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We show how a chiral Dirac fermion (a massless electron or hole) can be converted into a pair
of neutral chiral Majorana fermions (a particle equal to its own antiparticle). These two types
of fermions exist on the metallic surface of a topological insulator, respectively, at a magnetic
domain wall and at a magnet-superconductor interface. Interferometry of Majorana fermions is a key
operation in topological quantum computation, but the detection is problematic since these particles
have no charge. The Dirac-Majorana converter enables electrical detection of the interferometric
signal.

PACS numbers: 74.45.+c, 03.67.Lx, 71.10.Pm, 73.23.-b

There is growing experimental evidence [1, 2, 3] that
the 5/2 fractional quantum Hall effect (FQHE) is de-
scribed by the Moore-Read state [4]. This state has re-
ceived much interest in the context of quantum compu-
tation [5], because its quasiparticle excitations are Ma-
jorana bound states. A qubit can be stored nonlocally
in a pair of widely separated Majorana bound states, so
that no local source of decoherence can affect it [6]. The
state of the qubit can be read out and changed in a fault-
tolerant way by edge state interferometry [7, 8, 9]. This
“measurement based topological quantum computation”
[10] combines static quasiparticles within the Hall bar to
store the qubits, with mobile quasiparticles at the edge
of the Hall bar to perform logical operations by means of
interferometric measurements.

The electronic correlations in the Moore-Read state in-
volve a pairing of spin-polarized fermions, equivalent to a
superconducting pairing with px + ipy orbital symmetry
[11, 12, 13]. Such an exotic pairing might occur nat-
urally in the Sr2RuO4 superconductor [14], or it might
be produced artificially in p-wave superfluids formed by
fermionic cold atoms [15]. Recently, Fu and Kane [16]
showed how a conventional s-wave superconductor might
produce Majorana bound states, if brought in proxim-
ity to a topological insulator. This class of insulators
has metallic surface states with massless quasiparticles,
as has been demonstrated in BixSb1−x alloys [17] and
Bi2Se3 single crystals [18, 19]. The latter material is par-
ticularly promising for applications because it remains
a topological insulator at room temperature. The 5/2
FQHE, in contrast, persists only at temperatures well
below 1 K [1, 2, 3].

While induced superconductivity in a topological in-
sulator seems an attractive alternative to the FQHE for
the purpose of quantum computation, one crucial differ-
ence creates a major obstacle: Quasiparticle excitations
carry a charge in the FQHE, but they are charge-neutral
in a superconductor. All known schemes [7, 8, 9] for edge
state interferometry rely on electrical detection, and this
seems impossible if the edge states carry no electrical
current. It is the purpose of this work to propose a way
around this obstacle, by showing how a pair of neutral
Majorana fermions can be converted phase coherently

FIG. 1: Three-dimensional topological insulator in proximity
to ferromagnets with opposite polarization (M↑ and M↓) and
to a superconductor (S). The top panel shows a single chiral
Majorana mode along the edge between superconductor and
ferromagnet. This mode is charge neutral, so it cannot be
detected electrically. The Mach-Zehnder interferometer in the
bottom panel converts a charged current along the domain
wall into a neutral current along the superconductor (and
vice versa). This allows for electrical detection of the parity
of the number of enclosed vortices, as explained in the text.

and with unit probability into a charged Dirac fermion.
We first give a qualitative description of the mech-

anism of electrically detected Majorana interferometry,
and then present a quantitative theory. Our key idea is
to combine edge channels of opposite chiralities in a sin-
gle interferometer, by means of a magnetic domain wall.
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The appearance of counterpropagating edge channels in
a single superconducting domain is a special feature of
a topological insulator in proximity to a ferromagnet,
where the propagation direction is determined by the way
time reversal symmetry is broken outside of the conden-
sate (hence by the polarization of the ferromagnets) —
rather than being determined by the order parameter of
the condensate (as in a px±ipy superconductor or FQHE
droplet).

Refering to the lower panel of Fig. 1, we see that elec-
trons or holes (with Dirac fermion operators c†a and ca)
propagate along the domain wall a until they reach the
superconductor, where they are split into a pair of Ma-
jorana fermions γb and γc of opposite chirality:

c†a → γb + iγc, ca → γb − iγc. (1)

(Here we have used that γ = γ†, which is the defining
property of a Majorana fermion.)

The Dirac-to-Majorana fermion conversion expressed
by Eq. (1) relies on the fact that the electron or hole
mode at the domain wall couples to a pair of Majo-
rana modes, so that the full information encoded by the
complex fermion ca is encoded by two real fermions γb
and γc. This is the essential distinction from the pro-
cess of electron tunneling into a Majorana bound state
[20, 21, 22, 23], which couples to a single Majorana
fermion and can therefore not transfer the full informa-
tion.

Upon leaving the superconductor the Majorana
fermions recombine into an electron c†d or hole cd de-
pending on the number nv of superconducting vortices
enclosed by the two arms of the interferometer,

γb + (−1)nv iγc → c†d, γb − (−1)nv iγc → cd. (2)

For nv an even integer, no charge is transfered to the su-
perconductor, while for nv odd a charge ±2e is absorbed
by the superconducting condensate. The conductance G,
measured by application of a voltage between a point on
the domain wall and the superconductor, becomes equal
(in the zero-temperature, zero-voltage limit) to G = 0 for
nv = even and G = 2e2/h for nv = odd.

Proceeding now to a theoretical description, we recall
that the surface of a three-dimensional topological in-
sulator, in the presence of a magnetization M(r) and
superconducting order parameter ∆(r), is described by
the following Hamiltonian [16]:

H =
(
M · σ + vFp · σ − EF ∆

∆∗ M · σ − vFp · σ + EF

)
.

(3)
Here p = (px, py, 0) is the momentum on the surface,
σ = (σx, σy, σz) is the vector of Pauli matrices, vF
is the Fermi velocity, and EF the Fermi energy. The
two magnetizations M↑ and M↓ in Fig. 1 correspond
to M = (0, 0,M0) and M = (0, 0,−M0), respectively.
Particle-hole symmetry is expressed by the anticommu-

tation HΞ = −ΞH of the Hamiltonian with the operator

Ξ =
(

0 iσyC
−iσyC 0

)
, (4)

with C the operator of complex conjuation.
There is a single chiral Majorana mode with amplitude

ψ (group velocity vm) at a boundary between a region
with a superconducting gap and a region with a magnetic
gap [16]. At a domain wall between two regions with
opposite signs of Mz there are two chiral Dirac fermion
modes, an electron mode with amplitude φe and a hole
mode with ampitude φh. The scattering matrix Sin(ε)
describes scattering at excitation energy ε from electron
and hole modes (along edge a) to two Majorana modes
(along edges b and c in Fig. 1), according to(

ψb
ψc

)
= Sin

(
φea
φha

)
. (5)

Particle-hole symmetry for the scattering matrix is ex-
pressed by

Sin(ε) = S∗in(−ε)
(

0 1
1 0

)
. (6)

At small excitation energies |ε| � |Mz|, |∆| the ε-
dependence of Sin may be neglected. Then Eq. (6) to-
gether with unitarity (S−1

in = S†in) fully determine the
scattering matrix,

Sin =
1√
2

(
1 1
i −i

) (
eiα 0
0 e−iα

)
, (7)

up to a phase difference α between electron and hole
(which will drop out of the conductance and need not
be further specified).

The scattering matrix Sout for the conversion from Ma-
jorana modes to electron and hole modes can be obtained
from Sin by time reversal,

Sout(M) = STin(−M) =
1√
2

(
eiα

′
0

0 e−iα
′

) (
1 i
1 −i

)
.

(8)
The phase shift α′ may be different from α, because of
the sign change of M upon time reversal, but it will also
drop out of the conductance.

The full scattering matrix S of the Mach-Zehnder in-
terferometer in Fig. 1 is given by the matrix product

S ≡
(
See Seh
She Shh

)
= Sout

(
eiβb 0

0 eiβc

)
Sin, (9)

where βb and βc are the phase shifts accumulated by the
Majorana modes along edge b and c, respectively. The
relative phase

βb − βc = εδL/h̄vm + π + nvπ (10)
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FIG. 2: Fabry-Perot interferometer, allowing to measure the
state of a qubit encoded in a pair of vortices. Black lines
represent electron or hole modes at domain walls, gray lines
represent Majorana modes at magnet-superconductor inter-
face.

consists of three terms: A dynamical phase (proportional
to the length difference δL = Lb − Lc of the two arms of
the interferometer), a Berry phase of π from the rotation
of the spin-1/2, and an additional phase shift of π per
enclosed vortex.

The differential conductance follows from

G(V ) =
2e2

h
|She(eV )|2 =

2e2

h
sin2

(
nvπ

2
+
eV δL

2h̄vm

)
.

(11)
As announced in the introduction, the linear response
conductance G(0) vanishes if the number of vortices is
even, while it has the maximal value of 2e2/h if the num-
ber is odd.

The Mach-Zehnder interferometer can distinguish be-
tween an even and an odd number nv of enclosed vortices.
The next step towards measurement based topological
quantum computation is to distinguish between an even
and an odd number nf of enclosed fermions. If nv is
odd, the parity of nf is undefined, but if nv is even, the
parity of nf is a topologically protected quantity that de-
termines the state of a qubit [5]. To electrically read out
the state of a qubit encoded in a pair of charge-neutral
vortices, we combine the Fabry-Perot interferometer of
the FQHE [8, 9] with our Dirac-Majorana converter.

The geometry is shown in Fig. 2. Electrons are injected
in the upper left arm a of the interferometer (biased at
a voltage V ) and the current I is measured in the upper
right arm e (which is grounded). The electron at a is split
into a pair of Majorana fermions ψb and ψc, according to
the scattering matrix Sin. A pair of constrictions allows
tunneling from ψc to ψd, with amplitude tdc. Finally,
the Majorana fermions ψd and ψb are recombined into an
electron or hole at e, according to the scattering matrix
Sout. The resulting net current I = (e2/h)V (|Tee|2 −
|The|2) (electron current minus hole current) is obtained

from the transfer matrix

T = Sout

(
eiβb 0

0 tdc

)
Sin ⇒ I =

e2

h
V Re

(
e−iβbtdc

)
.

(12)
Notice that the current is proportional to the tunnel am-
plitude, rather than to the tunnel probability. In the
low-voltage limit, to which we will restrict ourselves in
what follows, the phase shift βb vanishes and tdc is real
(because of electron-hole symmetry) — so I directly mea-
sures the tunnel amplitude.

In general, two types of tunnel processes across a con-
striction contribute to tdc: A Majorana fermion at the
edge of the superconductor can tunnel through the super-
conducting gap to the opposite edge of the constriction
either directly as a fermion or indirectly via vortex tun-
neling [24]. Fermion tunneling typically dominates over
vortex tunneling, although quantum phase slips (and the
associated vortex tunneling) might become appreciable in
constrictions with a small capacitance [25]. Only vortex
tunneling is sensitive to the fermion parity nf , through
the phase factor (−1)nf acquired by a vortex that encir-
cles nf fermions. Because of this sensitivity, vortex tun-
neling is potentially distinguishable on the background
of more frequent fermion tunneling events.

The contribution to tdc from fermion tunneling is sim-
ply tf,1+(−1)nv tf,2, to lowest order in the fermion tunnel
amplitudes tf,1 and tf,2 at the first and second constric-
tion. There is no dependence on nf , so we need not
consider it further.

To calculate the contribution to tdc from vortex tun-
neling, we apply the vortex tunnel Hamiltonian [24]
Hi = viσiσ

′
i, where i = 1, 2 labels the two constrictions

and vi is the tunnel coupling. The operators σi and σ′i
create a vortex at the left and right end of constriction
i, respectively. The lowest order contribution to tdc is
of second order in the tunnel Hamiltonian, because two
vortices need to tunnel in order to transfer a single Ma-
jorana fermion. The calculation of tdc will be presented
elsewhere, but the nv and nf dependence can be obtained
without any calculation, as follows.

Three terms can contribute to second order in Hi, de-
pending on whether both vortices tunnel at constriction
number 1 (amplitude t21), both at constriction number 2
(amplitude t22), or one at constriction number 1 and the
other at constriction number 2 (amplitude 2t1t2). The
resulting expression for tdc is

tdc = t21 + t22 + (−1)nf 2t1t2, if nv is even. (13)

We see that if the two constrictions are (nearly) identi-
cal, so t1 ≈ t2 ≡ t, the tunnel amplitude tdc and hence
the current Ivortex due to vortex tunneling vanish if the
fermion parity is odd, while Ivortex = (e2/h)V ×4t2 if the
fermion parity is even [26].

In summary, we have proposed a method to convert a
charged Dirac fermion into a pair of neutral Majorana
fermions, encoding the charge degree of freedom in the
relative phase of the two Majorana’s. The conversion can
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be realized on the surface of a topological insulator at a
junction between a magnetic domain wall (supporting
a chiral charged mode) and two magnet-superconductor
interfaces (each supporting a Majorana mode). We
found that at low voltages the Dirac-Majorana conver-
sion is geometry independent and fully determined by
the electron-hole symmetry. It allows for the electrical

read-out of a qubit encoded nonlocally in a pair of vor-
tices, providing a building block for measurement based
topological quantum computation.

We have benefited from discussions with C. L. Kane
and B. J. Overbosch. This research was supported by
the Dutch Science Foundation NWO/FOM.
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