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Introduction
We first emphasize the connection between magnetism and Majorana fermions, by giving a reminder
on the representations of a spin-1

2 particle, in terms of Pauli matrices, fermionic operators and Ma-
jorana fermions. A single spin-1

2 fermion, in the quantum mechanics language, is represented by a
Lie algebra, for example the Pauli matrices {σx, σy, σz} or {σ+, σ−, σz}, with σx = σ+ + σ− and
σy = 1

i(σ
+−σ−). Using the Jordan-Wigner transformation, one can describe the spin with fermionic

operators â†,â, s.t. :
σ+ = â† , σ− = â , σz = 1− 2â†â

One can also choose to replace the fermionic operator â by two Majorana fermions η1 and η2, verify-
ing η1,2 = η

†
1,2, such that :

â = η1 − iη2 , â† = η1 + iη2

Note that these Majorana operators can be understood as qubits located on the site of the spin. Exper-
imentally, such qubits are still difficult to manipulate, but there is ongoing research on this topic.
Here, we study a single spin chain system and a two-legged spin ladder system in the Majorana lan-
guage, which enables us to obtain an exact diagonalization and study the energy spectrum and phase
diagram of these models. We remind the mapping between the single spin chain and the BCS Hamil-
tonian, and show the connection between the two-legged spin ladder and interchain supraconductivity.

1D Magnetic Kitaev Chain

Model and exact diagonalization
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Figure 1: Magnetic Kitaev chain and Hamiltonian in spin representation ; the interaction between nearest neighbors is
attractive : J1, J2 < 0.

Fermionic representation

The quantum spin operators are replaced by fermionic operators â†, â using Jordan-Wigner :




σxj = (â
†
j + âj)e

iπ
∑
{i}∈string a

†
iai

σ
y
j = −i(â†j − âj)e

iπ
∑
{i}∈string a

†
iai

σzi = 2â
†
jâj − 1 =

{
1, if | ↑〉z
−1, if | ↓〉z

In this language :

H =
∑

j=2m−1

J1(â
†
j − âj)(â

†
j+1 + âj+1)− J2(â

†
j+1 + âj+1)(â

†
j+2 − âj+2) (1)

Majorana representation

1 fermion operator on site j ≡ 2 Majorana fermions :

ĉj =




i(â
†
j − âj) , j = 2m

â
†
j + âj , j = 2m− 1

, d̂j =




â
†
j + âj , j = 2m

i(â
†
j − âj) , j = 2m− 1

In this language :
H = −i

∑

j=2m−1

J1ĉj ĉj+1 − J2ĉj+1ĉj+2

⇒ involves only the ĉ operators ; the d̂ operators are unpaired.

Mapping to BCS Hamiltonian

Fourier transform of (1) :

H =
∑

k

2(J1 + J2) cos(kl)â
†
kâk + i(J1 − J2) sin(kl)(â

†
−kâ
†
k + â−kâk) ≡ HBCS

Gap : ∆k = i(J1 − J2) sin(kl).

Energy spectrum : ε(k) = ±
√
J2

1 + J2
2 + 2J1J2 cos(2kl)

Phase Diagram
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Figure 2: The gapped phases at J1J2 > 1 and J1
J2
< 1 are spin liquids, characterized by a coherence lenght ξ ∝ |J1 − J2|−1.

There is a phase transition at J1 = J2.

Two Legged Spin Ladder

Model and exact diagonalization
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Figure 3: 2 coupled magnetic Kitaev chains (ladder), in (a) the general case and (b) in the limit J4 = 0 ; the interactions
are attractive : J1, J2, J3, J4 < 0.

Note 1: the phase diagram for the case J3 = J4 in the ladder (a) has been studied by [1]
Note 2: the 2D version of the model (b), the so called honeycomb lattice (see fig. 4), has been solved
exactly by Kitaev [2]

Figure 4: Honeycomb lattice.

Majorana representation

cj,l =




i(a
†
j,l − aj,l) , j + l = 2m

a
†
j,l + aj,l , j + l = 2m− 1

, dj,l =




a
†
j,l + aj,l , j + l = 2m

i(a
†
j,l − aj,l) , j + l = 2m− 1

(2)

With the appropriate Z2 gauge choice, the Hamiltonian becomes :

H = −i
∑
sλ,tµ Jsλ,tµcsλctµ Here, instead of labelling the sites with two integers,

(j, l), j ∈ [[1,M ]], l ∈ {1, 2}, we changed the notation

to (s, λ), where s ∈ [[1,M ]] denotes the cell index, and

λ ∈ [[1, 4]] denoting the position of the site in a cell (see

figure on the left).
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In Fourier space :

H = −i
∑

k,λ,µ

XT



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
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α = J1e

ikl + J2e
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β = J3e
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
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
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Phase diagram
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Figure 5: Left : J4 = 0 ; there are two gapped phases Ax and Ay at J1
J2
> 1 and J1

J2
< 1 respectively (spin liquids) ; the

J1 = J2 line is gapless for all J3 (interchain SC). Right : J3 = J4 case ; the three gapped phases are separated by two
gapped phases (black lines) ; the phases Ax, Ay are similar to those from the J3 = 0 case.

Conclusion and Perspectives
We used the Majorana representation to study the two legged spin ladder. In the J3 = J4 limit,
we found results consistent with [1]. We also obtained the full phase diagram for the J3 = 0 case
(”1D honeycomb”), and we predict an interchain supraconductivity behaviour in the gapless phase at
J1 = J2, which disappears as soon as J1 6= J2 (Ax, Ay phases described by Kitaev [2].
Further perspectives include the study of the dopped two legged spin ladder, and of the decorated
Kagome lattice.
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