to quantify how
the energy spectrum changes when we pass from periodic
boundary conditions, with a system invariant under the
translation along the vector L = Lx̂ : ψ(r + L) = ψ(r),
to a more general problem where the phase is shifted
from a factor K · L : ψ(r + L) = eiK·Lψ(r). For-
mally, this amounts to study the spectrum of the op-
erator eiK·rHe−iK·r. If 1

mT
is close to zero, then the

groundstate energy does not change a lot when we vary
the boundary conditions ; if it is large, then the ground-
state energy is less stiff. The stiffness of the groundstate
energy can be used as a criteria for localization ; indeed,
if the groundstate wave function is very localized, then
we expect that it won’t be much affected by a twist of
the bondary conditions, unlike an extended groundstate.
This has been discussed quantitatively in21.

For the Octagonal tiling, unlike m and mρ, mT does
not converge to a finite value as we increase the size of
the approximant ; instead, mT goes to zero with the size
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Nk 239 1 393 8 119 47 321 275 807 1 607 521
1

mT
2.9465 2.9173 2.8861 2.8530 2.8225 2.7891

TABLE I: Inverse effective masses 1
mT

obtained with the ef-

fective mass tensor, for approximants of orders k going from
3 to 8

of approximant, as can be intuited from the numerical
results in table 1.

More precisely, we find that, for the k − th approxi-

mant : ln
(

1
mT

)
= c− 0.00624 ln(Nk), with c a constant.

This is consistent with the nature of the ground state of
the system, which we find to be extended algebraically
as shown by the inverse participation ratio I : for an
approximant of Nk sites, I ∝ 1

Nβk
with β = 0.987.

VI. CONCLUSION
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