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We study the phase diagram of the two-leg Kitaev model. Different topological phases can be
characterized by either the number of Majorana modes for a deformed chain of the open ladder, or
by a winding number related to the ‘h-loop’ in the momentum space. By adding a three-spin interaction
term to break the time-reversal symmetry, two originally different phases are glued together, so that
the number of Majorana modes reduce to 0 or 1, namely, the topological invariant collapses to Z2
from an integer Z . These observations are consistent with a recent general study [S. Tewari, J.D. Sau,
arXiv:1111.6592v2].
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1. Introduction

In a seminal work, Kitaev [1] showed that a Majorana bound
state with zero energy can emerge at each end of a one-
dimensional spinless p-wave superconductor. Different topological
phases are distinguished by the presence or absence of such a
mode, or a Z2 topological invariant. Based on this, it was generally
assumed that the time-reversal invariant topological supercon-
ductors are classified by a Z2 invariant in one dimension [2–4].
However, motivated by an example study in Ref. [5], it is recently
proposed [6] that a spin–orbit coupled topological semiconduc-
tor nanowire with time-reversal symmetry is indeed characterized
by an integer Z topological invariant, which counts the number
of Majorana zero modes at each end of the nanowire. The con-
ventional Z2 index only gives the parity of an integer invariant.
Furthermore, the Z index reduces to Z2 by external terms break-
ing the chirality symmetry. Here we give an alternative explicit
example supporting these observations.

We study the topological phases of the two-leg Kitaev model
[7]. It is found that distinct phases can be characterized by either
the number of Majorana modes for a deformed chain of the open
ladder, or by a winding number related to the ‘h-loop’ in the mo-
mentum space. To break the time-reversal symmetry, we add a
three-spin interaction term. This term opens a gap along one phase
boundary, so that the originally two different phases separated by
the phase boundary connect to each other to form a new phase.
Correspondingly, the number of Majorana modes reduce to 0 or 1.
In other words, the topological index collapses from Z to Z2, which
is consistent with Ref. [6].

E-mail address: wun1985@gmail.com.

2. The two-leg Kitaev ladder and Z invariants

The Kitaev model [7] on the honeycomb lattice is an ex-
actly solvable model supporting topological orders. Recently, Feng,
Zhang and Xiang [8] gave a beautiful different method of solution
of the same model by transforming the spins into Jordan–Wigner
fermions. They showed that the quantum phase transitions are of
topological type and can be characterized by non-local string or-
der parameters, which become local order parameters by proper
dual transformations. These results indicate that different quantum
phases can be classified by topological order parameters.

2.1. Mapping two-leg ladder spin model to free Majorana fermions

Consider the two-leg Kitaev open ladder with 2N spins-1/2 in
each row (see Fig. 1(a)):

H =
N∑

j=1

(
J1σ

x
2 j−1,1σ

x
2 j,1 + J2σ

y
2 j−1,2σ

y
2 j,2

)

+
N−1∑
j=1

(
J2σ

y
2 j,1σ

y
2 j+1,1 + J1σ

x
2 j,2σ

x
2 j+1,2

)

+ J3

N∑
j=1

(
σ z

2 j−1,1σ
z
2 j−1,2 + σ z

2 j,1σ
z
2 j,2

)
, (1)

where σ
μ
j,α are the Pauli matrices on the j-th site of row α =

1,2. By introducing the following Jordan–Wigner transformations
σ x

j,α+iσ y
j,α

2 = a†
j,α

∏ j−1
i=1 (−σ z

i,α), α = 1,2, and two sets of Majo-

rana operators: c j,α = −i(a j,α − a†
j,α), d j,α = a j,α + a†

j,α , for
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Fig. 1. (a) The two-leg Kitaev model. (b) A deformed snake-chain representation of
the two-leg ladder.

j + α = even; and c j,α = a j,α + a†
j,α, d j,α = −i(a j,α − a†

j,α), for
j + α = odd, the Hamiltonian is mapped onto a Majorana fermion
model

H = −i
N∑

j=1

( J1c2 j−1,1c2 j,1 − J2c2 j−1,2c2 j,2)

+ i
N−1∑
j=1

( J2c2 j,1c2 j+1,1 − J1c2 j,2c2 j+1,2)

+ i J3

N∑
j=1

(c2 j−1,1c2 j−1,2 D2 j−1 + c2 j,1c2 j,2 D2 j), (2)

where D j ≡ id j,1d j,2 is defined on each z-bond and is a good
quantum number [8] and can be viewed as a classical Ising vari-
able. We will set J1 > 0 and J3 = 1 henceforth.

The ground state of Eq. (2) should be in a π -flux phase
from Lieb’s theorem [9]. So the D ’s can be chosen as D2 j−1 =
+1, D2 j = sgn( J2), depending on the sign of J2. In the follow-
ing we will focus on the case of J2 < 0, where it is convenient to
relabel the sites along a special path as shown in Fig. 1(b) to form
a Majorana snake chain of 4N sites:

Hsnake = −i
2N∑
j=1

c2 j−1c2 j + i J2

2N−1∑
j=1

c2 jc2 j+1

− i J1

2N−1∑
j=1

c2 j−1c2 j+2. (3)

2.2. Bulk properties

The snake chain is translationally invariant by two lattice spac-
ings. In the thermodynamic limit N → ∞, it can be diagonalized

by the Fourier transformations (c2 j−1, c2 j)
T =

√
1
N

∑
k eikjΨk, k ∈

[−π,π ], where Ψk = (ak,bk)
T satisfies Ψ

†
k = Ψ T

−k . Then

Hsnake =
∑

k

Ψ
†

k

[
h1(k)σ1 + h2(k)σ2

]
Ψk, (4)

where h1(k) = J− sin k, h2(k) = 1 + J+ cos k, with J± = J1 ± J2.
The spectra of excitations with particle–hole symmetry are given
by ±|h(k)|,∣∣h(k)

∣∣ =
√

J 2− sin2 k + (1 + J+ cos k)2. (5)

Fig. 2. Phase diagram of the Majorana snake chain Eq. (3). The lower panel of the
diagrams ( J2 < 0) is the physical region, while the upper panel is a continuity to
regions of J2 > 0 (see Section 3).

Note that J− > | J+| because of J1 > 0 and J2 < 0.
Since J− > 0, the spectra vanishes for k∗ = 0, J+ = −1 and

k∗ = ±π, J+ = 1. As shown in the lower panel of Fig. 2, these two
critical lines divide the J1– J2 parameter space into three gapped
phases, namely, phase A: J2 > − J1 + 1; phase B: − J1 − 1 < J2 <

− J1 + 1; and phase C: J2 < − J1 − 1.
The transitions across the critical lines are of Ising type and de-

scribed by the conformal field theory of a free massless fermion in
1 + 1 dimensions with central charge equal to 1/2. It was previ-
ously found that different phases can be characterized by string
order parameters [8]. Indeed they are topologically distinct and
can also be characterized by some kind of topological numbers.
Note that the vector function h(k) = (h1(k),h2(k)) defines a con-
tinuous mapping from the one-dimensional Brillouin zone to a
‘h-loop’ (which is an analogy to the h-surface defined for the two-
dimensional Kitaev model [10]) in the (h1,h2) plane. The unit vec-
tor ĥ(k) = h(k)/|h(k)| is well defined in the three gapped phases
and there exists an integral topological index

Wh =
∮

dk

2π

∂θk

∂k
, (6)

where the integral is taken over the Brillouin zone k ∈ [−π,π ],
and the angle θk is defined as (cos θk, sin θk) = ĥ(k). The spectra
collapses for |h(k)| = 0, which is the origin of the h-space. So W
counts the number of times the unit vector ĥ(k) wraps around the
origin (see Fig. 3 for several examples).

Using dθk/dk = − d cos θk
dk / sin θk , we find

Wh = − J−
∮

dk

2π

J+ + cos k

J 2− sin2 k + (1 + J+ cos k)2

= − J−
2

∮
dz

2π i

z2 + 2z J+ + 1

( J1z2 + z + J2)( J2z2 + z + J1)
, (7)

where we have used the change of variables z = eik in the second
line. The four poles of the integrand in the complex plane are z1 =
(−1 + X)/2 J1, z2 = −(1 + X)/2 J1, z3 = 1/z1, and z4 = 1/z2, with
X ≡ √

1 − 4 J1 J2 > 1, so that all the poles locate on the real axis.
Now we can study Wh in different phases.
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Fig. 3. The evolution of the ‘h-loop’ in different topological phases. The three dif-
ferent loops are selected from phase A, B and C respectively. Black: ( J1, J2) =
(1.2,−0.1), red: ( J1, J2) = (0.9,−0.1); blue: ( J1, J2) = (0.5,−2.0). (For interpre-
tation of the references to color in this figure legend, the reader is referred to the
web version of this Letter.)

Phase A: 1 < X < 2 J1 − 1, then 0 < z1 < 1 − 1
J1

< 1, −1 < z2 <

− 1
J1

< 0, the two poles z1 and z2 lie within the unit cir-
cle. Using the residue theorem, we get Wh = −1;

Phase B: |2 J1 − 1| < X < 2 J1 + 1, then −1 < z1 < 1, −1 − 1
J1

<

z2 < −1, the two poles z1 and z4 lie within the unit cir-
cle and we get Wh = 0;

Phase C: X > 2 J1 + 1, then z1 > 1 + 1
J1

> 1, z2 < −1 − 1
J1

< −1,
the two poles z3 and z4 lie within the unit circle and we
get Wh = +1.

We see that the three different phases A, B and C are character-
ized by winding numbers Wh = −1,0 and +1, respectively. Thus,
the winding number can be regarded as an order parameter of dif-
ferent phases and cannot change their values without gap closing.

It is easy to show that Wh is indeed related to the familiar
winding number WA of Anderson’s pseudospin vector [11] defin-
ing the BdG Hamiltonian (in the momentum space of the Jordan–
Wigner fermion representation) H BdG(k) = d(k) · �τ via the relation

Wh +WA = 1. (8)

2.3. Majorana edge modes

In the preceding subsection, we identified three different
phases of Eq. (3) and distinguished them by three different wind-
ing numbers. The winding number involves all momentum modes
in the Brillouin zone, hence is a non-local quantity. In this sub-
section, we show that these phases can also be characterized by
different types of Majorana edge modes.

In order to study the edge modes, we choose a snake chain of
even (2M) sites with open boundaries. Note that the snake chain
is translationally invariant by two lattice spacings, so there are two
possible ways to select an open chain with even sites, as shown in
Fig. 4. In the case of Fig. 4(a), the system just reduces to Kitaev’s
p-wave superconducting model [1] holding none or one Majorana
modes in different phases. Here we will study case (b) to establish
a relation between the number (denoted by N ) of Majorana modes
at one end of the chain and the corresponding winding numbers
Wh in individual phases.

The open snake chain with 2M sites (Fig. 4(b)) is described by

H2 = −i

(
M−1∑
j=1

c2 jc2 j+1 − J2

M∑
j=1

c2 j−1c2 j + J1

M−2∑
j=1

c2 jc2 j+3

)
,

(9)

Fig. 4. Two choices of an even number snake chain with open boundaries.

whose phase diagram and bulk properties have been obtained in
Section 2.2.

H2 is of the standard quadratic form H2 = i
4 C T AC , where C =

(c1, c2, . . . , c2M)T and A is a real antisymmetric matrix, and can be
diagonalized by W ∈ SO(2M) as follows [1],

H2 = i
M∑

l=1

εlb
′
lb

′′
l , W C = (

b′
1,b′′

1, . . . ,b′
M ,b′′

M

)T
. (10)

Since W ∈ SO(2N), we can choose W such that W ij = 0 when the
row and column index i and j are of different parities

b′
m =

M∑
l=1

W2m−1,2l−1c2l−1, b′′
m =

M∑
l=1

W2m,2lc2l. (11)

The recursive relations of {W2m−1,2l−1} and {W2m,2l} can be ob-
tained from the Heisenberg equations of motion of operators {b′

m}
and {b′′

m},

iḃ′
m = [

b′
m, H2

] = 2iεmb′′
m, iḃ′′

m = [
b′′

m, H2
] = −2iεmb′

m. (12)

Combining Eq. (11) and Eq. (12), one obtains the following recur-
sive relations (l = 1,2, . . . , M)

εm W2m,2l = J2W2m−1,2l−1 + W2m−1,2l+1 + J1W2m−1,2l+3,

εm W2m−1,2l−1 = J1W2m,2l−4 + W2m,2l−2 + J2W2m,2l. (13)

Majorana zero modes correspond to εm = 0. Here we empha-
size the importance of boundary conditions: note that unphysical
elements W2m−1,2M+1 and W2m−1,2M+3 (W2m,−2 and W2m,0) will
emerge for l = M − 1 and M (l = 1 and 2) in the first (second)
equation and must be set zero. Thus, the required boundary con-
ditions are

W2m−1,2M−3 = W2m−1,2M−1 = 0,

W2m,2 = W2m,4 = 0, (14)

for any physical solution.
From Eq. (13), the odd sector and even sector are decoupled

and form two second order linear recurrence sequences. The char-
acteristic equations of them read

J1λ
2 + λ + J2 = 0, J2η

2 + η + J1 = 0, (15)

with solutions λ+ = z1, λ− = z2, η+ = z3, and η− = z4, where
z1, z2, z3 and z4 are given in Section 2.2. Thus, we always have two
distinct real roots for each equation and the corresponding general
terms are given by
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W2m−1,2l−1 = C+λl+ + C−λl−,

W2m,2l = C ′+λ−l+ + C ′−λ−l− , (16)

where the constants are determined by the boundary conditions.
As discussed in Section 2.2, the absolute values of the four roots in
different phases have different behaviors:

(i) In phase A, we have |λ±| < 1, so there are two linearly inde-
pendent solutions satisfying the boundary conditions Eq. (14),
which correspond to two Majorana modes at each end of the
chain;

(ii) In phase B, we have |λ+| > 1, |λ−| < 1. In order to satisfy
Eq. (14), only the coefficients C+ and C ′+ can be non-zero,
corresponding to only one Majorana mode at each end;

(iii) In phase C, we have |λ±| > 1. So there are no solution satisfy-
ing Eq. (14), i.e., there is no Majorana modes in this phase.

Now we obtain the relation between N and Wh in all of these
phases:

N +Wh = 1. (17)

Both W and N can be viewed as some kind of order parameter
characterizing the corresponding topological phases.

It is believed that a spinless superconductor in one dimension is
characterized by a Z2 invariant [2–4]. However, in a recent work,
Tewari and Sau [6] have demonstrated that such a Z2 is incom-
plete and the topological invariant can indeed jump by two or
other integers via a topological transition. This indicates that the
topological index should be Z rather than Z2, which is confirmed
by the present study.

3. Broken time-reversal symmetry

The original model Eq. (1) protects time-reversal symmetry,
which can be seen from the definition of time-reversal opera-
tion on spinless Jordan–Wigner fermions: T a j,α T −1 = a j,α . It gives
T c j T −1 = (−1) jc j for the Majorana snake chain Eq. (3). Corre-
spondingly, we have

T Ψk T −1 = −σ3Ψ−k. (18)

Therefore, for a system with time-reversal symmetry, the Bloch
matrix should satisfy

σ3 H(k)σ3 = H∗(−k). (19)

Now we add a three-spin interaction [10]

Ht = J4

2

N−1∑
j=1

(
σ x

2 j−1,1σ
z
2 j,1σ

y
2 j+1,1 + σ

y
2 j,1σ

z
2 j+1,1σ

x
2 j+2,1

+ σ
y

2 j−1,2σ
z
2 j,2σ

x
2 j+1,2 + σ x

2 j,2σ
z
2 j+1,2σ

y
2 j+2,2

)
(20)

to Eq. (1). In terms of Majorana operators this amounts to adding a
fourth nearest-neighbor hoping to the snake chain representation
Eq. (3)

Ht = −i
J4

2

2N−2∑
j=1

(c2 j−1c2 j+3 − c2 jc2 j+4)

=
∑

k

Ψ
†

k

[
h3(k)σ3

]
Ψk, (21)

where h3(k) = J4 sin 2k. It is clearly seen that this term violets
Eq. (19), so that breaks time-reversal symmetry.

We show that in the presence of time-reversal breaking term,
phase A and phase C will be glued together to form a single phase.

Fig. 5. Phase diagram of the Majorana snake chain with time-reversal symmetry
being broken by the three-spin interaction. The lower panel of the diagrams ( J2 <

0) is the physical region, while the upper panel is continuity to regions of J2 > 0.

Fig. 6. εmin (εm with the minimal absolute value) as a function of J2 ( J1 = 1,

J4 = 1, M = 120).

To the end, it is intuitive to make a continuity in the parameter
space to allow for positive values of J2. Of course, due to Lieb’s
theorem, the snake chain representation Eq. (3) is no longer a
ground state Hamiltonian of the original spin model Eq. (1) in this
case. But we can infer properties of Eq. (3) with J2 < 0 from that
of J2 > 0.

Let us consider the case without Ht first. From Eq. (5), the
spectra also vanishes at k∗ = ±π, J+ = 1 in the extended pa-
rameter space, which is just a prolongation of the phase boundary
between phase A and B in the region J2 < 0 to J2 > 0. Another
critical line is J− = 0 for J+ > 1, where the spectra vanishes for
k∗ = ±arccos(− 1

J+ ). The transition across the latter belongs to the
same universality class of the anisotropic transition of the XY chain
and can be described by a conformal field theory with central
charge equal to 1. The cross point of these two critical lines is spe-
cial: the low energy dispersion vanishes quadratically at this point
leading to the dynamical exponent z = 2. Indeed this is a multi-
critical point and the theory is no long conformal invariant. We
see that the whole parameter space is divided into four regions by
the three critical lines. By calculating the Majorana edge states or
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Fig. 7. There is one Majorana edge mode on each end of the chain for ( J1, J2) = (1,−1.9) (left) and (1,−0.1) (right) ( J4 = 1, M = 120).

winding numbers similarly as before, we can easily show that they
are just the extensions of phases A, B and C we have obtained for
J2 < 0, as shown in the upper panel of Fig. 2.

When Ht is present, the two branches of spectra become
±|h(k)|
∣∣h(k)

∣∣ =
√

J 2− sin2 k + (1 + J+ cos k)2 + J 2
4 sin2 2k. (22)

It is interesting that Ht will open a gap along the critical line
J− = 0 and J+ > 1 for J4 
= 0. This means that the original two
phases A and C connect to each other to form a new phase C′ .
From symmetry considerations, we identify that the number of dif-
ferent phases reduces to only two now: phase B′ and C′ , as shown
in Fig. 5.

To confirm the above observation, let us consider Majorana
modes at the ends in each phase. Let b′

m = ∑M
l=1 W2m−1,2l−1c2l−1 +

W2m−1,2lc2l and b′′
m = ∑M

l=1 W2m,2l−1c2l−1 + W2m,2lc2l . Again, us-
ing the equations of motion, we obtain the following eigenvalue-
eigenvector problem for the coefficients W ij :

A2Wi = −ε2
mWi (i = 1,2) (23)

where W1 = (W2m−1,1, W2m−1,2, . . . , W2m−1,2M)T , W2 = (W2m,1,

W2m,2, . . . , W2m,2M)T and A2i−1, j = J1δ2i−4, j + δ2i−2, j + J2δ2i, j −
J4
2 (δ2i−5, j − δ2i+3, j), A2i, j = − J2δ2i−1, j − δ2i+1, j − J1δ2i+3, j +
J4
2 (δ2i−4, j − δ2i+4, j), for i = 1,2, . . . , M and j = 1,2, . . . ,2M .

In the presence of the time-reversal breaking term, the recur-
sive relations cannot be solved analytically anymore due to the
coupling between the odd and even sectors. Here we solve the re-
cursive relation numerically for chains of finite sizes. Fig. 6 shows
εm with the smallest absolute value (denoted by εmin) as a func-
tion of J2 ∈ [−3.1,1.9] along the line J1 = 1, and we have chosen
M = 120 and J4 = 1. It is clearly seen that zero modes exist for
J2 ∈ (−2,0), which is just located within phase B′ . There are no
zero modes beyond this region, which corresponds to phase C′ .
Fig. 7 shows the amplitudes of the two orthogonal Majorana modes
b′

m and b′′
m at the two ends for ( J1, J2) = (1,−1.9) and (1,−0.1),

both of which are located in phase B′ . Thus, there is no Majo-

rana modes in phase C′ , while one Majorana modes at each end
in phase B′ . In other words, the number of Majorana modes as an
topological invariant collapses from Z to Z2. In fact this Z2 invari-
ant is given by

ν = sgn
[
h2(0)h2(π)

]
. (24)

ν = +1 in phase B′ while ν = −1 in phase C′ . The collapsing of
the topological invariants from Z to Z2 also confirms the results
of Ref. [6], since the time-reversal breaking term also breaks the
chirality symmetry of the corresponding BdG Hamiltonian.

4. Conclusions

By studying an exactly soluble model, we show that the topo-
logical classification of the two-leg Kitaev ladder is characterized
by an integer Z , rather than the commonly used Z2 index. How-
ever, the Z index reduces to Z2 in the presence of terms that break
the time-reversal symmetry. These results are consistent with pre-
vious studies.
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