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We introduce an exactly solvable model of interacting Majorana fermions realizing Z2 topological
order with a Z2 fermion parity grading and lattice symmetries permuting the three fundamental
anyon types. We propose a concrete physical realization by utilizing quantum phase slips in an
array of Josephson-coupled mesoscopic topological superconductors, which can be implemented in
a wide range of solid state systems, including topological insulators, nanowires or two-dimensional
electron gases, proximitized by s-wave superconductors. Our model finds a natural application as
a Majorana fermion surface code for universal quantum computation, with a single-step stabilizer
measurement requiring no physical ancilla qubits, increased error tolerance, and simpler logical gates
than a surface code with bosonic physical qubits. We thoroughly discuss protocols for stabilizer
measurements, encoding and manipulating logical qubits, and gate implementations.

PACS numbers:

As originally proposed by Ettore Majorana, the Majo-
rana fermion is a particle that is its own anti-particle [1].
In the condensed matter setting, Majorana fermions can
emerge in topological superconductors as a special type
of zero-energy, spatially-localized quasi-particle, formed
by a coherent superposition of electron and hole excita-
tions with equal amplitude [2, 3]. Theory predicts that
Majorana fermions can be created in a wide array of spin-
orbit-coupled materials in proximity with conventional
superconductors [4–8]. Recently, the observation of zero-
energy conductance peaks in such systems [9–12] provides
encouraging hints of Majorana fermions [13, 14].

Majorana fermions in topological superconductors are
of great interest as they are predicted to exhibit exotic
properties such as non-Abelian statistics [15–17], which
have yet to be observed in nature. In addition to its
theoretical significance, non-Abelian statistics provides
the foundation for topological quantum computation, in
which logical qubits are encoded in the topologically-
degenerate states of non-Abelian anyons and qubit oper-
ations are performed by braiding [18]. Topological quan-
tum computation has the theoretical advantage of be-
ing immune to errors caused by local perturbations [19].
Demonstrating the non-Abelian statistics of Majorana
fermions, however, requires braiding, fusing, and mea-
suring the fusion outcome. This is a challenging task,
as each of the above operations is yet to be experimen-
tally achieved. Furthermore, braiding Majorana fermions
alone is insufficient to perform the necessary gate opera-
tions for universal quantum computation.

The “surface code” [20, 21] provides an alternative ap-
proach to universal quantum computation that uses mea-
surements in an Abelian topological phase for gate op-
erations and error correction. In the surface code, mea-
surements of non-trivial commuting operators (stabiliz-
ers) are used to project onto a “code state” and logical
qubits are effectively encoded in the anyon charge of a
region by ceasing certain stabilizer measurements [22–
25]. The logical gates necessary for universal quantum

computation are realized through sequences of measure-
ments used to move and braid the logical qubits. An
advantage of the surface code architecture is its remark-
able ability for error detection and subsequent correction
during qubit readout, as the nucleation of anyons through
the action of a random operator can be reliably tracked
through stabilizer measurements. For a sufficiently low
error rate per physical qubit measurement, scaling the
size of the surface code produces an exponential suppres-
sion in propagated errors [26]. Remarkably, recent ex-
periments with superconducting quantum circuits have
demonstrated the ability to perform high-fidelity phys-
ical gate operations and reliable error correction for a
surface code of small size [27–29].

In this work, we introduce a new scheme for surface
code quantum computation that uses Majorana fermions
as the fundamental physical degrees of freedom and ex-
ploits their unique properties for encoding and manip-
ulating logical qubits. Our surface code is based on
a novel Z2 topological order with fermion parity grad-
ing (defined below), which we demonstrate in a class
of exactly solvable Hamiltonians of interacting Majorana
fermions. We demonstrate that charging energy-induced
quantum phase slips in superconducting arrays with Ma-
jorana fermions generate the required multi-fermion pla-
quette interactions, providing a physical realization of
our model. We then describe a detailed physical imple-
mentation of the “Majorana fermion surface code”, in-
cluding physical qubit and stabilizer measurements, the
creation of logical qubits, error correction, and logical
gate operations required for universal quantum compu-
tation.

The Majorana fermion surface code poses significant
benefits over a surface code with bosonic physical qubits.
First, stabilizer measurements in the Majorana surface
code can be performed in a single step, whereas this
requires several physical gate operations in the conven-
tional surface code [24, 25]. As a result, we anticipate
that the Majorana surface code has a significantly higher
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error tolerance. Furthermore, our Majorana surface code
operates with substantially less overhead, as it requires
fewer physical qubits per encoded logical qubit, and uses
no physical ancilla qubits. Second, we may tune the
energy gap for anyon excitations in our physical real-
ization of the Majorana plaquette Hamiltonian, increas-
ing error suppression in the Majorana fermion surface
code. Finally, the lattice symmetries in the Majorana
plaquette model permute the three fundamental anyon
types, allowing a much simpler realization of the log-
ical Hadamard gate. As we will show, the above ad-
vantages arise from the unique approach taken by our
Majorana fermion surface code and the use of Majorana
fermions as fundamental degrees of freedom. In particu-
lar, the unique property that a Majorana fermion is half
of an ordinary fermion, with the consequence that two
of them form a single physical qubit, is crucial to the
Majorana fermion surface code. On the other hand, the
non-Abelian statistics of Majorana fermions is of no rel-
evance to our code, because it does not involve braiding
them.

This paper is organized as follows. First, we intro-
duce a solvable model of interacting Majorana fermions
on the honeycomb lattice realizing a novel Z2 topolog-
ical order with a Z2 fermion parity grading and an ex-
act S3 anyon symmetry. We propose a physical real-
ization of this model, using charging energy in an array
of mesoscopic superconductors [31] to implement the re-
quired non-local interactions between multiple Majorana
fermions. Next, we demonstrate that our model provides
a natural setting for the Majorana fermion surface code,
in which a logical qubit is encoded in a set of physical
qubits formed from Majorana fermions. We present a
physical implementation of the Majorana surface code
and propose detailed protocols for performing gate oper-
ations for universal quantum computation.

I. MAJORANA PLAQUETTE MODEL

We begin by considering a honeycomb lattice with one
Majorana fermion (γ) on each lattice site; the Majo-
rana fermions satisfy canonical anti-commutation rela-
tions {γn, γm} = 2δnm. The Hamiltonian is defined as
the sum of operators acting on each hexagonal plaque-
tte:

H = −u
∑
p

Op Op ≡ i
∏

n∈vertex(p)

γn. (1)

We note that this model was mentioned in a work by
Bravyi, Terhal and Leemhuis [32], although its novel
topological order and anyon excitations were not stud-
ied there. It suffices to consider u > 0 below, as the case
of u < 0 can be mapped to u > 0 by changing the sign
of the Majorana fermions on one sublattice. The oper-
ator Op is the product of the six Majorana fermions on

(a) (b)

FIG. 1: We consider a honeycomb lattice with (a) a single
Majorana fermion on each lattice site, so that the Op opera-
tor is the product of the six Majorana fermions on the vertices
of a hexagonal plaquette. The colored plaquettes in (b) cor-
respond to the three distinct bosonic excitations that may be
obtained by violating a plaquette constraint.

the vertices of plaquette p as shown in Figure 1a. Since
any two plaquettes on the honeycomb lattice share an
even number of vertices, all of the plaquette operators
commute, and the ground-state |Ψ0〉 is defined by the
condition

Op |Ψ0〉 = |Ψ0〉 , (2)

for all plaquettes p. We note that quite generally, Hamil-
tonians of interacting Majorana fermions with commut-
ing terms may be realized on any lattice, so long as any
pair of operators in the Hamiltonian only has overlapping
support over an even number of Majorana fermions.

We demonstrate that the above Majorana plaquette
model (1) realizes a Z2 topological order of Fermi sys-
tems by considering the ground-state degeneracy and
elementary excitations. First, we place the system on
a torus by imposing periodic boundary conditions, and
find a four-fold degenerate ground-state by counting the
number of degrees of freedom and constraints on the full
Hilbert space. For anN -site honeycomb lattice, the 2N/2-
dimensional Hilbert space of Majorana fermions is con-
strained by the fixed total fermion parity:

Γ ≡ iN/2
∏
n

γn (3)

For convenience, we choose a unit cell for the honeycomb
lattice consisting of three plaquettes labeled A,B and C,
as shown in Figure 1b. We observe that on the torus, the
product of plaquette operators on each of the A, B and
C-type plaquettes is equal to the total fermion parity:

Γ =
∏
p∈A
Op =

∏
p∈B
Op =

∏
p∈C
Op (4)

The operators {Op} on any one type of plaquette fix one-
third of the plaquette eigenvalues via the condition (2),
and impose 2N/6−1 constraints on the Hilbert space. The
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number of unconstrained degrees of freedom is therefore
given by:

D = 2
N
2 −1/

(
2

N
6 −1

)3

= 4, (5)

which yields a four-fold ground state degeneracy for the
Majorana plaquette model on the torus.

The ground state degeneracy is of a topological nature,
as the four ground-states are distinguished only by non-
local operators. To see this, we construct a Wilson loop
operator W`, defined as a product of Majorana bilinears
on a non-contractible loop ` on the torus:

W` ≡
∏
n,m∈`

(iγnγm). (6)

such that W 2
` = 1, so that the Wilson loop has eigen-

values ±1. Consider the operators Wx and Wy on the
two non-trivial cycles of the torus `x and `y, as shown in
Figure 2. Since `x and `y traverse an even number of ver-
tices over any plaquette and do not contain any common
lattice sites, we have [Wx,Wy] = [Wx, H] = [Wy, H] = 0.
Furthermore, we may construct Wilson loop operators
Wx̃ and Wỹ on loops ˜̀

x and ˜̀
y, where ˜̀

x is shifted from

`x by a basis vector parallel to `y and likewise for ˜̀
y,

such that {Wx̃,Wy} = {Wỹ,Wx} = 0. As before, Wx̃

and Wỹ commute with each other and with the Hamilto-
nian. Therefore, the four degenerate ground-states may
be distinguished by their eigenvalues under Wx and Wy,
with Wx̃ and Wỹ transforming the ground-states between
distinct sectors. In analogy with conventional Z2 gauge
theory, we may identify the Wilson loop operators Wx,y

with electric charges traversing the torus in two different
directions, and Wx̃,ỹ as magnetic fluxes on a dual lattice.

Gapped excitations above the ground state are ob-
tained by flipping the eigenvalue of Op from +1 to −1 on
one or more plaquettes. Since the total fermion parity is
fixed and equal to the product of all plaquette operators
of each type, plaquette eigenvalues can only be flipped
on pairs of plaquettes of the same type. This is achieved
by string operators of the form (6), now acting on open
paths and anti-commuting with the plaquette operators
at the two ends of the path, thereby creating a pair of
anyon excitations.

An important feature of our Majorana plaquette
model, the conservation of total fermion parity—a uni-
versal property of Fermi systems—makes it impossible
to create or annihilate two excitations living on different
types of plaquettes, or change one type of plaquette exci-
tation into another. As a result, there are three distinct
elementary plaquette excitations, labeled A, B and C, by
plaquette type. To determine their statistics, we braid
these excitations by acting with Majorana hopping oper-
ators iγnγm on lattice bonds [62]. We find that all three
types of plaquette excitations have boson self-statistics
and mutual semion statistics, i.e., braiding two distinct

FIG. 2: The action of the commuting Wilson loop operators
Wx and Wy is shown above as the product of the Majorana
fermions on the lattice sites intersected by the appropriate
colored lines. The operator wx anti-commutes with Wx and
takes the ground-state between two topological sectors.

plaquette excitations generates a quantized Berry phase
of π. From the elementary plaquette excitations we may
build composite excitations AB, BC, AC and ABC by
flipping the eigenvalues of the Op’s on two or three adja-
cent plaquettes. Among these, the composite excitation
ABC is simply a physical Majorana fermion, since the
Majorana operator γn acting on a lattice site flips the
eigenvalues of the Op’s on the three surrounding A, B
and C plaquettes. In contrast, the composite excitations
AB, BC, AC are anyons, with fermion self-statistics and
mutual semion statistics with the elementary excitations.
We call these excitations composite Majorana fermions,
as they are created by a string of physical Majorana
fermions. A summary of the braiding statistics for all
anyons in our Majorana plaquette model is given in the
following table:

1 A B C AB BC AC ABC
1 +1 +1 +1 +1 +1 +1 +1 +1
A +1 +1 −1 −1 −1 +1 −1 +1
B +1 −1 +1 −1 −1 −1 +1 +1
C +1 −1 −1 +1 +1 −1 −1 +1
AB +1 −1 −1 +1 −1 −1 −1 +1
BC +1 +1 −1 −1 −1 −1 −1 +1
AC +1 −1 +1 −1 −1 −1 −1 +1
ABC +1 +1 +1 +1 +1 +1 +1 −1

Strange as it may appear, the existence of eight
types of quasiparticle excitations is a generic property
of Z2 topologically ordered phases in Fermi systems,
due to the conservation of fermion parity. Consider
artificially dividing the above quasiparticles into two
groups: (1, A,B,AB) and (ABC,BC,AC,C) = ABC ×
(1, A,B,AB). The former is equivalent to the four quasi-
particles in Z2 gauge theory coupled to a bosonic Ising
matter field, as realized in Kitaev’s toric code [18] or
Wen’s plaquette model [61]. The latter group of quasi-
particles is obtained by attaching a physical Majorana
fermion to the former. The conservation of total fermion
parity guarantees that the two groups of quasi-particles
cannot transform into each other in a closed system, and
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thus have separate identities. We refer to the presence of
two groups of excitations with different fermion parity as
a Z2 fermion parity grading.

A remarkable property of the Majorana plaquette
model is that crystal symmetries of the honeycomb lat-
tice permute the three fundamental anyon excitations,
A,B and C, by interchanging the three types of plaque-
ttes. Examples of such lattice symmetries include π/3
rotations about the center of a plaquette, and transla-
tion by any primitive lattice vector. These symmetries of
the honeycomb lattice provide a microscopic realization
of the S3 anyon symmetry that permutes quasiparticle
sectors, as recently studied in the abstract formalism of
topological field theory by considering the symmetries of
the K-matrices of Abelian topological states [30, 34].

II. PHYSICAL REALIZATION

A. Physical Platforms

In this section, we show that the Majorana plaquette
model can be physically realized in an array of meso-
scopic topological superconductors that are Josephson
coupled. A wide range of material platforms for engi-
neering a topological superconductor have been proposed
and are being experimentally studied [2, 3]. As it will be
clear in the following, the scheme we propose for realizing
the Majorana plaquette model is independent of which
platform is used. For the sake of concreteness, we use a
platform based on topological insulators in describing the
general scheme below, and discuss other platforms based
on nanowires and two-dimensional electron gas with spin-
orbit coupling in section II.C.

We place a array of hexagon-shaped s-wave supercon-
ducting islands on a topological insulator (TI) to induce a
superconducting proximity effect on the TI surface states.
The Hamiltonian for this superconductor-TI hybrid sys-
tem is given by

H0 =

∫
dr(−iv)ψ†(r) (∂xsy − ∂ysx − µ)ψ(r)

+
∑
j

∫
drj

[
∆eiϕjψ†↑(rj)ψ

†
↓(rj) + h.c.

]
, (7)

where ψ = (ψ↑, ψ↓)
T is a two-component fermion field

and sx,y are spin Pauli matrices. The first term de-
scribes the pristine TI surface states, with a single spin-
non-degenerate Fermi surface and helical spin texture in
momentum space. The second term describes the su-
perconducting proximity effect: rj belongs to the region
underneath the j-th superconducting island, whose phase
is denoted by ϕj .

As found by Fu and Kane [4], a vortex or anti-vortex
trapped at a tri-junction, where three islands meet, hosts
a single Majorana fermion zero mode. Let us consider

FIG. 3: Array of hexagonal s-wave superconducting islands
placed on a TI surface. Each arrow points in the direction of
the relative phase of the associated island, with ϕ = 0, ±2π/3.
This produces a honeycomb lattice of vortices (blue) and anti-
vortices (red) at tri-junctions, hosting Majorana fermions.

setting up the phases of superconducting islands to real-
ize an array of vortices and anti-vortices at tri-junctions.
For example, the phases can be set to ϕj = 0, 2π/3 and
−2π/3 on the A, B and C-type islands respectively, as
shown in Fig. 3. This yields a 2D array of Majorana
fermions on a honeycomb lattice. In practice, the desired
phase configuration can be engineered by external elec-
trical circuits [35] and/or magnetic flux. Alternatively,
applying a perpendicular magnetic field generates a vor-
tex lattice. These vortices may naturally sit at these tri-
junctions where the induced superconductivity is weak,
leading to the desired lattice of Majorana fermions.

We take the size of the islands to be larger than the co-
herence length of the superconducting TI surface states.
Under this condition, Majorana fermions at different sites
have negligible wavefunction overlap, preventing any un-
wanted direct coupling between them. (We note that
even weak couplings from wavefunction overlap will not
affect the Z2 topological order of the Majorana plaque-
tte model, due to its finite energy gap.) Nonetheless, as
we show below, the charging energy of superconductors
induces a nonlocal interaction between the six Majorana
fermions on each island, providing the key ingredient of
the Majorana plaquette model.

B. Phase-Slip Induced Multi-Fermion Interactions

The important but subtle interplay between Majorana
fermions and charging energy was first recognized by Fu
and formulated for superconductors with a fixed num-
ber of electrons [31]. Later works have extended it to
multiple superconductors connected by Josephson cou-
pling and single-electron tunneling [33, 40–42]. In all of
these cases, the charging energy of a given superconduc-
tor induces quantum phase slips ϕ→ ϕ±2π, from which
the Majorana fermions in the superconductor acquire a
minus sign: γi → −γi. This property is due to the inher-
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ently double-valued dependence of Majorana operators
on the superconducting phase [31].

In our setup for the Majorana plaquette model, the
charging energy of the superconducting islands exerts
even more dramatic and interesting effects on the Majo-
rana fermions at tri-junctions, which have not been pre-
viously studied. In the presence of a charging energy,
the phase of each island becomes a quantum rotor. The
kinetic energy of the rotor is provided by the charging
energy Ec, which depends on the capacitance between
an island and the rest of the array, and is described by
the following Hamiltonian

Hc = 4Ec
∑
j

(n̂j − ng)2 (8)

where n̂j ≡ (−i) ·∂/∂ϕj is the Cooper pair number oper-
ator for the jth island and ng is the offset charge, which
can be tuned by an externally applied electric field. The
potential energy of the rotor is provided by the Josephson
coupling EJ between adjacent superconducting islands,
given by

HJ = −EJ
∑
〈j,j′〉

cos(ϕ̂j − ϕ̂j′ − ajj′), (9)

where ajj′ = ϕ0,j−ϕ0,j′ is externally set up such that the
minimum of the Josephson energy corresponds to ϕj =
ϕ0,j mod 2π, with ϕ0,j = 0, 2π/3 and −2π/3 for the A,
B and C-type islands, respectively.

Combining (7), (8) and (9), the full Hamiltonian for
our setup, i.e. an array of superconducting islands on a
TI surface, is given by

H = H0 +Hc +HJ . (10)

We work in the regime EJ � Ec. Under this condition,
low-energy states of the quantum rotor on a given island
ϕj consist of small-amplitude fluctuations around each
potential minimum ϕ0,j +2πm. Moreover, different min-
ima are connected by quantum phase slips, in which the
phase ϕ tunnels through a high energy barrier to wind
by 2πn, with n an integer. The small-amplitude phase
fluctuations around a potential minimum correspond to
a quantum harmonic oscillator, and thus generate a set
of energy levels given by

ε0α ≈ (α+ 1/2)
√

8EJEc. (11)

with α ∈ N.
On the other hand, quantum phase slips on a supercon-

ducting island strongly couple to the Majorana fermions
that reside on the border with its neighbors, previously
obtained by holding the phase fixed at ϕ0,j . In other
words, Majorana fermions enter the low-energy effective
theory of (10) via quantum phase slips induced by small
the charging energy on each superconducting island. This

new physics makes our system different from a conven-
tional Cooper pair box. Remarkably, the action of a
quantum phase slip involves Majorana fermions in a way
that depends periodically on the phase winding number
n mod 6. Consider, for example, phase slips at the cen-
tral superconducting island in Fig. 3. For n = 1, a
2π phase slip ϕ = 0 → 2π cyclically permutes the three
Majorana fermions bound to vortices in the counterclock-
wise direction, and the three Majorana fermions bound
to anti-vortices in the clockwise direction, i.e.,

ϕ = 0→ 2π : γ1 → γ3, γ3 → γ5, γ5 → −γ1

γ2 → −γ6, γ4 → γ2, γ6 → γ4, (12)

as shown in Figure 4, where i = 1, ..., 6 labels the six
Majorana fermions at vertices of this island in clockwise
order. The physical movement of Majorana fermions in-
duced by phase slips is a unique and attractive advantage
of our setup, compared to other setups in which the posi-
tions of Majorana fermions are fixed [33, 40–42]. On the
other hand, for n = 3, a 6π phase slip takes each Ma-
jorana fermion over a full circle and back to its original
position, from which it acquires a minus sign [4], i.e.,

ϕ = 0→ 6π : γi → −γi. (13)

Only for n = 6 does each Majorana fermion come back
to its original position unchanged.

We now add up the contributions of various phase slips
to derive an effective Hamiltonian for Majorana fermions
as a function of the offset charge ng for each state of the
harmonic oscillator:

Hα(ng) = ε0α +

6∑
n=1

(tα,nÛne
i2πnng + h.c.). (14)

Here ε0α is the quantized energy of the harmonic oscillator
given by (11), which is the same for all internal states of
the Majorana fermions. The second term describes quan-
tum phase slips: tα,n denotes the amplitude of the α-th
energy level of the harmonic oscillator tunneling between
two potential minima that differ by 2πn, while Ûn is the
unitary operator acting on the Majorana fermions due
to a 2πn phase slip. The coupling tα,n depends on the
energy barrier in the phase slip event and can be modu-

lated by tuning Ec/EJ ; for example, tα,1 ∝ e−
√

8EJ/Ec

[39]. The offset charge ng provides an Aharonov-Bohm
flux proportional to the winding number n.

The Hamiltonian (14) is analogous to the Bloch Hamil-
tonian that describes the band structure of a particle
hopping in a one-dimensional periodic potential, with the
offset charge ng playing the role of crystal momentum.
Importantly, the phase particle carries internal degrees of
freedom resulting from Majorana fermions γ1, ..., γ6 that
are unique to our system. A phase slip that moves the
phase particle to a different potential minimum also per-
mutes the Majorana fermions as shown in (12,13), similar
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(a) (b) (c) (d)

FIG. 4: Schematic of a 2π phase-slip on the central superconducting island in a hexagonal superconducting array on a TI
surface, with the phase of the central island indicated in each panel. When the phase difference between neighboring islands
is π, the pair of Majorana fermions on the shared edges couple [4] as indicated. The 2π phase-slip permutes the Majorana
fermions as shown, leading to the transformation in (12).

to a spinful particle hopping in the presence of a non-
Abelian gauge field. These permutations are represented
by the unitary operators Ûn in the effective Hamiltonian
(14) acting on Majorana fermions. For example, the op-
erator Û1 that generates the transformation (12) is given
by:

Û1 =
1 + γ2γ3√

2
· 1 + γ4γ5√

2
· 1− γ6γ1√

2

× 1 + γ1γ2√
2

· 1 + γ3γ4√
2

· 1 + γ5γ6√
2

. (15)

It follows from the addition of phase slips that Ûn =
(Û1)n. In particular, the unitary operator Û3, which
takes γi to −γi as shown in (13), has a simple form:

Û3 = −
6∏
i=1

γi = iO, (16)

where O is the plaquette operator defined in the Ma-
jorana plaquette model (2). On the other hand, for
n = 1, 2, 4 or 5, Un is a sum of operators γiγj , γiγjγkγl
and iO.

Substituting the expressions for the Un’s into (14), we
find that the effective Hamiltonian induced by the small
charging energy of a single island takes the following form

Hα(ng) = ε0α + ∆α(ng)O + Vα(ng), (17)

with

∆α(ng) =

5∑
m=1

tα,m sin(2πmng). (18)

Vα(ng) includes a constant tα,6 cos(12πng), as well as Ma-
jorana bilinear and quartic operators generated by phase
slips with winding number n 6= 0 mod 3. Unlike O,
these operators on neighboring islands do not commute.

From now on, we assume that V can be treated as a
perturbation to the Majorana plaquette model that does
not destroy the Z2 topological order of the gapped phase.
An alternative setup without the presence of V will be
presented in a forthcoming work [44].

C. Discussion

In deriving the effective Hamiltonian (14), we have im-
plicitly assumed that Majorana fermions are the only
low-lying excitations involved in phase slip events, sepa-
rated by an energy gap from other Andreev bound states
in the junctions between islands. This assumption is valid
because of the finite size of the islands, which leads to a
discrete Andreev bound-state spectrum with a finite gap
for all values of the phase. The presence of this gap jus-
tifies our derivation of the effective Hamiltonian (14) in
a controlled manner.

Over the last few years, considerable experimental
progress has been made in hybrid TI-superconducting
systems. Proximity-induced superconductivity and su-
percurrents have been observed in a number of TI mate-
rials [43, 46–51]. Low-temperature scanning tunneling
microscopy (STM) experiments have found proximity-
induced superconducting gap on TI surface states, and
the tunneling spectrum of Abrikosov vortices shows a
zero-bias conductance peak, which is robust in a range of
magnetic field and splits at higher field [12]. This peak
has been attributed to the predicted Majorana fermion
zero-modes in the vortex cores of superconducting TI sur-
face states. In view of these rapid, unabated advances,
we regard the hybrid TI-superconductor system as a very
promising material platform for realizing the Majorana
plaquette model and studying the exciting physics of Ma-
jorana fermions enabled by quantum phase slips.

Besides TIs, a two-dimensional electron gas (2DEG)
with spin-orbit coupling (such as InAs) can be driven
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into a helical state with an odd number of spin-polarized
Fermi surfaces by an external Zeeman field, which pro-
vides another promising platform for realizing topolog-
ical superconductivity via proximity effect [52, 53]. In
this topological regime, vortices and tri-junctions of a
superconducting 2DEG host a single Majorana fermion,
similar to the TI surface. Thus our proposed setup for
the Majorana plaquette model in Section IIA directly ap-
plies to this system as well.

In addition to TIs and 2DEG, (quasi-)one-dimensional
semiconductors and metals with strong spin-orbit cou-
pling have become a hotly pursued system for Majorana
fermions [5–7]. Signatures of Majorana fermions were re-
ported in 2012, based on the observation of zero-bias con-
ductance peak in hybrid nanowire-superconductor sys-
tems [9, 10]. One can envision a network of nanowires
in proximity with Cooper-pair boxes to realize our Majo-
rana plaquette model. In this direction it is worth noting
that a new physical system—a nanowire with an epitax-
ially grown superconductor layer— has been recently in-
troduced to study Andreev bound-states in the presence
of charging energy [54].

Many other physical systems for Majorana fermions
have been theoretically proposed and experimentally pur-
sued, too numerous to list. Regardless of the particular
system, non-local interactions between multiple Majo-
rana fermions emerge from the charging energy of super-
conductors via quantum phase slips, and in the universal
regime, such interactions are determined by the trans-
formation of Majorana fermions under phase slips, as we
have shown in Section IIB.

Finally, we note several previous works related to our
Majorana plaquette model and its physical realization.
In Ref. [33], Xu and Fu first introduced a model of in-
teracting Majorana fermions that realizes Z2 topological
order. This model involves 4-body and 8-body plaquette
interactions on square and octagonal plaquettes in a two-
dimensional lattice. Physical realizations of this model
were proposed using an array of superconductor islands
in proximity with either 2D TI [33], or semiconductor
nanowires [55]. The 4-body nonlocal interaction between
Majorana fermions comes directly from the charging en-
ergy, whereas the 8-body interaction comes from a high-
order ring-exchange process generated by single-electron
tunneling between islands. In comparison, our Majorana
plaquette model on the honeycomb lattice has the theo-
retical novelty of possessing an exact anyon permutation
symmetry, and can be realized in a much simpler man-
ner using an array of superconductors on a 3D TI with
global phase coherence, with all the required interactions
coming directly from the charging energy. We also note
a recent work on lattice models of Majorana fermions in
Abrikosov vortices on a superconducting TI surface [56],
which use different interactions and do not exhibit topo-
logical order.

III. MAJORANA SURFACE CODE

In the rest of this work, we demonstrate that the Ma-
jorana plaquette model finds a natural application as
a “Majorana fermion surface code”, on which univer-
sal quantum computation and error correction may be
performed. The main idea of the surface code is to (i)
use anyons of the Majorana plaquette model to encode
logical qubits, (ii) manipulate anyons to perform gate op-
erations on logical qubits, and (iii) use commuting mea-
surements of the Majorana plaquette operators for error
correction. We will describe the detailed implementation
of the Majorana surface code, including the creation of
logical qubits, error correction, and protocols for logical
gate operations required for universal quantum compu-
tation.

The surface code architecture [20, 21, 24] is a
measurement-based scheme for quantum computation. It
uses projective measurements of commuting operators—
called “stabilizers”—acting on a 2D array of physical
qubits to produce a highly-entangled “code state” |ψ〉.
Logical qubits are created by stopping the measurement
of certain commuting operators to create “holes”. The
different possible anyon charges at a hole are the degrees
of freedom that define a logical qubit. Logical gates are
realized by manipulating and braiding holes via a se-
quence of measurements.

A key advantage of the surface code is its remarkable
capability for error detection. The random measurement
of an operator in the surface code corresponds to nu-
cleating pairs of anyons, a process that can be reliably
measured by tracking the eigenvalues of the commuting
stabilizers. Reliable error detection hinges on (i) having
a large number of physical qubits for a given encoded
logical qubit, and (ii) a sufficiently low error rate for
stabilizer measurements [24]. For the previously studied
surface code with bosonic physical qubits, it has been es-
timated [58, 59] that below a threshold as high as ∼ 1%
error-rate per physical qubit operation, scaling the size
of the surface code permits an exponential suppression of
errors propagated. This error tolerance makes the surface
code architecture one of the most realistic approaches to
practical, large-scale quantum computation.

Recent practical realizations of the surface code have
used superconducting qubits coupled to a microwave
transmission line resonator to perform qubit manipula-
tions and measurements [27–29]. Here, a physical qubit
is defined by two energy levels arising from quantization
of number/phase fluctuations in a conventional Cooper
pair box. The surface code is implemented on a 2D ar-
ray of physical qubits with the four-qubit interactions of
Kitaev’s toric code Hamiltonian [18] as the set of com-
muting stabilizers. The four-qubit stabilizer is measured
by performing a sequence of single and two-qubit gates
between the four physical qubits and additional ancilla
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qubits [24]. Experiments have demonstrated the remark-
able ability to operate these physical gates with fidelity
above the threshold required for surface code error cor-
rection [27]. Recent experiments have also used error
detection to preserve entangled code states on a surface
code with a 9×1 [28] and a 2×2 [29] array of stabilizers.
It remains to be shown that logical qubits can be success-
fully encoded and manipulated via logical gates in these
surface code arrays.

A. Implementation

We implement the Majorana surface code on a 2D ar-
ray of Majorana fermions by performing projective mea-
surements of the Majorana plaquette operators {Op},
which form a complete set of commuting stabilizers. For
the remainder of this paper, we will use ‘plaquette oper-
ators’ and ’stabilizers’ interchangeably to refer to {Op}.
A practical physical system for implementing the Majo-
rana surface code is the superconductor-TI hybrid sys-
tem introduced in the previous section. We place a array
of superconducting islands on the TI surface, which are
strongly Josephson coupled. By introducing external cir-
cuits or applying fluxes, we engineer the Josephson cou-
pling between islands to achieve the phase configuration
in Figure 3, leading to a honeycomb lattice of Majorana
fermions at tri-junctions.

To perform a projective measurement of the Majorana
plaquette operator on a given island, i.e., a single sta-
bilizer, we decrease the Josephson coupling of the island
with the rest of the array to activate quantum phase slips
from the small but non-zero charging energy on this is-
land. As shown by the effective Hamiltonian in (17),
these quantum phase slips (partially) lift the degener-
acy between states in the eight-dimensional Fock space
of the six Majorana fermions. In particular, for every en-
ergy level of the harmonic oscillator, there is an energy
splitting ∆α(ng) between states of Majorana fermions
with Γ = +1 (even fermion parity) and with Γ = −1
(odd fermion parity) from (18), where Γ is the stabi-
lizer eigenvalue; this is shown schematically in Figure 5b.
Therefore, the charging energy of the island creates an
energy difference between different stabilizer eigenstates.
Furthermore, the energy gap between the two lowest har-
monic oscillator levels on the island is a function of the
stabilizer eigenvalue Γ = ±1, and in the limit of negligible
interaction V takes the following form:

∆EΓ(ng) = ε0 + [∆2(ng)−∆1(ng)] Γ + . . . (19)

where ε0 ≡ ε02− ε01 ≈
√

8EJEc. The sensitivity of the en-
ergy gap to the stabilizer eigenvalue now permits a stabi-
lizer measurement by simply measuring the energy gap.
By shining a probe microwave beam on this island, we
may measure the phase shift of the transmitted photons
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FIG. 5: (a.) Schematic of the harmonic oscillator energy levels
of the effective Hamiltonian (17), centered at ϕ = 2πn, with
the 2π and 4π phase-slip amplitudes for the lowest energy
levels shown. In (b), we show a schematic plot of the two
lowest harmonic oscillator levels as a function of the gate-
charge. The energy splittings ∆1 and ∆2 are between states
with even (Γ = +1) and odd fermion parity (Γ = −1) within
the first and second harmonic oscillator levels, respectively.
Each level within a fixed fermion parity sector is nearly four-
fold degenerate.

to determine the gap between the two harmonic oscillator
levels [36, 37].

We now perform these stabilizer measurements on all
of the superconducting islands to project onto an eigen-
state of the Majorana plaquette Hamiltonian (1); this
will be our reference “code state”. We continue to per-
form measurements on all hexagonal islands in each cy-
cle of the surface code in order to maintain the state. In
subsequent cycles, we may encode logical qubits into the
code state and manipulate the qubits via measurement.
While projection onto the code state and error correc-
tion in the surface code rely exclusively on measuring
the six-Majorana plaquette interaction, manipulation of
logical qubits also requires measuring nearest-neighbor
Majorana bilinears on the hexagonal lattice. This may
be done by tuning the phase of neighboring supercon-
ducting islands to bring the pair of Majorana fermions on
the shared edge sufficiently close together [4], so that the
resulting wavefunction overlap further splits the nearly
four-fold degeneracy within a single fermion parity sec-
tor shown in Figure 5b. Again, the Majorana bilinear
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may be measured by shining a probe beam to measure
the energy gap to the next harmonic oscillator level.

Using the commuting six-Majorana operators in our
plaquette model to realize a surface code provides unique
advantages over the more conventional surface code with
bosonic physical qubits. First, while a four-spin stabilizer
measurement in the usual surface code requires perform-
ing 6−8 gates/measurements between a set of physical
and ancilla qubits [24, 58], stabilizer eigenvalues in the
Majorana surface code are obtained via a single-step mea-
surement by shining a probe beam. We emphasize that
even when measurement is not being performed, the in-
trinsic charging energy of the islands generates a finite
gap ∆1(ng) to creating anyon excitations, and naturally
suppresses errors at temperatures kBT < ∆1(ng). We
anticipate that the corresponding error tolerance for scal-
able quantum computation is substantially improved for
the Majorana surface code. Second, the Majorana sur-
face code operates with lower overhead than its bosonic
counterpart, using three-qubit stabilizers, and requiring
no ancilla qubits. Finally, the anyon transmutation re-
quired to perform a logical Hadamard gate in the con-
ventional surface code corresponds to a duality transfor-
mation that exchanges the star and plaquette toric code
operators. This operation is quite difficult to perform on
a single logical qubit as it also requires lattice surgery to
patch the transformed logical qubit back into the remain-
ing surface code [24, 38]. As lattice symmetries permute
anyon sectors in the Majorana plaquette model, anyon
transmutation in the Majorana surface code corresponds
to a lattice translation of the logical qubit, substantially
simplifying the Hadamard gate implementation.

B. Logical qubits and error correction

Logical qubits may be encoded in the surface code by
ceasing the measurement of the plaquette operator on a
hexagonal superconducting island in a surface code cycle,
while continuing measurements on all other plaquettes.
In theory, we could stop measuring a single plaquette and
define a two-level system, with the Ẑ and X̂ operators of
the logical qubit defined by the plaquette operator and a
Wilson line connecting the plaquette to the boundary, re-
spectively. A pair of such qubits on the A-type plaquettes
is shown in Figure 6a, where the solid and dashed lines
correspond to products of Majorana fermions that define
the indicated logical operators. The two qubits shown
may also be coherently manipulated by acting with the
Wilson line operator connecting the two plaquettes, de-
noted X̂12.

In practice, however, it is difficult to manipulate qubits
with an operator that connects to a distant boundary, so
it is simpler to encode a logical qubit by stopping the
stabilizer measurement on two well-separated plaquettes
of the same type. We choose to only manipulate two of

(a)

(b)

(c)

FIG. 6: Logical qubits in the Majorana surface code. In (a)
we stop the measurement of two plaquette operators in subse-
quent surface code cycles, increasing the ground-state degen-
eracy by a factor of four. If we take Ẑ1 and Ẑ2 to be the logical
Ẑ operators for the two encoded qubits, the corresponding X̂1

and X̂2 operators are given by Wilson lines connecting to the
boundary. The two qubits may be coherently manipulated by
applying the operator X̂12 as shown. In practice, it is simpler
to define logical qubits by stopping the measurement of pairs
of plaquettes of a single type, with the logical X̂ and Ẑ de-
fined as shown in (b). We may also consider a logical qubit
made of several ‘holes’, as in (c), to minimize errors during
qubit manipulation.

the four resulting degrees of freedom by defining Ẑ ≡ Op
and X̂ ≡ Wpq, the Wilson line operator connecting the
two plaquettes. We use the opposite convention to define
the logical Ẑ and X̂ operators for a qubit on the adja-
cent B plaquettes; an example of such logical qubits is
shown in Figure 6b. We note that when such a qubit is
created, it is automatically initialized to an eigenstate of
the plaquette operator, with eigenvalue given by the mea-
surement performed in the previous surface code cycle.
As a result, logical qubits of type A (B) are initialized to
an eigenstate of the Ẑ (X̂) logical operator.

To reduce errors during qubit manipulation, we may
define a qubit by ceasing measurement of multiple adja-
cent plaquettes as shown in Figure 6b. In this particular
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case, the logical operator X̂ is still a Wilson line connect-
ing to another set of distant ‘holes’. However, the logical
Z is defined as Ẑ ≡ Op ⊗Oq ⊗Or. For the remainder of
our discussion, we will consider logical qubits with only
a single plaquette operator used to define the logical Ẑ;
the generalization to larger qubits is straightforward.

Errors may occur during qubit manipulation, includ-
ing (1) single-qubit errors due to the unintended mea-
surement of a local operator involving an even number of
Majorana fermions and (2) measurement errors. Single-
qubit error correction may be performed on logical qubits
by constantly measuring the remaining plaquette eigen-
values during surface code cycles. Since only pairs of
plaquettes may be flipped simultaneously by a random
measurement, corresponding to the nucleation of a pair
of anyons of a single type, detecting the change of an
odd number of plaquette eigenvalues in a single surface
code cycle will generally signal the presence of a ran-
dom measurement performed on a nearby logical qubit.
More precisely, when a stabilizer eigenvalue changes in a
surface code cycle, it is efficient to store the location of
that stabilizer, and wait several code cycles, accumulat-
ing a spacetime diagram of stabilizer errors as additional
errors occur [26, 58, 59]. After sufficiently many code
cycles, the spacetime diagram may be used to determine
the most likely configuration of Wilson lines that could
have generated those errors [24, 25] using a minimum-
weight perfect matching algorithm [57, 60]. Errors may
be subsequently corrected by software when performing
logical qubit manipulations and readouts [24]. Random
measurement errors involve incorrectly registering the
eigenvalue of a plaquette operator; these are naturally
corrected by performing multiple surface code cycles to
verify the accuracy of a measurement.

C. Logical gate implementations

The Majorana surface code may be used for universal
quantum computation by implementing CNOT, T , and
Hadamard gates on logical qubits; this has been exten-
sively studied in the context of the surface code architec-
ture with underlying bosonic degrees of freedom [24, 38].
Here, we describe the implementations of these gates in
our realization of quantum computation with a Majorana
surface code. Our gate implementations follow the spirit
of the implementations presented in [24].

All gates in the Majorana surface code are imple-
mented on logical qubits via a sequence of measurements.
Let Û be the desired unitary we wish to perform on
the quantum state of several logical qubits, defined by
the logical operators {X̂i} and {Ẑi}. It is convenient
to keep track of the transformation of the logical state
by monitoring the transformation of logical operators
X̂i → ÛX̂iÛ

†, Ẑi → Û ẐiÛ
†. In practice, performing

the appropriate sequence of measurements will yield the

transformation W , such that:

ÛX̂iÛ
† = ±Ŵ X̂iŴ

† (20)

Û ẐiÛ
† = ±Ŵ ẐiŴ

† (21)

where the signs depend on the outcomes of specific mea-
surements performed. These measurement outcomes are
stored in a software and used to correctly interpret the
readout of a logical qubit.

In what follows, we will often demonstrate our gate
implementations in an “operator picture”, where a set
of operators in the surface code ô1, . . ., ôn and p̂1, . . .,
p̂m with eigenvalues ±1 are measured in an appropriate
sequence. This implements a logical gate via the desired
transformations:

Ẑ → Ẑ ⊗
n∏
j=1

ôj = Û ẐÛ† (22)

X̂ → X̂ ⊗
m∏
j=1

p̂j = ÛX̂Û†. (23)

In practice, the measured outcomes for the {ôi} and {p̂j}
operators will be stored by software and used to obtain
the above transformations during logical qubit readout.
CNOT gate: A CNOT gate takes two qubits – a

“control” and a “target” – and flips the value of the target
qubit based on the value of the control, and returns the
control unchanged. The action of a CNOT takes the
following form in the basis of two-qubit states:

Ĉ =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 (24)

A CNOT gate may be implemented by braiding logical
qubits in the Majorana surface code. In the simplest case,
a CNOT between two logical qubits of different types
is implemented through a single braiding operation that
produces an overall sign if the hexagonal ends of both
qubits contain an anyon, due to the π mutual statistics,
demonstrated in Section I. In the following section, we
first describe the procedure to move a logical qubit along
a given type of plaquette before discussing the braiding
procedure required to produce a CNOT gate.

Consider the A-type logical qubit shown in Figure 7.
To move the qubit one unit to the right, we perform the
following sequence of measurements. We begin by mul-
tiplying the Ẑ logical operator by the eigenvalue of the
adjacent r plaquette operator to perform the transforma-
tion:

Ẑ → Ẑ ′ ≡ Ẑ ⊗ Ôr. (25)

As the r plaquette is being continuously measured, its
eigenvalue Or = ±1 is known from the previous surface
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(a)

(b)

FIG. 7: We may move a logical qubit defined by X̂ and Ẑ op-
erators along a given sublattice. We first multiply the logical
Ẑ by Ôr and turn Ôp and Ôq into four-Majorana operators.
After measuring iγη in the next code cycle, we extend the log-
ical X̂ → X̂⊗ iγη. Finally, we begin measuring Ẑ in the next
surface code cycle and restore Ôp and Ôq to six-Majorana
operators.

code cycle. In the next cycle, we stop measuring Ôr and
measure the Majorana bilinear iγη. We then multiply
the X̂ operator by the measurement outcome, affecting
the transformation

X̂ → X̂ ′ ≡ X̂ ⊗ iγη. (26)

In the final surface code cycle, we begin measuring the
original Ẑ stabilizer and continue to include the measure-
ment of the Ẑ stabilizer in all subsequent surface code
cycles. Furthermore, we redefine the logical operator Ẑ ′

as

Ẑ ′ → Ẑ ′′ ≡ Ẑ ′ ⊗ Ẑ. (27)

The initial qubit configuration and final outcome are de-
picted schematically in Figure 7. This sequence of mea-
surements has shifted the A-type qubit by moving its
hexagonal end one unit to the right, and may generally
be used to move an A- or B-type logical qubit within the
A or B plaquettes, respectively.

We may now braid pairs of logical qubits to perform a
CNOT gate in the Majorana surface code. The simplest
CNOT that we may realize is between two distinct types
of qubits, taking the A qubit as the control, as shown in
Figure 8. Since the qubits are distinct, braiding the B-
type qubit – with logical operators X̂B and ẐB – along
a closed path ` enclosing the second qubit (i) multiplies
the Wilson line of the B-type qubit by the anyon charge
enclosed by ` and (ii) multiplies the Wilson line of the A
qubit by the anyon charge of the B qubit. This results

(a)

(b)

FIG. 8: CNOT Gate. Braiding two logical qubits to perform
a logical CNOT. In (a), a possible trajectory for braiding the
first qubit around the second is indicated by the dotted line.
Since the two qubits live on distinct sublattices, the braiding
procedure induces the transformation X̂A → X̂A ⊗ X̂B and
ẐB → ẐA ⊗ ẐB ⊗ Ô, where Ô is the product of the colored
plaquettes shown. This performs a CNOT transformation on
the braided qubit.

in the transformation:

X̂A → X̂A ⊗ X̂B ẐB → ẐA ⊗ ẐB ⊗
∏
p∈`

Ôp (28)

where {Ôp} are A and C-type plaquette operators en-
closed by the braiding trajectory, as shown in Figure 8.
Since the eigenvalues of the enclosed plaquette operators
are known from the previous surface code cycle, we may
implement the logical CNOT (ẐA → ẐA, ẐB → ẐA⊗ẐB)
by multiplying the transformed ẐB by an appropriate
sign. In summary, the simplest braiding process between
an A and a B logical qubit implements a CNOT on the
B qubit, with the A qubit as the control.

A CNOT between two logical qubits of the same type
may also be performed by appropriately braiding pairs
of distinct types of logical qubits. In this case, we will
take one qubit as the control by convention and store
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(a)

(b)

FIG. 9: Braiding processes that implement the transforma-
tion (a) Ẑa → Ẑa ⊗ Ẑc ⊗ Ẑt ⊗ Ẑout up to an overall sign,
as determined by the product of the remaining plaquette op-
erators enclosed by the path `, and (b) Ẑout → Ẑout ⊗ ẐA,

Ẑt → Ẑt ⊗ ẐA, Ẑc → Ẑc ⊗ ẐA. The two braids are used to
realize CNOT gates between two (a) A-type and (b) B-type
logical qubits, respectively. By convention, we take the lowest
qubit enclosed by the braiding trajectory to be the control for
the logical CNOT.

the outcome of the CNOT gate in a third ancilla qubit.
First, consider performing a CNOT gate on two A-type
qubits. To implement the CNOT, we prepare two ad-
ditional ancilla qubits; the first is an A qubit prepared
in the state |ϕ〉 ≡ [|+z〉 + |−z〉]/

√
2, while the second

is a B qubit prepared in the state |+x〉, with |±z〉 and
|±x〉 the eigenstates of the logical Z and X operators,
respectively. Both ancilla qubits are prepared by mea-
suring a +1 eigenvalue for the Wilson line joining the
pair of plaquettes of the appropriate qubit. For the A
(B) qubit, this projects onto an eigenstate of the logical
X (Z) operator, and produces the desired ancilla states.

We now represent a complete basis of the four-qubit
states as |zB , zc, zt, zout〉, referring to the eigenvalues of
the logical Z operators of the B ancilla, the control, the
target and the ancilla A qubits, respectively. We start

out with an initial state |ψinit〉 of the form:

|ψinit〉 ≡
1√
2

[
|+, zc, zt,+〉+ |+, zc, zt,−〉

]
(29)

Next, we braid the B ancilla qubit around all three re-
maining qubits as shown in Figure 9a. Up to an overall
sign determined by the eigenvalues of plaquette opera-
tors enclosed by the braiding trajectory that are known
from previous surface code cycles, this braiding imple-
ments the transformation ẐB → ẐB ⊗ Ẑc ⊗ Ẑt ⊗ Ẑout

on the logical Z of the ancilla qubit, where Ẑc, Ẑt and
Ẑout are the logical Z operators for the control, target,
and ancilla A-type qubits, respectively. The final state
we obtain is then of the form:

|ψfinal〉 =
1√
2

[
|zczt, zc, zt,+〉+ |−zczt, zc, zt,−〉

]
(30)

This braiding process is convenient, as a measurement of
the state of the B qubit can determine whether the the
state of the A ancilla contains the correct outcome of
the CNOT operation. If we now measure the logical Z of
the B qubit and obtain ẐB = +1 then we project onto a
state with zczt = zout. In this case, the A ancilla qubit
contains the correct outcome of the CNOT between the
other A qubits. If ẐB = −1, however, then zczt = −zout

and the A ancilla contains the opposite of the correct
CNOT outcome. In this case, we may act with X̂out on
the A ancilla qubit in the surface code software [24] to
obtain the desired final state.

A similar process may be used to perform logical
CNOT’s between two B qubits; now, we prepare an A
ancilla qubit and a B ancilla qubit in the states shown
in Figure 9b. After braiding the ancilla A qubit around
the control, target, and ancilla B qubits, if we measure
X̂A = +1, then the B ancilla contains the desired out-
come of the CNOT operation. Again, by convention, we
take the control qubit to be the first one enclosed by the
braiding trajectory, as shown in Figure 9b.

Hadamard gate: The Hadamard is a single-qubit
gate taking the matrix form:

Ĥ =
1√
2

(
1 1
1 −1

)
(31)

The action of a Hadamard is to exchange the logical X̂
and Ẑ operators so that ĤX̂Ĥ† = Ẑ and ĤẐĤ† = X̂.
As the logical X̂ and Ẑ are defined oppositely on differ-
ent types of qubits, a Hadamard operation in the bosonic
surface code corresponds to an electric/magnetic duality
transformation that interchanges star and plaquette op-
erators in the toric code. In the ordinary surface code,
such a transformation is quite difficult to implement, re-
quiring a series of Hadamards on physical qubits enclos-
ing the logical qubit so as to interchange the X̂ and Ẑ
stabilizers, followed by physical swap gates in order to
correctly patch the transformed logical qubit back into
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(a)

(b)

(c)

(d)

FIG. 10: Hadamard gate. A logical Hadamard is performed
by transferring a qubit between distinct sublattices, so that
the logical X̂ and Ẑ operators are exchanged. We do this
by taking the qubit in (a) and multiplying by logical X̂ by

the plaquette operators {Ôµk} and the logical Ẑ by Ôp and
ceasing measurement of the fermion parity of plaquette p,
yielding the operators shown in (b). Next, we measure the

product (iη1η2)(iη3η4) · · · and and Ôq and multiply with Ẑ′

and X̂ ′, respectively. The final result is shown in (d).

the remaining surface code array [38]. As lattice sym-
metries permute the anyons in the Majorana plaquette
model, however, the logical Hadamard may be realized
in the Majorana surface code by simply moving a logical
qubit between distinct plaquettes.

We implement the logical Hadamard by the procedure
shown in Figure 10. Consider an A-type logical qubit.
We multiply the logical X̂ operator of the qubit, defined
by the Wilson line in Figure 10a, by the product of the
adjacent plaquette operators {Ôµk

} extending between

the hexagonal ends of the qubit. The eigenvalues of these
plaquette operators are known from previous surface code
cycles. This operation implements the transformation:

X̂ → Ẑ ′ ≡ X̂ ⊗
∏
k

Ôµk
. (32)

At the same time, we multiply the logical Ẑ by the ad-
jacent plaquette operator Ôp, shown in Figure 10a, that
borders the logical qubit above:

Ẑ → X̂ ′ ≡ Ẑ ⊗ Ôp. (33)

In subsequent surface code cycles, we stop measuring the
eigenvalue of Ôp. We implement a similar transformation
on the other hexagonal end of the logical qubit, by stop-
ping the measurement of the plaquette operator above
the other qubit ‘hole’. The end result, after performing
these operations, is shown in Figure 10b. The solid and
dashed blue lines indicate the products of the Majorana
fermions on the appropriate sites that define the X̂ ′ and
Ẑ ′ operators, respectively.

In the next surface code cycle, we measure the prod-
uct (iη1η2)(iη3η4) · · · of the Majorana fermions along the
lower ‘string’ that defines the Ẑ ′ operator; this measure-
ment commutes with X̂ ′ since the two operators do not
overlap, as shown in Figure 10c. Afterwards, we measure
Ôq, as well as the plaquette operator Ôh for the other
‘hole’ of the original logical qubit. Then, we may per-
form the following transformations on the logical X̂ ′ and
Ẑ ′ operators:

X̂ ′ → X̂ ′′ ≡ X̂ ′ ⊗ Ôq (34)

Ẑ ′ → Ẑ ′′ ≡ Ẑ ′ ⊗
∏
`

(iη2`−1η2`). (35)

This yields the logical qubit shown in Figure 10d. In
subsequent surface code cycles, we continue measuring
the eigenvalues of Ôq and Ôh. Since the logical Ẑ and

X̂ operators are defined differently on the A and B-type
plaquettes, our procedure for transforming our A qubit
into a B qubit implements a logical Hadamard gate. An
identical protocol may be used to perform a Hadamard
on a logical B qubit.
S and T -gates: Finally, we implement the logical

S- and T -gates, described by the following single-qubit
operations:

Ŝ =

(
1 0
0 i

)
T̂ =

(
1 0
0 eiπ/4

)
(36)

As demonstrated in [24], it is possible to realize these
gates by performing a series of logical Hadamard and
CNOT gates between the logical qubit and an appropri-
ate logical ancilla qubit. Here, we first discuss the S-
and T -gate implementations, given the appropriate an-
cilla qubit, before outline a procedure for creating these
logical ancillas in the surface code.
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To implement an S-gate, we prepare a logical ancilla
in the state

|ϕS〉 ≡
1√
2

[
|+z〉+ i |−z〉

]
(37)

Then, if |Ψ〉 is the state of the logical qubit of interest,
the following sequence of logical Hadamard and CNOT
gates implements the transformation |Ψ〉 → Ŝ |Ψ〉 [24]:

To perform a T -gate, we first prepare a logical ancilla
in the state

|ϕT 〉 ≡
1√
2

[
|+z〉+ eiπ/4 |−z〉

]
. (38)

The T -gate is then implemented via a probabilistic cir-
cuit. We perform a CNOT between the ancilla and the
logical qubit of interest, and then measure the logical Ẑ
of the qubit. Depending on the measurement outcome,
we implement an S-gate as shown below: If the mea-

surement outcome MZ = +1, then we obtain the correct
output T̂ |Ψ〉; otherwise, if MZ = −1, then we have per-
formed the transformation |Ψ〉 → X̂T̂ † |Ψ〉. In this case,
we implement an S-gate on the logical qubit and obtain
the final state iX̂ẐT̂ |Ψ〉. The action of the operator iX̂Ẑ
may be undone in the surface code software to implement
a pure T -gate on the logical qubit [24].

To realize the above implementations, we may prepare
logical ancilla qubits in the states |ϕT 〉 and |ϕS〉 as fol-
lows. First, we create a “short qubit” [24] by ceasing the
fermion parity measurement on two adjacent plaquettes
p, q belonging to the same sublattice, as shown in Figure
11a. For this qubit, let X̂ ≡ Ôp and Ẑ ≡ iγη. The qubit

is initialized to a state |Ψ±〉 such that X̂ |Ψ±〉 = ± |Ψ〉.
In a basis of eigenstates of the logical Ẑ, the qubit state
takes the form |Ψ±〉 = (|+z〉 ± |−z〉)/

√
2. Now, we as-

sume that the two-level system formed by the pair of
Majorana fermions γ and η can be manipulated by per-
forming a rotation

R̂(θ) =

(
1 0
0 eiθ

)
(39)

that acts in the basis of |±z〉 states. This may be
implemented by using the phase of the adjacent su-
perconducting islands to tune the coupling between

FIG. 11: S- and T -gate Ancilla Preparation. We create
the |ϕS〉 and |ϕT 〉 ancilla states, needed to realize logical S-
and T -gates by preparing the “short qubit” [24] shown above.
We cease stabilizer measurements on two adjacent plaquettes
p and q. In the next surface code cycle, we perform a rotation
of the two-level system defined by iγη. Finally, we enlargen
the logical qubit by extending one end of the qubit, to guar-
antee stability against noise.

the Majorana zero modes [45]. To prepare the state
|ϕS〉, we perform the rotation R̂ (±π/2) |Ψ±〉 in the next
surface code cycle, while to prepare |ϕT 〉, we perform the
operation R̂ ((2π ± π)/4) |Ψ±〉. Afterwards, to guarantee
the stability of the qubit against noise generated by the
environment, we increase the length of the logical X̂
operator by extending one end of the logical qubit, as
discussed in detail previously and shown schematically
in Figure 7. In practice, a high-fidelity implementation
of the S- and T -gates requires that the “short qubits”
are put through a distillation circuit, as discussed in
[24], which may be implemented using a sequence of
logical CNOT gates with other ancilla logical qubits.

We have presented a two-dimensional model of inter-
acting Majorana fermions that realizes a novel type of Z2

topological order with a microscopic S3 anyon symmetry.
The required multi-fermion interactions in the plaquette
model are naturally generated by phase-slips in an array
of phase-locked s-wave superconducting islands on a TI
surface. Based on this physical realization, we propose
the Majorana surface code and provide the necessary
measurement protocols and gate implementations for
universal quantum computation. The Majorana surface
code provides substantially increased error tolerance,
reduced overhead, and simpler logical gate implementa-
tions over a surface code with bosonic physical qubits.
We are optimistic that the Majorana fermion surface
code will be physically implemented, and may provide
an advantageous platform for fault-tolerant quantum
computation.
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SUPPLEMENTAL MATERIAL

BRAIDING STATISTICS OF EXCITATIONS IN
THE MAJORANA PLAQUETTE MODEL

We may braid the excitations of the Majorana plaque-
tte model to determine their statistics. First, consider
acting on the ground-state |Ψ〉 of the plaquette model
with a Wilson line Ŵ0 = (iγ1γ2)(iγ3γ4) to create a pair
of excitations on the A-type plaquettes, as shown in Fig-
ure 12. Let |Φ〉 ≡ Ŵ0 |Ψ〉. We braid the two excitations
by performing the operation Ŵ2Ŵ0Ŵ1 |Φ〉 where

Ŵ1 ≡ (iη1η2)(iη3η4) (40)

Ŵ2 ≡ (iη5η6)(iη7η8) (41)

However, we note that the exchange transformation may
be rewritten as the product of the plaquette operators en-
closed by the exchanging trajectory so that Ŵ2Ŵ0Ŵ1 =
Ô1Ô2Ô3Ô4. Since Ôi |Φ〉 = |Φ〉 for the enclosed plaque-
ttes, we conclude that:

Ŵ2Ŵ0Ŵ1 |Φ〉 = |Φ〉 (42)

so that the A excitations have bosonic self-statistics. By
symmetry, the remaining B and C-type fundamental ex-
citations also possess bosonic self-statistics.

We may determine the mutual statistics of the fun-
damental excitations by braiding distinct excitations, as
shown in Figure 13. In this case, the braiding procedure
will yield an irreducible π Berry phase due to the charge
of the enclosed excitation. Let |Φ̃〉 be the particular state
shown in Figure 13, with a pair of A and B excitations.
We braid the A excitation by acting with

Ŵ ≡
6∏

n=1

(iγ2n−1γ2n) (43)

However, since this Wilson loop may also be written
as the product of the enclosed plaquette operatorsŴ =
Ô1Ô2Ô3ÔB , we find that:

Ŵ |Φ̃〉 = Ô1Ô2Ô3ÔB |Φ̃〉 = − |Φ̃〉 (44)

since Ôj |Φ̃〉 = |Φ̃〉 for j = 1, 2, 3 and ÔB |Φ̃〉 = − |Φ̃〉 is
the enclosed B anyon excitation. We conclude that each
of the fundamental excitations are bosons with mutual
semion statistics.

FIG. 12: The bosonic self-statistics of the A, B, and C exci-
tations in the Majorana plaquette model may be determined
from the algebra of the Wilson lines used to create and move
excitations.

FIG. 13: Braiding two distinct fundamental excitations of the
Majorana plaquette model. We braid the A excitation around
the B excitation by acting with the product of the Majorana
operators shown. Since this is equivalent to acting with the
product of the plaquette operators enclosed by the trajectory
O1O2O3OB , the braiding process results in an overall sign
due to the enclosed B excitation.

PROJECTIVE REALIZATION OF THE S3

ANYON SYMMETRY

In our Majorana plaquette model, the three fundamen-
tal excitations A, B and C live on distinct plaquettes of
the honecyomb lattice. As a consequence, crystal symme-
tries of the honeycomb lattice permute the three types of
fundamental excitations. For example, we may take the
generators of the S3 permutation symmetry between the
three anyons to be a π/3 rotation about the center of
an A (RA) or a B plaquette (RB); these generators im-
plement the transformations RA : (A,B,C)→ (A,C,B)
and RB : (A,B,C)→ (B,A,C), respectively.

The S3 anyon symmetry may also be projectively re-
alized if the coupling u < 0 in the Majorana plaquette
Hamiltonian (1), so that the A, B and C excitations
occupy all plaquettes in the ground-state |Ψ̃0〉. Excita-
tions above the ground-state now correspond to the ab-
sence of a anyons occupying pairs of plaquettes of the
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same time. However, transporting such an excitation
around an elementary loop now encloses π-flux and mul-
tiples the final state by an overall sign. This process may
be performed entirely with the S3 generators, so that
(RA)6 |Ψ̃0〉 = (RB)6 |Ψ̃0〉 = − |Ψ̃0〉; therefore, the anyon
symmetry is projectively realized in the ‘π-flux’ regime
of the Majorana plaquette model. The phase transition

between the u > 0 and u < 0 regimes realizes dimension
three ‘symmetry-breaking’ [1].
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