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Introduction

Since it was first hypothesized by Ettore Majorana in 1937, Majorana particle has sparked growing

interests in both the fields of high energy physics and condensed matter physics. By definition,

Majorana particle is a fermion that acts as its own antiparticle and thus uncharged. If we define a

set of creation and annihilation operators γ†j and γj of quantum state j, Majorana fermion satisfies

γ†j = γj ,

while for Dirac fermion, they are distinct.

In the realm of high energy physics, nearly all elementary fermions fall into the category of Dirac

fermions, obtaining gauge charges in the Standard Model. One exception is the right-handed sterile

neutrino. Predicted by the well-known seesaw mechanism [1], if we treat it as Majorana particle at

low energy, the smallness of observed neutrino mass becomes natural after electroweak symmetry

breaking. In addition, Majorana particle is also one promising candidate for dark matter in the

universe [2]. However, experiments are still underway to search for such exotic Majorana particles.

Neutrinoless double beta decay [3] and the production of lepton pairs with same charges at LHC

[4], might produce encouraging evidence in the near future.

In condensed-matter systems, Majoranas emerge from microscopic models on a lattice which

describe collective behaviours of atoms and the interactions with environment. They are more clean

in materials than in accelerators, and make it easier for scientists to manipulate. So far, there are

two classes of materials giving birth to Majoranas: topological superconductors and topological

insulators.

For the first class, in 2000, N. Read and D. Green built Majorana fermions from a 2D px + ipy
superconductor, the mass of which would change the sign in the transition between weak- and

strong-coupling Bardeen-Cooper-Schrieffer (BCS) paired states [5]. One year later, A. Kitaev

predicted Majorana fermions should appear as stable edge states of a 1D superconducting px-wave

wire and shed light on their potential role as a building block, namely the qubits, for a topological

quantum computer [6]. More recently, theoretical observation has pointed to the existence of

Majoranas in topological insulators [7] and superconducting graphene [8, 9]. For experimental

detection, it was shown that the combination of spin-orbit coupling with a Zeeman field or strong

interactions may lead to the formation of Majorana particles [10, 11]. Yet positive experimental

results have not come out until 2012 when a neutral Majorana was observed in indium antemonide

semiconductor nanowires connected to a gold and a superconductor at each end [12]. When exposed

to strong magnetic field, the peak of electrical conductance at zero voltage supported Majorana

bound states. However, it could not exclude the possibility of Kondo effect or disorder [13]. In

2014, stronger evidence was given by applying low-temperature scanning tunnelling microscope. It

allowed to spatially resolve zero-bias peak features and demonstrated that Majoranas were localized

at the boundary of iron atomic chains on the surface of superconducting lead [14].

We can briefly review how Majoranas arise from the BCS Hamiltonian using mean field theory

[15, 16]. Written in the matrix form with the fermionic basis,

HBCS =
∑
k

(
f†k f−k

)(Tk ∆k

∆∗k −T−k

)(
fk
f†−k

)
, (1)

Tk represents the hopping term, and ∆k the pairing term. After diagonalization of the Hamiltonian,

we can find the band structure with a superconducting gap (see Fig. 1). It takes finite energy to

create a pair of quasi-particle and quasi-hole. On the fermi level, we get Majorana zero modes

(MZM) where the particle and hole coincide with each other:

εk − µ = 0, k = kF .
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Figure 1: Band structure of the BCS Hamiltonian.

Here µ represents the chemical potential of the system. We further denote the eigenvector as γk
and it must satisfy:

γk = ukfk + vkf
†
−k, γ†k = γk, uk = v∗k.

Now if we exchange the particle and hole by σ1 Pauli matrix, due to their opposite signs of energies,

we arrive at

σ1HBCSσ
1 = −H∗BCS,(

0 1

1 0

)(
Tk ∆k

∆∗k −T−k

)(
0 1

1 0

)
=

(
−T−k ∆∗k

∆k Tk

)
=

(
−T−k −∆∗−k
−∆−k Tk

)
,

∆k = −∆−k.

So to hold Majorana particles, the pairing term should have odd parity, which corresponds to

the p-wave superconductors. In real life, as they are not so common, they have another name

“topological superconductors”.

Further, we notice from (1), the superconducting gap ∆k and ∆∗k are associated with bosonic

paring operators f†kf
†
−k and f−kfk. At low temperatures, due to Bose-Einstein condensation, there

are no back-scattered electrons. It gives rise to the zero resistance of superconductors below TC .

For the second class topological insulators, the mechanism is quite different. It starts from an

insulating phase to build effective lattice models where particles are localized at each site. A.

Kitaev first came up with an exactly solvable model on honeycomb lattices with four Majoranas

per site in two dimensions [17].

For real quantum materials, we mainly focus on the Heisenberg-Kitaev (HK) model:

HHK =
∑
〈ij〉∈α

(JSi · Sj +KSαi S
α
j ), α = x, y, z, (2)

where J denotes the Heisenberg coupling constant and K represents the Kitaev exchange on

〈ij〉 links from three different directions. The phase diagram in Fig. 2 can be used to study

the stability of Kitaev spin liquid and its neighbouring phases [18]. Similar to neutrino mixing

angles, here φ is introduced to parametrize the model: J = cosφ,K = sinφ. We shall see later

in Sec. 2.9, Heisenberg coupling will destroy free Majorana particles. In correlated materials like

honeycomb iridium oxides, the difficulty lies in the fact usually Heisenberg interactions can not be

neglected and in most cases, the system exhibits a zigzag ordering. While the featureless Majorana

bound states are rather difficult both for the formation and identification, encouragingly, excited

states of Majorana fermions have just been reported in the honeycomb magnet α-RuCl3 [19]. On

the other hand, in ultracold atom experiments, the mixing angle can be carefully tuned. When

|K| � |J |, φ ∼ π/2, 3π/2, we are expected to build pure Kitaev optical lattices and reach two spin

liquid points in Fig. 2. Real efforts have been put into the field of quantum engineering [20].

2



Figure 2: Phase diagram of the Heisenberg-Kitaev model [18].

In this report, our goal is to explore low-dimensional analogues of BCS form (1). We are

going to construct Majorana fermions in the spin-1/2 models which are insulating in one and two

dimensions. Our general approach will start from the Jordan-Wigner transformation [21], which

maps spin operators to fermionic operators a and a†. We can look at the simplest single-spin case:

σ+ = a, σ− = a†, σz = 1− 2a†a =

{
1, | ↑〉
−1, | ↓〉

, {a, a†} = 1,

where the spin-down state is full and the spin-up state is empty. It is easy to see that the spin

operators then fulfil the anti-commutation relations:

σx = σ+ + σ−, σy =
1

i

(
σ+ − σ−

)
,

[σx, σy] =
1

i

[
a+ a†, a− a†

]
= 2i(1− 2a†a) = 2iσz.

However, for multi-spin systems it becomes more complicated. To do the exact mapping, we have

to introduce strings into Jordan-Wigner transformation (see Sec. 1.1). For the next step, we can

construct Majorana particles from these fermionic operators. With respect to single-spin system,

in total we have two Majoranas c and d:

c = a+ a†, d = i(a† − a).

If both of them are free, the eigenstates |0〉 and |1〉 of one qubit can be further built:

g† =
1

2
(c+ id), g =

1

2
(c− id), g†|0〉 = |1〉, g|1〉 = |0〉.

Exchanging c and d will always give an extra factor (−i), which is the characteristic of Majorana

braiding (see Fig. 3).

Based on the above discussion, in Sec. 1, we summarize a well-known exactly solvable model

exhibiting Majoranas, the quantum Ising chain which is linked with BCS ground states. In Sec. 2

and 3, magnetic analogues of the 2D Kitaev model are probed. We will also take advantage of

emergent Majorana fermions and build their connections to potential materials realization and

quantum computation.
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Figure 3: Braiding of two Majoranas.

1 Transverse Field Ising Model

In this section, we aim to discuss, as an introduction, a model with magnetic spins showing low-

energy Hamiltonian of the form (1). Starting from the quantum Ising chain with interaction

Hamiltonian:

HI = −J
∑
i

(
gσ̂zi + σ̂xi σ̂

x
i+1

)
, (3)

where J > 0 is an exchange constant and g > 0 is a dimensionless coupling, we first introduce

Jordan-Wigner transformation to obtain a similar form as the BCS Hamiltonian. It enables us to

discuss the ground states under different limits of g and solve the exact spectrum. We will see

quantum phase transition at the critical point gC = 1 between distinct magnetic configurations.

When we move into the Majorana picture, they correspond to different couplings of Majorana

particles. At the end of this section, we will perform the mapping from the quantum model in

one dimension to the 2D classical Ising model. It will deepen our understanding of the critical

phenomena of quantum spin chain in Sec. 2.

1.1 Jordan-Wigner Transformation

Jordan-Wigner transformation has a historical significance in modern physics. In 1925, Dirac in-

troduced the creation and annihilation operators a† and a to reinterpret the fundamental equations

of quantum mechanics into the matrix formulation [22]. Only three years later, P. Jordan and EP

Wigner constructed a transformation from spin operators to fermionic creation and annihilation

operators a† and a [21]. However, it had to wait until 1940 when T. Holstein and H. Primakoff

found its first application in atomic magnets [23]. In 1957, the BCS ground state was built and it

showed a close connection to the spin liquid phase in magnets [15]. In 1983, based on Holstein-

Primakoff boson representation, FDM. Haldane solved the 1D Heisenberg antiferromagnetic chain

[24]. Nearly twenty years later, a more general spin-fermion transformation was developed, leading

to Majorana representation and the first 2D spin-1/2 model was exactly solved by A. Kitaev [17].

Going back to the quantum Ising chain, we introduce Jordan-Wigner transformation in the

following form:

σ+
j = aje

iπ
∑
i<j Q̃i , σ−j = a†je

iπ
∑
i<j Q̃i Q̃i = a†iai, (4)

where a†i and ai are fermionic creation and annihilation operators which satisfy

{ai, a†j} = δij , {ai, aj} = {a†i , a
†
j} = 0.

It maps the Hilbert space of a system with spin 1/2 per site into that of spinless fermions hopping

between sites. And we denote the spin-up state as empty and spin-down state as occupied.

σxj = σ+
j + σ−j = (a†j + aj)e

iπ
∑
i<j a

†
iai ,

σyj =
1

i
(σ+
j − σ

−
j ) = i(a†j − aj)e

iπ
∑
i<j a

†
iai , (5)

σzj = −iσxj σ
y
j = (a†j + aj)(a

†
j − aj) = 1− 2a†jaj = eiπa

†
jaj =

{
1, | ↑〉;
−1, | ↓〉.
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We notice the quantization axis is not chosen as the normal Néel order. It implies when g → 0, the

ground state with spins oriented along x axis | ←←←→→→〉, will result in 〈σzj 〉 = 0, 〈a†jaj〉 = 1/2.

We always get a half-filled band.

It can be verified that if the anti-commutation relations hold for ai, a
†
i , the spin operators are

consistent with the following commutation relations, and vice versa:

[σ̂+
i , σ̂

−
j ] = δij σ̂

z
i , [σ̂zi , σ̂

±
j ] = ±2δij σ̂

±
i .

Then we obtain a quadratic Hamiltonian in free Fermionic operators,

HI = −J
∑
i

(
a†ia
†
i+1 + a†iai+1 + a†i+1ai + ai+1ai − 2ga†iai + g

)
. (6)

The system is in a grand canonical ensemble with the chemical potential

µ = εF = −2Jg, EGS = 〈N〉εF =
∑
i

µ〈a†iai〉.

1.2 Ground State

As HI (6) is quadratic in Fermionic operators, we can diagonalize it in the momentum space:

ai =
1√
M

∑
k

〈xi|k〉〈k|a〉 =
1√
M

∑
k

eikxiak, a†i =
1√
M

∑
k

e−ikxia†k,

k =
2πm

l
, m = −M

2
, . . . , 0, . . . ,

M

2
− 1,

where M is the number of sites, l is the lattice spacing and xm = ml,L = Ml.

HI = J
∑
k

(
2(g − cos(kl))a†kak − g + i sin(kl)(a†−ka

†
k + a−kak)

)
, (7)

where b†k = a†−ka
†
k and b−k = a−kak are bosonic operators [bk, b

†
k′ ] = δk,k′ − δk,−k′ . Hamiltonian

(7) consists of two parts: the diagonal and the off-diagonal terms

H0 =
∑
k

2J(g − cos(kl))a†kak − Jg, H1 =
∑
k

iJ sin(kl)(a†−ka
†
k + a−kak). (8)

To keep the total particle number N̂ =
∑
k a
†
kak conserved, we can enlarge the Hilbert space of

H0 to twice of its original size,

H ′0 = 2H0 = H0 +Hequiv,

Hequiv =
∑
k

2J(g − cos(−kl))a†−ka−k − Jg,

H ′0 =
∑
k

(−2J cos(kl)− µ)(a†kak − a−ka
†
−k).

If we choose (a†k, a−k) as our basis, in the matrix form

H ′0 =
∑
k

(
a†k a−k

)(−2J cos(kl)− µ 0

0 2J cos(kl) + µ

)(
ak
a†−k

)
, (9)

H1 =
∑
k

(
a†k a−k

)( 0 −iJ sin(kl)

iJ sin(kl) 0

)(
ak
a†−k

)
. (10)

Here (9) and (10) share the same form with the BCS Hamiltonian (1) : fk = ak, f
†
−k = a†−k, Tk =

−2J cos(kl) − µ,∆k = −iJ sin(kl). The two diagonal elements give the energies to create one

particle a†kak and one hole a−ka
†
−k. They have opposite signs, corresponding to the positive energy

of particles and negative energy of anti-particles. For off-diagonal terms, ∆k = −∆−k. This odd

parity shows the feature of px-wave superconductors.
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Figure 4: Band structure of H0. (J > 0)

1.2.1 Fermionic ground state

First, we only consider the effect of H ′0 on the band structure of particles.

H0 =
∑
k

ε̃ka
†
kak, ε̃k = −2J cos(kl)− µ = εk − µ,

where εk is the energy of one particle at wave vector k. We fix µ and get the fermi energy,

ε̃kF = −2J cos(kF l) − µ = εkF − µ = 0. It is clear that only when µ = −2Jg > −2J, g < 1, the

fermi level will cross the band (see Fig. 4). The system behaves like a metal. When g > 1, there

is a gap between the fermi level and the bottom of the band. As it costs finite energy to add one

particle from the vacuum, the system exhibits an insulating phase. When g = 1, the band becomes

gapless.

Particles can only occupy states below εF , we obtain the fermionic ground state:

|GS〉0 =
∏
|k|≤kF

a†k|0〉 = |kn, . . . , k1〉|ki|≤kF , (11)

where |0〉 is the vacuum state defined by ak|0〉 = 0,∀k. Total mean number of particles of the

system becomes

〈N〉 =
∑
i

0〈GS|a†iai|GS〉0 =
Ml

π
kF .

The unit of 〈N〉 being 1, kF ∼ 1
l and 〈N〉 ∼M , which is consistent with the fact

M →∞, 〈(δN)2〉
〈N〉2

=
〈N2〉 − 〈N〉2

〈N〉2
→ 1

〈N〉
→ 0.

If we assume 〈a†iai〉 = 〈a†jaj〉, i 6= j when M →∞, the mean number of particle per site becomes

〈a†iai〉 =
〈N〉
M

=
l

π
kF =

{
(arccos g) /π, 0 < g < 1;

0, g ≥ 1.

The band is unoccupied for g ≥ 1 and half-filled for g = 0.
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Figure 5: Effect of H1 on the band structure around the fermi level. (J > 0)

1.2.2 BCS ground state

Now we take H1 into account. On the fermi level, 1
2H
′
0 = H0 = Hequiv = 0. In the total

Hamiltonian, we only have the off-diagonal term (10) with eigenvalues:

H1 =
(
a†kF a−kF

)( 0 −iJ sin(kF l)

iJ sin(kF l) 0

)(
akF
a†−kF

)
,∣∣∣∣∣ −λ −iJ sin(kF l)

iJ sin(kF l) −λ

∣∣∣∣∣ = 0, λ± = ±|J sin(kF l)|. (12)

Considering different limits (see Fig. 5), when g � 1, the fermi level is well below the lowest band.

The insulating band structure remains the same. To add one extra particle from the vacuum, it

will still take finite energy which we call a charge gap ∆Q. When g = 1, the bottom of the band

coincides with εF (kF = 0). Thus ∆C = 2J | sin(kF l)| = 0, the system reveals a gapless mode.

Whereas when g → 0, it will open a gap ∆SC = 2J | sin(kF l)| around the fermi level, corresponding

to the minimum excitation energy. As can be seen from (8), H1 always pairs particles with opposite

momentums. So in this case, the system is in the superconducting phase with a gap in the energy

spectrum. For the moment, we can tell from the gap evolution that there exists a quantum phase

transition at gC = 1.

We notice H ′0 is invariant under the unitary transformation of the basis α̃ak + β̃a†−k. As a

result, the ground state is totally determined by the off-diagonal part H1. In momentum space

(7), it brings fermions with opposite momentums to form bosonic Cooper pairs b†k = a†−ka
†
k. In the

coordinate space (6), however, when g → 0, HI pairs particles in the ith and (i + 1)th sites. This

point can also be reflected in the Majorana picture (see Fig. 6).

Based on above discussion, the ground state of the full Hamiltonian takes the BCS form without

spin:

|GS〉 =
∏
k

(
sk + tka

†
ka
†
−k

)
|0〉, (13)

where |sk|2 + |tk|2 = 1 and |tk|2 refers to the probability of the pair (k,−k) being occupied.

1.3 Exact Spectrum

Now we do a unitary Bogoliubov transformation from ak, a
†
k to a new set of fermionic operators

γk, γ
†
k so that the total number of free fermions is conserved and HI is diagonalized.

7



(
γk
γ†−k

)
= U

(
ak
a†−k

)
=

(
uk −ivk
−ivk uk

)(
ak
a†−k

)
, UU† = I, (14)

{γk, γ†k′} = δk,k′ , {γk, γk′} = {γ†k, γ
†
k′} = 0,

where uk, vk are real numbers and satisfy u2
k + v2

k = 1, uk = u−k, vk = −v−k.

Inserting (14) into (7), we have

HI =
∑
k

(A− C)γ†kγk − Cγ
†
−kγ−k + C − g +D

(
γ†kγ
†
−k + γkγ−k

)
where A = 2J(g − cos(kb)), B = iJ sin(kb), C = v2

kA+ 2iukvkB,D = (−u2
k + v2

k)B + iukvkA. The

number of fermions should be conserved (D = 0) and by introducing θk, we get the constraint

uk = cos(θk/2), vk = sin(θk/2), tan θk =
2B

iA
=

sin(kl)

g − cos(kl)
.

Then HI becomes diagonalized,

HI =
∑
k

ε̃k(γ†kγk −
1

2
), (15)

where ε̃k is the single-particle excitation energy:

ε̃k =
√
A2 − 4B2 = 2J

√
g2 − 2g cos(kl) + 1, ε̃k = εk − µ. (16)

When k = kF , −2J cos (kF l) = −2Jg, ε̃kF = 2J | sin(kF l)| = ∆SC . By making an analogy with

our former picture in (12), we see ε̃kF is exactly the energy to add one quasiparticle above the

superconducting gap.

Now we can examine the behaviors of εk in the large and small g limits:

g � 1, εk = 2Jg

(
1− cos(kl)

g
+

1

4g2
(1− cos(kl)) +O(

1

g3
)

)
,

For the ground state, the spins are oriented in the same z direction | ↑↑↑↑↑↑〉 and a paramagnetic

mode dominates.

g � 1, εk = 2J
(
1− g cos(kl)) +O(g2)

)
,

There are domain walls between two ground states, like | ←←←→→→〉.
In fact, the transverse field Ising model can be mapped into the spin-polarized 1-D supercon-

ductor (compared with equation (7)):

HF = −
∑
i

(
w(a†iai+1) + ∆ai+1ai + ∆∗a†i+1a

†
i

)
− µ

∑
i

(
a†iai −

1

2

)
,

when w = ∆ = ∆∗ = J, µ = −2Jg. Here w stands for the hopping amplitude, ∆ represents the

superconducting gap and µ is the chemical potential.

1.4 Majorana operators

Alternatively, we can also transform this set of M Dirac fermions into a new set of 2M Majorana

fermions in Kitaev’s approach [25]:

ci = ai + a†i , di = i(a†i − ai). (17)

They are real and consistent with the anti-commutation relation:

c†i = ci, d†i = di, {ci, cj} = {di, dj} = 2δij .

8



Figure 6: Majorana chain representation of the transverse field Ising model.

The interaction Hamiltonian (6) will be

HI = iJ(g

M∑
i=1

cidi +

M−1∑
i=1

dici+1). (18)

When g � 1, we can ignore the interaction between di and ci+1 and obtain the pairs of

Majoranas (ci, di). As shown in Fig. 6 (a), there is no free particle in the chain. When g = 0, we

get two free Majorana modes c1, dM and the 2-fold ground state degeneracy could be represented

in their tensor space c1 ⊗ dM . See Fig. 6 (b).

We introduce new operators:

f† =
1

2
(c1 + idM ), f =

1

2
(c1 − idM ). (19)

In the language of quantum computation, f† and f are creation and annihilation operators for two

eigenstates 1 and 0 of the qubit, which are pseudo-fermion states:

f†|0〉 = |1〉, f |1〉 = |0〉.

To manipulate the state of one qubit, we need to exchange f† and f . From (19), this can be

accomplished by the transformation idM ↔ −idM . Suppose at zero temperature, the spin chain

has the configuration of | →→ · · · → 〉 and we associate it with the state f†(see Fig. 7 (a)). First

we choose an arbitrary site j and add a small local magnetic field −hσ̂zj (h > 0) in favour of | ↑ 〉j .
It will not effect the physical ground state | →→ · · · → 〉 as h→ 0+. Then we change the direction

of the magnetic field h → 0− in Fig. 7 (b), which makes | ↓ 〉j more favourable. Jordan-Wigner

transformation (5) implies along the quantized x-axis

σ̂zj = 1− 2a†jaj = −icjdj =

{
1, | ↑ 〉j ;
−1, | ↓ 〉j ,

the product (−icjdj) should change the sign. And we assume

idj → −idj , cj → cj .

Meanwhile from (18), the original interaction Hamiltonian has a Z2 symmetry reflected in the

fermionic parity operator,

Pmaj =

M∏
i=1

(−icidi), [HI , Pmaj] = 0.

9



Figure 7: Exchange of qubits for 1D quantum Ising chain in the presence of small magnetic field

along z-axis (−hσ̂z). The sign of h changes over time.

The perturbative magnetic field −hσ̂zj = hicjdj will not break this symmetry. To conserve parity,

we have to do the transformation on all sites,

idm → −idm, cm → cm, m = 1, 2, . . . ,M, M ∈ even.

Total even number of sites will give a factor (−1)M , leaving Pmaj unchanged. Accordingly, the

magnetic field has now been applied to every site. In particular,

c1 → c1, idM → −idM , f† → f.

In experiments, however, one big challenge is for T > 0, the ground state is not pure with domain

walls in between. Thus it becomes quite difficult to manipulate the qubit for the spin chain. The

earliest real attempt has been made in [26].

1.5 Mapping of the quantum model in d-dimensions to the classical

model in (d+ 1)-dimensions

Quantum models in d-dimensions can be mapped to classical models in d+ 1 dimensions [27]. In

our case taking d = 1, we are going to find a link between 1D quantum Ising model and 2D classical

Ising model.

By rotating the spin axises 90 degrees around y-axis, σ̂zj → σ̂xj , σ̂
x
j → −σ̂zj , the quantum

ferromagnetic Ising chain (3) can be written into the general form:

HI = −
∑
j

(Jgσxj + Jσzjσ
z
j+1),

with the partition function Z = Tr exp (−βqHI) , βq = 1
Tq

. If the quantum spin chain is parallel to

x-axis, we can assume βq represents the evolution along y-axis and set βq = Ml. As Tq is finite,

M →∞, l→ 0. The transfer matrices T1, T2 can be introduced by the following approximation:

exp(
∑
j

Jglσxj,k + Jlσzj,kσ
z
j+1,k) ' exp(

∑
j

Jglσxj,k) exp(
∑
j

Jlσzj,kσ
z
j+1,k) +O(l2).

Z ' Tr (T1T2)
M
, T1 = exp(

∑
j

Jglσxj,k), T2 = exp(
∑
j

Jlσzj,kσ
z
j+1,k).

If we choose the eigenstates {mj,k = ±1} of σzj,k as the basis

Z =
∑
{mj,k}

exp

∑
j,k

(Jlmj,kmj+1,k +Bmj,kmj,k+1)

 , (20)

where tanh(gJl) = exp (−2B). The final mapping gives exactly 2D classical Ising model with

different exchange constants in x and y directions.

Further, if we treat 2D classical Ising model by the mean field theory, the Hamiltonian will

return to 1D case:

Hcl = −J
∑
〈i,j〉

sisj , (21)

10



Figure 8: Single spin chain.

where each spin at site i takes the value ±1. The mean magnetization per site is given by m =

(M↑ −M↓)/M . 〈i, j〉 represents the nearest pairs and M is the total number of sites. It can be

shown that the free energy per site

f(T,m) =
kB
2

(T − TC)m2 +
kBT

12
m4 − kBT log 2 +O(m4), (22)

Zcl = exp

− 1

kBT

∑
j

f(T,m)j

 ' exp

−∑
j

T − TC
2T

m2

 . (23)

By comparison, in the mean-field approach, the partition function (20) becomes

Z =
∑
{mj,k}

exp

∑
j,k

Jlm2

 , Jl ' B. (24)

As a result, the coupling constants in (23) and (24) should be the same and around the classical

critical temperature,

T → TC , Jl ' −T − TC
2TC

→ 0.

We verify that the coupling constants in quantum models can be expressed as a function of the

critical temperature (T−TC)/TC in classical models. Therefore, classical critical phenomena which

take place at Tcl = TC have a clear correspondence with the quantum phase transitions at Tq = 0

when g → gC .

In the end, we can also obtain some useful properties from (22):

m =


(

3(TC−T )
T

)1/2

, T < TC ;

0, T > TC .
c = −T ∂

2f

∂T 2
∼ θ(TC − T ). (25)

The 1/2 exponent for magnetization m and Heaviside step function for specific heat c are typical

of the mean-field Ising model.

However, in real two dimensions, the mean-field approach is not applicable and the critical

phenomena are totally distinct. In fact, the 2D classical Ising model exhibits the 1/8 Onsager

exponent for magnetization and has a logarithmic divergence in specific heat at TC [28]:

m =
(
1− (sinh 2βJ1 sinh 2βJ2)−2

)1/8
. (26)

2 Single Spin Chain

In the following section, we will focus on the single spin chain with the interaction Hamiltonian:

H =
∑

j=2m−1

(J1σ
x
j σ

x
j+1 + J2σ

y
j+1σ

y
j+2), m = 1, . . . ,M. (27)

Here 2M is the total number of sites in the chain (see Fig. 8). And we assume the exchange

constants J1 < 0, J2 < 0.
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Figure 9: Phase diagram of honeycomb model where J = (J1, J2, J3).

In fact, this quantum spin chain corresponds to the bottom blue line in the phase diagram of

the honeycomb lattice (see Fig. 9 and Fig. 10 (a)). The latter is solved exactly by Kitaev in a

two-dimensional Majorana representation with a static Z2 field [17]. From honeycomb lattices to

a single chain, we can do the mapping in the following way. Firstly, it can be seen from Fig. 10

(a) and Fig. 10 (b), the honeycomb lattice is equivalent to the brick-wall lattice in an alternative

representation. Then we extract a two-leg ladder into Fig. 10 (c), of which the one-dimensional

limit becomes the single spin chain in Fig. 10 (d). The phase diagram in Fig. 9 consists of three

Figure 10: Mapping from a honeycomb lattice (a) to the brick-wall lattice (b), the two-leg ladder

(c) and the single chain (d).

gapped spin liquid phases Ax, Ay and Az. The gapless phase B in the middle is formed by free

fermion modes. In the large J3 limit, by taking full advantage of string representations, we can

extract from brick walls a single chain where the new Az gapped phase emerges naturally as Ax
and Ay phases. Fig. 11 shows three single spin chains which represent the boundaries of the phase

diagram in Fig. 9. The orange and green chains correspond to J2 = 0 and J1 = 0 respectively, and

they give rise to the stable Az phase when J3 � J1, J2. As the phase diagram is symmetric, the

properties of three gapped phases are equivalent.

For the first step, we want to examine the single chain with Hamiltonian (27). As usual, we

will perform Jordan-Wigner transformation to solve the quasi-particle excitation spectrum. Then

we adopt Majorana chain representation to obtain the spectrum in an alternative manner. The

ground state energy density gives us the information on the critical phenomena. We will see the

specific heat of the quantum spin chain has a resemblance to the classical two-dimensional Ising

model. Next, we introduce spin duality transformation and map the original Hamiltonian (27)

12



Figure 11: Construction of boundary lines for the phase diagram in honeycomb lattices.

into the transverse field Ising model (3). String order parameters show clearly the quantum phase

transition between Ax and Ay spin liquid phases. In order to study their correlation function, we

will go to the local Kitaev representation. In the end, we discuss the unpaired Majorana modes

on each link and explore their stability in perturbation theory.

2.1 Eigenspectra

From now on, we change the notation of Jordan-Wigner transform into

σ+
j = a†je

iπ
∑
i<j Q̃i , σ−j = aje

iπ
∑
i<j Q̃i Q̃i = a†iai. (28)

In contrast with (5), we denote the spin-up state as occupied and spin-down state as empty:

σxj = (a†j + aj)e
iπ

∑
i<j a

†
iai , σyj =

1

i
(a†j − aj)e

iπ
∑
i<j a

†
iai ,

σzj = −iσxj σ
y
j = −(a†j + aj)(a

†
j − aj) = 2a†jaj − 1 = −eiπa

†
iai =

{
1, | ↑〉;
−1, | ↓〉.

(29)

Inserting (29) into (27), we will get H in terms of fermionic operators:

H =
∑

j=2m−1

(J1(a†j − aj)(a
†
j+1 + aj+1) − J2(a†j+1 + aj+1)(a†j+2 − aj+2)). (30)

To obtain the eigenspectra, we transform (30) into momentum space by

aj =
1√
2M

∑
k

eikxjak, xj = jl, k =
2πn

l
, n = −M, . . . , 0, . . . ,M − 1,

with l the lattice spacing.

H =
∑
k

(J1 + J2)2 cos(kl)a†kak + (J2 − J1)i sin(kl)(a†−ka
†
k + a−kak), (31)

which can be solved in the same manner as (7). In the most general form,

H =
∑
k

Aa†kak +B(a†−ka
†
k + a−kak).

By setting A = −2(J1 + J2) cos(kl), B = (J1 − J2)i sin(kl), we get the eigenspectra of the single

spin chain immediately:

ε±k = ±
√
A2

4
−B2 = ±

√
J2

1 + J2
2 + 2J1J2 cos(2kl), (32)

with the eigenvectors:

γk = ukak − ivka†−k, γ†−k = −ivkak + uka
†
−k,
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where uk and vk satisfy

uk = cos(θk/2), vk = sin(θk/2), tan(θk/2) =
2B

iA
=

(1− γ) sin(kl)

(1 + γ) cos(kl)
, γ =

J1

J2
.

H =
∑
k

(
γ†k γ−k

)(ε+k 0

0 ε−k

)(
γk
γ†−k

)
=
∑
k

2ε+k (γ†kγk −
1

2
). (33)

The system can be viewed as quasiparticle excitations of γ fermions. We denote the single-

particle excitation energy as w(k),

w(k) = 2ε+k = 2
√
J2

1 + J2
2 + 2J1J2 cos(2kl).

We easily obtain the lowest excitation energy ∆ = w(k)min = 2|J1−J2|. If J1 6= J2, a gap appears.

The critical point is found to be γC = 1 where quantum phase transition takes place.

2.2 Majorana chain representation

Applying Majorana operators, we introduce the notations [29]:{
cj = i(a†j − aj), dj = a†j + aj , j = 2m− 1;

cj = a†j + aj , dj = i(a†j − aj), j = 2m.
(34)

Then the original Hamiltonian in (30) is transformed into

H = −i
∑

j=2m−1

(J1cjcj+1 − J2cj+1cj+2). (35)

In total, we have 2M sites with two Majoranas per site. Yet only c-type Majoranas appear in the

interaction Hamiltonian once we choose a specific gauge by the definitions of c- and d- types in

(34). While d-type Majoranas are all free, there is a competition to pair c-type Majoranas at a

given cite j. When J1 � J2, pairs (c2m−1, c2m) are formed. There is no free c-type Majoranas.

When J1 � J2, pairs (c2m, c2m+1) are formed. We have two more free c-type Majoranas, c1 and

c2M .

In comparison, if we choose the notations introduced by Kitaev [25],

cj = i(a†j − aj), dj = a†j + aj , (36)

we will arrive at

H = −i
∑

j=2m−1

(J1cjdj+1 − J2dj+1cj+2). (37)

Now, regardless of the ratio γ = J1/J2, Majoranas {c2m, d2m−1} do not appear and thus are always

free. We can see the redefinition of (34) classifies these all-time free Majoranas into d-type. Then

the redundant 2M degrees of freedom can be removed directly in the interaction Hamiltonian.

Next, we are going to solve the eigenspectra in Majorana chain representation. For simplicity,

we will use the first notation. By the Fourier transform and translational symmetry,

ck,1 =
1√
M

∑
j=2m−1

e−ikrjcj , ck,2 =
1√
M

∑
j=2m

e−ikrjcj ,

c2m−1 =
1√
M

∑
k

eikr2m−1ck,1, c2m =
1√
M

∑
k

eikr2mck,2,

where

rj = jl, m = 1, 2, . . . ,M, k =
2πn

2l
, n = −M

2
, . . . , 0, . . . ,

M

2
− 1.
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Figure 12: Second derivative of the ground state energy density. (J2 = 0.5)

And ck,i satisfies: c†k,i = c−k,i, {ck,i, c†k,i′} = δk,k′δi,i′ . Then Hamiltonian (35) becomes

H =
1

2

∑
k

(
−i(J1e

ikl + J2e
−ikl)c−k,1ck,2 + i(J1e

−ikl + J2e
ikl)c−k,2ck,1)

)
. (38)

It is more convenient to work with the “double spectrum” by multiply (38) with a factor 2. To

recover the “single spectrum”, we can keep only the positive eigenvalues. Now, by choosing the

basis (c−k,1, c−k,2),

Hdouble =
∑
k

(
c−k,1 c−k,2

)( 0 −if(k)

if(k)∗ 0

)(
ck,1
ck,2

)
, f(k) = J1e

ikl + J2e
−ikl.

We obtain the same spectrum as (32):

ε±k = ±|f(k)| = ±
√
J2

1 + J2
2 + 2J1J2 cos (2kl).

2.3 Critical phenomena

We will calculate the second derivative of the ground state energy density E0(γ) and check its

behaviour around the critical point γC = 1. From the diagonalized Hamiltonian (33), we know

ME0(γ) = −1

2

∑
k′

w(k′) = −1

2

∫ 2πM/2l

−2π(M/2−1)/l

ldk′

2π
w(k′),

E0(γ) = −J2(1 + γ)

π
E

(
π

2
,

2
√
γ

1 + γ

)
,

where E(π/2, s) is the complete elliptic integral of the second kind,

E(π/2, s) =

∫ π/2

0

dθ
√

1− s2 sin θ.

From Fig. 12, we see (−∂2E0/∂γ
2) diverges logarithmically at the critical point where a gapless

mode dominates.

From the mapping from 1D transverse Ising model to 2D classical Ising model, we know for

the quantum model, (−∂2E0/∂γ
2) corresponds to the specific heat in the classical model.

−∂2E0/∂γ
2 ∼ c = −T ∂

2f

∂T 2
,

where f is free energy per site in the classical model, which refers to the ground state energy E0

in our current quantum model. And γ can be viewed as a function of (T − TC)/TC in the exact

mapping. In the mean field Ising model (25), c ∼ θ(TC − T ). The curve of divergence in Fig. 12

shows clearly the single spin chain is not mean-field like.
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Figure 13: Dual lattices in one dimension.

2.4 Spin duality transformation

In fact, rather than a change of symmetry, the quantum phase transition between two supercon-

ducting phases at γC = 1 involves a change of topological order of the system [29]. This point

makes sense once we map the single spin chain into 1-D transverse field Ising model by spin duality

transformation:

τxj =

j∏
k=0

σxk , τyj = σyj σ
y
j+1. (39)

While τyj represents the mutual state of σy’s at neighbouring sites j and j+1, τxj flips all the spins

to the left of site j (see Fig. 13).

For σ spin operators, they satisfy the algebraic relations:
[σxi , σ

x
j ] = [σxi , σ

y
j ] = [σyi , σ

y
j ] = 0, i 6= j;

(σxj )2 = (σyj )2 = 1, ∀ j;
{σxj , σ

y
j } = 0, ∀ j.

(40)

On the other hand, for τ operators, they satisfy the same relations,
[τxi , σ

x
j ] = [τxi , τ

y
j ] = [τyi , τ

y
j ] = 0, i 6= j;

(τxj )2 = (τyj )2 = 1, ∀ j;
{τxj , τ

y
j } = 0, ∀ j.

(41)

which implies the new variables on the dual sites are isomorphic to original ones. From (39) and

(41), the inverse transformation would be

σxj = τxj−1τ
x
j , σyj =

2M∏
k=j

τyk . (42)

Then the original Hamiltion (27) can be written into the form

Hd =

M∑
j=1

(J1τ
x
2j−2τ

x
2j + J2τ

y
2j). (43)

In the dual space, Hd coincides with the transverse field Ising model. A similar spin duality

transformation can be performed by exchanging x and y in (39) and (42):

H ′d =

M∑
j=1

(J2τ
y
2j−1τ

y
2j+1 + J1τ

x
2j). (44)
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2.5 String order parameter

One-dimensional Ising Model with a transverse field has been carefully examined in [30]. Following

are the results closely related to our problem:

HP =
∑
i

(−JSxi Sxi+1 − ΓSzi ), J > 0, Γ > 0, (45)

λ =
J

Γ
, ρxn = 〈0|Sxi Sxi+n|0〉, lim

n→∞
ρxn =

{
1
4

(
1− λ−2

)1/4
, λ > 1;

0, λ < 1.
(46)

Comparing (43) and (45), we will find

γ = J1/J2 =
J/4

Γ/2
=

J

2Γ
= λ, lim

j→∞
〈τx0 τx2j〉 ∼ lim

n→∞
〈4Sxi Sxi+n〉 = lim

n→∞
4ρxn.

Actually, τx0 τ
x
2j is the string product in the original space:

∆̂x(j) = τx0 τ
x
2j = σx0

2j∏
k=0

σxk =

2j∏
k=1

σxk .

If we use the Majorana operators defined by (34),

σx2j−1σ
x
2j = (−i)c2j−1c2j , ∆̂x(j) = (−i)j

2j∏
k=1

ck.

We can apply the properties (46) of transverse field Ising model directly:

∆x = lim
j→∞
〈∆̂x(j)〉 ∼

{(
1− (J2/J1)2

)1/4
, |J1| > |J2|;

0, |J1| < |J2|.
(47)

In the same way, by comparing (44) and (45), we arrive at

∆y = lim
j→∞
〈∆̂y(j)〉 ∼

{
0, |J1| > |J2|;(
1− (J1/J2)2

)1/4
, |J1| < |J2|,

(48)

where

∆̂y(j) = τy1 τ
y
2j+1 = σy0σ

y
1

2j+1∏
k=0

σyk =

2j+1∏
k=2

σyk = (+i)j
2j+1∏
k=2

ck.

Now we verify the hidden string order parameters (SOP) ∆x and ∆y which either appears

nonzero or vanishes continuously at the critical point (see Fig. 14) [29]. SOPs are local in the

dual space and nonlocal in the spin space. In the dual space, taking into account the change of

ground state energy density in Fig. 12, we can say our original system undergoes the second-order

phase transitions. What is more, the 1/4 exponents in (47) and (48) are consistent with Onsager’s

solution for spontaneous magnetization (26). Whereas for the mean field Ising model, the exponent

appears to be 1/2 in (25).

In the original Hamiltonian (27), supposing J1 � 0, J2 = 0, in the ground state neighbouring

sites (2m−1, 2m) have the same spins due to the negative coupling constant in the interaction term

J1σ
x
2m−1σ

x
2m. As there is no interaction between sites (2m, 2m+ 1), their relative spin orientations

are random (see Fig. 15 (a)). Adding a small value of J2 will not influence the ground state because

the deviation of the new spin from x direction will increase the total energy of the spin chain (see

Fig. 15 (b)). Consistent with (47), here we notice the topological order in x axis manifests as the

nonzero spin product of coupled neighbouring pairs (2m− 1, 2m). There are an infinite number of

ways to order the bonds (2m− 1, 2m) along x-axis in the spin liquid ground state. At T = 0, this

uncertainty produces a great amount of entropy.
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Figure 14: Nonlocal string order parameters for a single spin chain.

Figure 15: Spin liquid phase of the single spin chain in the ground state.

2.6 Local Kitaev representation

We define an algebra local in space,

σ̃αj = ibαj cj , α = x, y, z, (49)

such that we fulfil:

[σ̃xj , σ̃
y
j ] = 2iσ̃zj , [σ̃αj , σ̃

α′

k ] = 0, j 6= k. (50)

Here the four Majorana operators satisfy anti-commutation relations:

c†i = ci, (bαi )† = bαi , {ci, cj} = {bαi , bαj } = 2δi,j , {ci, bαj } = 0.

Now, the original interaction Hamiltonian (27) becomes:

H =
∑

j=2m−1

(
J1(ibxj b

x
j+1)(−icjcj+1) + J2(ibyj+1b

y
j+2)(−icj+1cj+2)

)
, (51)

where ibxj b
x
j+1 and −icjcj+1, ibyj+1b

y
j+2 and −icj+1cj+2 are bosonic operators with eigenvalues ±1.

Yet only ibxj b
x
j+1 and ibyj+1b

y
j+2 commute with the total Hamiltonian. In the physical subspace

L of a spin-1/2 chain, each site has two degrees of freedom. We can thus restrict ourselves into

common eigenspaces of H, ibxj b
x
j+1 and ibyj+1b

y
j+2. The ground state energy becomes

〈H〉 =
∑

j=2m−1

(
J1(ibxj b

x
j+1)〈−icjcj+1〉+ J2(ibyj+1b

y
j+2)〈−icj+1cj+2〉

)
.

Considering the case J1 � J2 ∼ 0, as the spin chain is symmetric,

〈−icjcj+1〉 = 〈−iclcl+1〉, ibxj b
x
j+1 = ibxl b

x
l+1, ∀j, l ∈ odd sites,

〈H〉 = J1M(ibxj b
x
j+1)〈−icjcj+1〉, J1 < 0.
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To minimise the energy, we choose to fix 〈−icjcj+1〉 > 0, ibxj b
x
j+1 = 1 for j ∈ odd sites. From

Fig. 15 (b), adding a small negative value of J2 will increase 〈H〉 and we assume the pairing

of neighbouring c Majoranas will always give the same sign regardless of the odd or even sites.

Therefore,

J2(ibyj+1b
y
j+2)〈−icj+1cj+2〉 > 0, J2 < 0, 〈−icj+1cj+2〉 > 0,

ibyj+1b
y
j+2 = −1 < 0, ∀(j + 1) ∈ even sites.

In fact, ibxj b
x
j+1 and ibyj+1b

y
j+2 are operators ûjk in the 2D Kitaev representation [17]. Thus we

denote

ûj,j+1 = ibxj b
x
j+1, ûj+1,j+2 = ibyj+1b

y
j+2, j = 2m− 1,

with the eigenvalues

uj,j+1 =

{
+1, if j ∈ odd sites;

−1, if j ∈ even sites.

2.7 Correlation function

As expected, for the spin liquid, spin correlations will decay exponentially with distance in a gapped

phase. We assume J1 � J2 ∼ 0 and examine the correlation functions 〈σxj σxk〉 when ∆x ' 1.

If we fix j = 2m− 1, in the case k = j + 1,

〈H〉 '
∑

j=2m−1

J1〈σxj σxj+1〉 'MJ1〈σxj σxj+1〉, ∆x = 〈
2j∏
k=1

σxk〉 ' (〈σxj σxj+1〉)M = 1.

To minimise the ground state energy 〈H〉, we arrive at 〈σxj σxj+1〉 = 1. It implies 〈σxj σxj+1〉 =

〈−iuj,j+1cjcj+1〉 = 〈−icjcj+1〉 = 1 > 0, consistent with our previous gauge choice.

When k ≥ j + 2, the most efficient way is to start from local Kitaev representation:

〈σxj σxj+2〉 = 〈ibxj cjibxj+2cj+2〉 = 〈cjcj+2〉 ' O
(
e−
|rj+2−rj |

ξ

)
.

The last approximation comes from the fact that when J2 → 0, there is no pairing between

Majoranas on sites j and j + 2. So we can expect an exponential decay with distance and ξ is the

correlation length. Accordingly,

k = j + 2m, 〈σxj σxk〉 = (−1)2m+2〈cjcj+2m〉

= 〈cj(cj+2)2 · · · (cj+2m−2)2cj+2m〉 ' 〈cjcj+2〉 · · · 〈cj+2m−2cj+2m〉 ' O
(
e−
|rk−rj |

ξ

)
.

2.8 Unpaired Majorana modes

In local Kitaev representation, to find free Majorana modes, we consider the case J1 � J2 ∼ 0,

H =
∑

j=2m−1

−iJ1cjcj+1,

and introduce new d-type Majoranas in the same way as (34). We get the pairing of c Majoranas

and completely free d Majoranas. Similar to the transverse Ising chain, these unpaired particles

can form one qubit on each link:

f†j =
1

2
(dj + idj+1), fj =

1

2
(dj − idj+1), (52)

where

j = 2m− 1, dj = a†j + aj , idj+1 = aj+1 − a†j+1. (53)
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Figure 16: Ground states of a link along the single spin chain and one possible approach to exchange

local qubits (J2 = 0).

In order to change the state of the qubit f† → f at the j-th site, we need to find an operation

to transform idj+1 into −idj+1. We focus on a single J1-link (j, j + 1). At T = 0, the initial

system has two degenerate ground states |+〉j ⊗ |+〉j+1 and |−〉j ⊗ |−〉j+1 along x-axis, with a

gap ∆ = −2J1 for first excited states (see Fig. 16 (a)). If we add a small magnetic field hσz on

the local link and vary the sign of h over time, the favourable spin axis arising from this external

field will change between | ↑ 〉j ⊗ | ↑ 〉j+1 for h < 0 and | ↓ 〉j ⊗ | ↓ 〉j+1 for h > 0. We recall the

Jordan-Wigner transformation (29)

σzj = 2a†jaj − 1 =

{
1, | ↑ 〉j (occupied);

−1, | ↓ 〉j (empty).

If we want to change the occupied state from | ↑ 〉j to | ↓ 〉j , we can redefine the fermionic operators

and perform a†j ←→ aj :

σzj = 2aja
†
j − 1 = 1− 2a†jaj =

{
1, | ↑ 〉j (empty);

−1, | ↓ 〉j (occupied).

It is the same for the (j + 1)-th site. Taking into account (53) and (52), we arrive at

dj ←→ dj , idj+1 ←→ idj+1, f† ←→ f.

Therefore we exchange the qubit states successfully (see Fig. 16 (b)). Experimentally, applying

a magnetic field along y and z axis are the same as they are both perpendicular to x direction.

Meanwhile, we notice these qubits are more local than the ones in 1D quantum Ising chain. To

manipulate the state of one qubit on a single link, we have to add a local magnetic field purely on

two vertices.

2.9 Perturbation theory study

We will study the stability of Ax phase in Fig. 14 by setting J1 � J2 ∼ 0.

H = H0 +H ′,

H0 =
∑

j=2m−1

J1σ
x
j σ

x
j+1, H ′ =

∑
j=2m−1

J2σ
y
j+1σ

y
j+2, m = 1, . . . ,M.

As J1 < 0, the ground state |GS〉0 will be the product of paralleled spins on each J1-link. Then,

we define two projection operators P̂0 and δP̂ :

P̂0|GS〉 =
∏
{j,j+1}

|ηj , ηj+1〉x, δP̂ = 1− P̂0,
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where ηj ∈ {±1} and ηjηj+1 = 1. When adding H ′ into the full Hamiltonian, P̂0 will project the

new ground state onto the unperturbed |GS〉0. And δP̂ will project it onto all excited states. We

choose

(
P̂0

δP̂

)
as the basis and get the eigenfunction:

(
P0HP0 δPHP0

P0HδP δPHδP

)(
P̂0

δP̂

)
= E

(
P̂0

δP̂

)
,

(E − P0HP0)(E − δPHδP ) = (P0HδP )(δPHP0).

Then we define the effective Hamiltonian whose eigenvalues belong to H but arise from |GS〉0:

Heff = P0HP0 + P0HδP
1

E − δPHδP
δPHP0.

Setting E = E0, for the moment we will calculate Heff to the second order with higher order

contributions neglected :

H
(0)
eff = P0H0P0 = E0 = MJ1, H

(1)
eff = P0H

′P0 = 0, H
(2)
eff = M

J2
2

4J1
∼ Î .

Each σyj+1σ
y
j+2 will flip two spins between two neighbouring J1-links (j, j + 1) and (j + 2, j + 3),

bringing about an increase of energy 4|J1|. However, H
(2)
eff acts as an identity operator. Therefore,

for a single chain, Ax phase is stable in the presence of a small J2. Similar arguments can be made

for Ay gapped phase.

If we add Heisenberg coupling on sites j and j + 2, we will find:

σxj σ
x
j+2 = (−icjcj+1)idj+1dj+2, σ

y
j σ

y
j+2 = (−icj+1cj+2)(−i)djdj+1, σ

z
jσ

z
j+2 = (−icjcj+2)idjdj+2.

When J1 � J2 ∼ 0, Majoranas cj and cj+1 are coupled together and become massive. We have

〈−icjcj+1〉 = 1, 〈−icjcj+2〉 = 〈−icj+1cj+2〉 = 0,

σxj σ
x
j+2 = idj+1dj+2, σ

y
j σ

y
j+2 = σzjσ

z
j+2 = 0.

The total effect of Heisenberg coupling (σxj σ
x
j+2 + σyj σ

y
j+2 + σzjσ

z
j+2) will destroy free d Majoranas

on the (j+1)-th and (j+2)-th sites. Therefore, to obtain spin liquid phase and free Majoranas, we

should carefully tune the parameters in microscopic models and avoid the Heisenberg interaction.

3 Two-leg Spin Ladder

In the last section, our goal is to go above the bottom line in the phase diagram Fig. 9 and move

towards the two-leg ladder in Fig. 10 (c). From Fig. 17 (c), we can write the full Hamiltonian of

the ladder in the following form:

H =
∑

j+l=2m

(
J1σ

x
j,lσ

x
j+1,l + J2σ

y
j−1,lσ

y
j,l + J3σ

z
j,lσ

z
j,l+1

)
, m = 1, . . . ,M. (54)

where the coupling constants J1, J2, J3 < 0 and total number of sites are 2M . The subscript (j, l)

stands for the site at j-th row and l-th column. l can only take two values here, 1 or 2. We aim

to express this Hamiltonian in terms of Majorana operators by two ways: string representation

and 2D Kitaev representation. Then we will go to explore different ladders by treating the vertical

links as a perturbation.

3.1 Majorana picture

3.1.1 String representation

Our first approach is to perform Jordan-Wigner transformation on a one-dimensional string in the

same way as the single spin chain. Fig. 17 shows two possible routes. For simplicity, we only look

at the interaction terms on 5-th site along the two strings. A generalisation can be made later.
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Figure 17: (a) is the two-dimensional ladder with indices (j, l) denoting j-th row and l-th column.

(b) and (c) are two deformed string representations.

For String 1 in Fig. 17 (b), the interaction from x direction on the 5-th site reads

J1σ
x
5σ

x
8 = J1(a†5 − a5)(a†8 + a8)eiπ(a†6a6+a†7a7). (55)

As [a†6a6, J1σ
x
5σ

x
8 ] = [a†7a7, J1σ

x
5σ

x
8 ] = 0, there exists a common eigenspace in which the eigenvalues

of a†6a6 and a†7a7 are c-numbers. We can choose a local gauge such that it minimises total ground

state energy of the string. So there should be no excited particle at sites 6 and 7, a†6a6 = a†7a7 = 0.

Now we turn to Fig. 17 (a) and define a set of Majorana operators:

cj,l =

{
i(a†j,l − aj,l), j + l = 2m;

a†j,l + aj,l, j + l = 2m− 1.
dj,l =

{
a†j,l + aj,l, j + l = 2m;

i(a†j,l − aj,l), j + l = 2m− 1.

They are Hermitian operators and satisfy anti-commutation relations:

c†j,l = cj,l, d†j,l = dj,l, {cj,l, cj′,l′} = {dj,l, dj′,l′} = 2δjj′δll′ .

(55) can be transformed into

J1σ
x
5σ

x
8 = (−i)J1c3,1c4,1.

Similarly, the other two interaction terms on 5-th site become

J2σ
y
4σ

y
5 = −J2(a†4 + a4)(a†5 − a5) = iJ2c2,1c3,1,

J3σ
z
5σ

z
6 = J3(a†5 − a5)(a†5 + a5)(a†6 − a6)(a†6 + a6) = (−i)J3D3,1c3,1c3,2,

where we introduceDj,l operators on vertical bonds: Dj,l = (−i)dj,ldj,l+1. So we get the interaction

Hamiltonian on the 5-th site along String 1:

H(5), String 1 = H(3,1), String 1 = (−i)(J1c3,1c4,1 − J2c2,1c3,1 + J3D3,1c3,1c3,2).

For String 2 in Fig. 17 (c), the interaction term on the 5-th site involving J3 remains the same.

Whereas for J1 and J2 parts, we should choose a different gauge:

J1σ
x
5σ

x
7 = J1(a†5 + a5)(1− 2a†5a5)(a†7 + a7)eiπa

†
6a6 = (−i)J1c3,1c4,1,

J2σ
y
3σ

y
5 = −J2(a†3 − a3)(1− 2a†3a3)(a†5 − a5)eiπa

†
4a4 = iJ2c2,1c3,1,
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where a†6a6 = a†4a4 = 0, sites 4 and 6 are in the ground state of the string and there are no particle

excitations. We see the interaction Hamiltonian including the 5-th site is the same for different

routes of string: H(5), String 2 = H(5), String 1. Further, we can generalise the results from a single

site to the full ladder:

H String = (−i)
∑

j+l=2m

(J1cj,lcj+1,l − J2cj−1,lcj,l + J3Dj,lcj,lcj,l+1). (56)

3.1.2 2D Kitaev representation

In fact, Dj,l in (56) can be fixed once we introduce Kitaev representation in two dimensions [17].

Originally it was applied onto the honeycomb lattice in Fig. 10 (a) and can be viewed as a more

general form of local Kitaev representation. The spin at site j is now described by four Majorana

operators bxj , byj , bzj and cj ,

σ̃αj = ibαj cj , α = x, y, z. (57)

They form an extended 4N -dimensional Fock space L̃. Whereas the physical 2N -dimensional

Hilbert space L is defined by the operator Dj :

Dj = bxj b
y
j b
z
jcj , (58)

|ξ〉 ∈ L, iff Dj |ξ〉 = |ξ〉, ∀j. (59)

Now Pauli operators σαj acting on L can be represented by new operators σ̃αj on L̃, which satisfy

the same algebra and preserve the subspace:

σ̃xj σ̃
y
j σ̃

z
j = iDj , σ̃αj Di = Diσ̃

α
j , [σ̃αj , Di] = 0.

where in the subspace, Dj has been viewed as identity.

We write the most general Hamiltonian of the honeycomb lattice into the form

H̃ =
∑

αjk-links

Jαjk σ̃
α
j σ̃

α
k , α = x, y, z, (60)

where αjk denotes two linked interacting spins at sites (j, k) on the direction α and Jαjk is the

corresponding negative coupling constant. To obtain the Hamiltonian in a quadratic form, we

introduce ûjk operators:

ûjk = ibαj b
α
k , (61)

where we have already absorbed the index α into the link (j, k) as the value of α (direction x, y

or z) is totally determined by the choice of link (j, k) on the lattice, which means α = αjk. ûjk
transforms the interaction term into

σ̃αj σ̃
α
k = ibαj cjib

α
k ck = −iûjkcjck.

And we notice the Hermitian operator ûjk has some special properties:

(ûjk)† = ûjk, (ûjk)2 = 1, [ûjk, ûj′k′ ] = 0, [ûjk, cj′ck′ ] = 0, (62)

[ûjk, H̃] = −i
∑

αj′k′ -links

Jαj′k′ [ûjk, ûj′k′cj′ck′ ] = 0. (63)

So once we choose common eigenspaces of ûjk and H̃, ûjk operators will become their eigenvalues

ujk, which can only be ±1 from (62). The relative signs can be finally resolved by the application

of loop operators and Lieb theorem [25]. One choice to minimise the ground state energy is

ujk =

{
1, j ∈ even sublattice;

−1, j ∈ odd sublattice.
(64)
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For instance, we can denote even sublattice as j+ l = 2m in (j, l) notation. We write down the

interaction Hamiltonian explicitly:

H Loop 1 = (−i)(J1c1,1c2,1 − J2c2,1c3,1 + J3c3,1c3,2 − J1c3,2c2,2 + J2c2,2c2,1 − J3c1,2c1,1)

= (−i) (J1(c1,1c2,1 + c2,2c3,2)− J2(c2,1c3,1 + c2,1c2,2) + J3(c3,1c3,2 + c1,1c1,2)) .

Comparing it with the Hamiltonian (56) within the string representation, Dj,l on the even sublattice

is now fixed to 1. And we arrive at

H Loop = (−i)
∑

j+l=2m

(J1cj,lcj+1,l − J2cj−1,lcj,l + J3cj,lcj,l+1). (65)

3.2 Z2 gauge theories and generalised ladders

In Kitaev’s formalism, the fact ujk = ±1 gives rise to the Z2 symmetry. And it can be generalised

to a large category of 2D and 3D spin systems, where the spin interactions are link-orientation

dependant and each site is connected to three different links. The two-leg ladder of our interest is

a specific case.

To find gauge-invariant quantities of Z2 field, we introduce loop operators:

W` =
∏
j∈`

Kj,j+1, Kj,j+1 = σαj σ
α
j+1, α = x, y, z, (66)

where j labels the sites along the loop ` and α denotes the direction of spin interactions on each

link.

Now suppose the loop has even-length 2n, in the 2D Kitaev representation,

Kj,j+1 = (ibαj cj)(ib
α
j+1cj+1) = −iûj,j+1cjcj+1,

W` = K1,2K2,3 · · ·K2n,1 = (−1)nû1,2û2,3 · · · û2n,1.

Hence,

[W`, H] = 0, W` = (−1)nu1,2u2,3 · · ·u2n,1 = ±1. (67)

There exist macroscopic number of conserved quantities associated to the loops. Considering

uj,k = −uk,j , we can rearrange (67) into the product of ueven,odd:

W` = u2,1u2,3 · · ·u2n,2n−1u2n,1. (68)

According to Lieb’s theorem [31], in the ground state

W` =

{
1, 2n mod 4 = 2;

−1, 2n mod 4 = 0,
(69)

where 1 and −1 refer to the 0 and π flux configurations. Combining (68) and (69), we can choose

appropriate gauges for uj,k in different lattices. It is easy to check for the honeycomb lattice

2n = 6, Kitaev’s choice (64) satisfies the right ground state flux configuration without any vortices

W` = 1.

Now we can apply the same principle to various two-leg ladder systems. Mainly, we consider

three types of plaquettes with the loop length 4, 6 and 8 respectively (see Fig. 18). Interactions

on vertical links are all from z-axis. We label the signs of uj,j+1 along each loop. While Fig. 18

(a) mapped from the honeycomb lattice has a 0 flux, Fig. 18 (a) and Fig. 18 (c) share the π flux

in their plaquettes. These gauge choices are not unique, but different gauges will give the same

spectra once we perform gauge transformations.
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Figure 18: Gauges for uj,j+1 along the loops in different shapes of plaquettes.

Figure 19: Ladder with weak vertical bonds.

3.3 Phase diagram with J4

We consider the ladder with J4-links in Fig. 19. Our strategy is to start from two single spin

chains, solve them independently and add extra interaction terms as a perturbation. In such a

way, two chains are connected into a ladder by weak vertical bonds.

3.3.1 Free fermion model

Firstly, we take a glance at a free fermion model in Fig. 20 to illustrate this idea:

H1 = −t‖
∑
j

(a†j,1aj+1,1 + h.c.), H2 = −t‖
∑
j

(a†j,2aj+1,2 + h.c.),

H⊥ = −t⊥
∑
j

(a†j,1aj,2 + h.c.).

Here H1 and H2 are hopping terms for two independent spin chains and H⊥ comes from the small

vertical interaction (t‖, t⊥ > 0).

Figure 20: Two-leg free fermion ladder.
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By Fourier transform into the momentum space,

aj,1 =
1√
M

∑
k

eikrjak,1, aj,2 =
1√
M

∑
k

eikrjak,2,

k =
2πm

l
, m = −M

2
, . . . , 0, . . . ,

M

2
− 1,

whereM is the number of sites for each chain and l is the lattice spacing, we get the full Hamiltonian

in the form

H = H1 +H2 +H⊥

=
∑
k

(−2t‖ cos kl)(a†k,1ak,1 + a†k,2ak,2)− t⊥(a†k,1ak,2 + a†k,2ak,1). (70)

We see clearly the existence of t⊥ makes the hopping between two chains possible, which gives rise

to the bonding (B) and anti-bonding (A) eigenstates:

γk =
1√
2

(ak,1 + ak,2), ηk =
1√
2

(ak,1 − ak,2),

with the energy spectra:

H =
∑
k

(εBk γ
†
kγk + εAk η

†
kηk), εBk = −2t‖ cos kl − t⊥, εAk = −2t‖ cos kl + t⊥.

When t⊥ = 0, two bands overlap (see Fig. 21 (a)). With zero chemical potential kF are fixed to

π/2l, so both of the bands are half-filling. In Fig. 21 (b), by contrast small t⊥ will open a gap

∆ = 2t⊥ and leave the fermi level cross two bands. When t⊥ gets larger than t‖ in Fig. 21 (c),

however, the degeneracy is completely removed and the bonding state becomes the single ground

state.

3.3.2 J4 ladder

In the same way, for the ladder in Fig. 19 we decompose Hamiltonian (65) into three parts : Chain

1, Chain 2 and the vertical bonds,

H1 = (−i)
∑

j=2m−1

(J1cjcj+1 − J2cj+1cj+2), H2 = (−i)
∑

j=2m−1

(−J2c
′
jc
′
j+1 + J1c

′
j+1c

′
j+2),

H⊥ = (−i)
∑

j=2m−1

(J3cjc
′
j + J4cj+1c

′
j+1).

Here we only select odd j and l denotes the chain number. And the relative signs in front of

coupling constants are determined from loops in square plaquettes (see Fig. 18 (b)).

We perform the Fourier transform of Majorana operators on each chain independently:

c2m−1 =
1√
M

∑
k

eikr2m−1ck,1, c2m =
1√
M

∑
k

eikr2mck,2,

c′2m−1 =
1√
M

∑
k

eikr2m−1c′k,1, c′2m =
1√
M

∑
k

eikr2mc′k,2,

where

k =
2πn

2l
, n = −M

2
, . . . ,

M

2
− 1.

The unperturbed Hamiltonians become

H1 =
∑
k

(
c−k,1 c−k,2

)( 0 −if1(k)

if∗1 (k) 0

)(
ck,1
ck,2

)
,

H2 =
∑
k

(
c′−k,1 c′−k,2

)( 0 −if2(k)

if∗2 (k) 0

)(
c′k,1
c′k,2

)
,

f1(k) = J1e
−ikl + J2e

ikl, f2(k) = −J1e
ikl − J2e

−ikl = −f∗1 (k).
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(a) t⊥ = 0 (b) 0 < t⊥ < t‖

(c) t⊥ > t‖

Figure 21: Band structures of free fermion model with different strengths of vertical couplings. B

denotes the bonding band and A the antibonding band.

And the perturbation term will be

H⊥ = (−i)
∑
k

(
J3(c−k,1c

′
k,1 − c′−k,1ck,1) + J4(c−k,2c

′
k,2 − c′−k,2ck,2)

)
.

We obtain the energy spectrum by diagonalizing the full Hamiltonian:

H =
∑
k

(
c−k,1 c−k,2 c′−k,1 c′−k,2

)
0 −if1 −iJ3 0

if∗1 0 0 −iJ4

iJ3 0 0 −if2

0 iJ4 if∗2 0



ck,1
ck,2
c′k,1
c′k,2

 ,

ε2i (k) = C +
1

2
(J2

3 + J2
4 )± 1

2

(
(J2

3 − J2
4 )2 + 4C(J2

3 + J2
4 ) + 4DJ3J4

)1/2
, i = 1, 2, 3, 4, (71)

with

C = |f1|2 = |f2|2 = J2
+ cos2(kl) + J2

− sin2(kl), J± = J1 ± J2,

D = f1f
∗
2 + f∗1 f2 = −4J1J2 − 2(J2

1 + J2
2 ) cos(2kl).

We see two identical bands split into four branches. And the energy spectrum is invariant under

the spontaneous transformation J1 → −J1, J2 → −J2, J3 → −J3. Only the ground state will

change from ferromagnetic to antiferromagnetic configurations on each link.

In comparison with the free fermion model,

J3 ∼ t⊥.

We can expect when J3 = t⊥ = 0, four branches of bands will overlap with each other and we

get band structure like Fig. 21 (a). When |J3| � |J1, J2|, in the ground state we are left with a

single band and the system is again in the Az phase like the 1D chain (see Fig. 21 (c)). Yet what

happens in between becomes much more complicated. There are crossovers of different bands in

Fig. 21 (b). We will discuss one case for J3 = J4, later in Sec. 3.3.4.
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Figure 22: Two deformed string representations for J4 = J3.

3.3.3 J4 = 0

Without J4-links, we return to the ladder limit of honeycomb lattices in Fig. 17 (a). Constructing

a bigger loop in rectangles will not change the relative sign before J1, J2, J3. Then we can set

J4 = 0 directly in (71):

ε2i (k) = C +
1

2
J2

3 ±
1

2

(
J4

3 + 4CJ2
3

)1/2
, i = 1, 2, 3, 4.

3.3.4 J4 = J3

If J4 coincides with J3, the energy spectrum will become

εk = ±
√

(J3 ± J− sin (kl))2 + J2
+ cos2 (kl).

The quasiparticle excitation gap disappears at J3 = ±J−. Like the single spin chain, it indicates

quantum phase transitions. In fact, in the ground state, the ladder now can be mapped into XY

model by similar spin duality transformation [29]. And there is long range order along x and y

directions in different cases.

Nonzero spin order parameter ∆x can be found by choosing string representation in Fig. 22

(a). The Hamiltonian has the following form:

H =

2M∑
j=1

(
J1σ

x
2j−1σ

x
2j + J3σ

z
2j−2σ

z
2j−1 + J2σ

y
2j−2σ

y
2j+1

)
.

Further, we perform the spin duality transformation along the string in x and z directions:

τzj = σzjσ
z
j+1, τxj =

j∏
k=0

σxk , σzj =

4M∏
k=j

τzk , σxj = τxj−1τ
x
j . (72)

In dual space, we obtain the new Hamiltonian:

HD =

2M∑
j=1

(
J1τ

x
2j−2τ

x
2j + J2W2τ

y
2j−2τ

y
2j + J3τ

z
2j−2

)
, W2 = τx2j−3τ

z
2j−1τ

x
2j+1. (73)

Here the loop operator W2j is a good quantum number and appears to be (−1) in the ground

state, exhibiting a π-flux phase [31]. Now we arrive at the XY model:

HXY =

N∑
j=1

(
(1 + γ)JSxj S

x
j+1 + (1− γ)JSyj s

y
j+1 − hµS

z
j

)
,

(1 + γ)J = 4J1, (1− γ)J = −4J2, 2J3 = −hµ, l′ = 2l, N = 2M.

From [32], it can be shown that for J = 2J− > 0, γ = J+/J− < −1,

lim
R→∞

ρxx(R) = lim
R→∞

〈Sxj Sxj+R〉 =


1

2(1−γ)

(
γ2

(
1−

(
hµ
J

)2
))1/4

, |hµ| < J ;

0, otherwise.

(74)

28



Figure 23: Phase diagram of the two-leg ladder (J4 = J3).

In real space, it implies

∆x = lim
j→∞
〈

2j∏
k=0

σxk〉 = lim
j→∞
〈τx0 τx2j〉 = lim

R→∞
4ρxx(R)

=

 2|J+/J−|1/2
(1+|J+/J−|)

(
1− (J3/J−)

2
)1/4

, |J3| < J−;

0, otherwise.
(75)

For ∆y, we can choose a different string route. Fig. 22 (b) shows the simplest one. Making

spontaneous exchanges of x and y, J1 and J2 in (72) ∼ (75) gives

∆y = lim
j→∞
〈

2j∏
k=0

σyk〉 = lim
j→∞
〈τy0 τ

y
2j〉 =

 2|J+/J−|1/2
(1+|J+/J−|)

(
1− (J3/J−)

2
)1/4

, |J3| < −J−;

0, otherwise.

We recover the phase diagram of the ladder in [29] (see Fig. 23).

Conclusion

From the transverse Ising model to quantum single spin chain and two-leg ladders, we have studied

various low-dimensional microscopic models with 1/2 spin and built their connections with the BCS

Hamiltonian. It can be seen that Majorana particle originates both from superconductivity and

magnetism.

In the transverse Ising model, we apply Jordan-Wigner transformation to obtain the BCS

ground state and find the critical temperature gC = 1 where quantum phase transition takes

place. In 1D Kitaev representation, free Majorana bound states are proved to exist at each end

of the Ising chain. They form two states of qubits and can be exchanged in the presence of small

magnetic field at zero temperature. For the single spin chain, under spin duality transformation

the original Hamiltonian is mapped onto the transverse field Ising model in the dual space. String

order parameter enables us to distinguish two spin liquid phases Ax and Ay for γ > 1 and γ < 1.

By studying correlation function with the help of local Kitaev representation, we see the long range

order is clearly absent from spin liquid phases. These exotic quantum phases are quite stable and

may preserve disorder to very low temperatures. In addition, two free Majoranas are found on each

link along the chain and we point out their fragility under Heisenberg couplings, a key disadvantage

29



for real quantum materials. In the end, after a comparison of different Majorana pictures in two

dimensions, we deep into Z2 gauge theories and fix the gauges for generalised ladders based on 2D

Kitaev representation and Lieb’s theorem. As an application, the spectrum and phase diagram of

a two-leg spin-1/2 ladder with J4 links are solved.

In contrast to the spin-1/2 Heisenberg chains where there is a power-law decay in the spin

correlation function, the spin liquid phase obtained in our model exhibits a much faster exponential

decay.

And it should also be noticed there is remarkable distinction between integer and half-integer

spins [33]. The Hamiltonian for the antiferromagnetic (AF) Heisenberg spin chain reads:

H = J
∑
i

~Si · ~Si+1, (76)

where J > 0. In Haldane’s conjecture [24], the action describing the spin-S AF Heisenberg chain

at low energies has the following form:

Seffective =
v

2g

∫
dτdx

(
1

v2
(∂τ~n)2 + (∂x~n)2

)
+ i2πSQ(~n), (77)

Q(~n) =

∫
dτdx ~n · (∂τ~n ∧ ∂x~n)/4π,

where v = 2JS, g = 2/S. ~n is the order parameter of the Néel collinear state and Q(~n) measures

the number of times ~n covers the surface of unit sphere S2. Haldane found for integer spins, the

topological term 2πSQ(~n) can be neglected and then (77) is reduced to the 2D O(1) nonlinear

sigma model with a finite energy spin gap and non-trivial edge excitations. Five years later in 1988,

the existence of the Haldane gap was validated in Ni(C2H8N2)2NO2(ClO4) (NENP) compounds

[34]. If we add a frustration term into the Hamiltonian (76):

Hβ = J
∑
i

(
~Si · ~Si+1 + β

(
~Si · ~Si+1

)2
)
,

when S = 1, β = 1/3, it is mapped onto the AKLT model whose ground state can be exactly solved

while major characteristics of the Haldane spin liquid phase are maintained.

For half-integer spins, on the contrary, 2πSQ(~n) gives a phase factor (−1)Q to the path integral

in the effective action (77). Quantum interference occurs between topologically distinct paths.

Therefore, we can expect unusual magnetism and unique quantum phase transitions for our spin-

1/2 models.

In the future, on the theoretical side we can extend the spin-1/2 ladder models to two-

dimensional and three-dimensional lattices. In higher dimensions, combined with projective time-

reversal and inversion symmetries for a given lattice, Majorana fermions and the Z2 gauge field

introduced by A. Kitaev are still essential for the classification of exotic spin liquid phases [35]. On

the practical side, for the potential applications in quantum computing, the braiding of Majoranas

is also intriguing. Surface mini-codes have successfully been built in superconducting quantum

circuits [36], which involve only nearest-neighbour coupling and rapidly cycled entangling gates.

Large-scale, fault-tolerant and multi-qubit Majorana-based quantum codes will continue to pave

the way for quantum computation in coming times.
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