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Abstract . ; .

It is shown how the Hamiltonian of the 1-dimensional spinless Luttinger model
can be reexpressed in terms of boson operators. Even when one allows for interacti-
ons, the resulting boson Hamiltonian will be that of a, free boson field. An example
is given that shows how bosonization can simplify calculations of correlation functi-
ons. The additional features appearing when one allows for spin such as spin-charge -
separation are stated. '

1 The Luttinger Model

The Luttinger model describes: electrons of a 1-dimensional system with the following
linear dispersion relation: . ' T £ '
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The states of the lower triangle have been introduced for mathematical reasons as will
be apparant later and do not correspond to physical states. Electrons on the right
branch are called right movers and those on the left branch left movers. Notation:

1




1 THE LUTTINGER MODEY,

¢ @: right-movers cé,k

* O: left-movers c;'k

1 r
Yo(@) = E;Cé,ke'” -

1. .
¥o(z) = E;Cé,ke'“

The ground state [$o) is characterized by

G e

Normal ordering with respect to ground state:

tA= A (4)

The free Luttinger Hamiltonian is thep given by

Hy=vp: S (rk - &y eh pn):
k,r

0

Equivalently

i .
H, = vF/dx : gbé(z'@,,- = L) ¢’é(i3x + kr)vg
. 0
We define the density operators:
%/)é(z')‘ﬁe) (z) = Pe(z) Zzpee.qem ,
. q

M=l = L5

The free Hamiltonian can also be expressed in terms of density operators:

VR
H():“ 5

el e Goiioe
. |

The interaction part in the Luttinger mode] is given by

1
= i : Zngﬂe,qu,-q +g4(p®.qp€9,—q +Pe,—qu.q) :
970 '

92 and g, are free Paramters of the mode].
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2 LINK TO A LATTICE MODEL - 3

2  Link to a lattice model . | .

By means of numerous approximations one can map a l-dimensional Hubbard model
with nea.rest neighbour interaction onto 2 Luttlnger model

one~d1men51onal lattlce of length L, M lattlce SItes .

[ ]

o lattice point spacing s,

e periodic boundary conditions, _ wk
e half filling

spinless fermions

Hubbard-Hamiltonian with nearest neighbour hopping in the kinetic part

repulsive fermlon fermion interaction

H = Ho =+ HI . ' (11)
where .
Hoim =< X Wiy + 4ty )
j .
7 .
Iy 5= EZ MiTq1, U>0. (13)
. ;i , T

s localized around lattice point 7; 4, is it’s correspondmg annihilation operator. They
atisfy the common anti-commutator relations: ‘ :

{¢ia¢1?} = .53;7' (14)
¥} = 0 o | (15)

One.: can think of the wavefunctions as Wannier -functions, which are defined as super-
Positions of the exact (non interacting fermions) Bloch—wavefunctmns

B, =g uk(x), H,®, = e(k)@k Bloch . (16)
w(z — js) 1= Z e™*0)®,(z)  Wannjer (17)
. % :
Where £ is of the form '
27
o k = TTL, neEN (18)
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2 LINKTO A LATTICE MODEL

In terms of the Fourier coefficients ¢, of % definded by

S 1 ks
¢J"\/H¥c’ce

‘the kinetic Hamjlt_onian H; yields:

(19)

Hy = -2 Z’cos(ks)c,t'ck! (20)

. = | | |
Thus the Energy spectrum of the nbninteracting ferfnions 1s given by “
e(k) = —2¢ cos(ks) (21)

We assume half filling. Then the Fermimomentum ke yields

Mr :
RO @2
Which lies half way from the 1 Brillouin zone Boundary
For thfa fermi-velocity Ur We obtain:
vp = 8%? k = 2essin(kps) = 2es

o lattice Spacing s is assumed to stay finite.

® continuum limit considers i

— macroscopic [

— atomic g

® compared to [, the lattice points ns can be regarded as values of 3 continuous
variable z.

We are interested in the r and linearize the energy Spectrum in the
continuum limit around 4k '
+kgp |

e(k) = e(kr) + 2es sin(kps)(k — kp

~ 'Up(k = k‘p)

)+ O(s%(k - kp)®)
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3 BOSONIZATION T 5

E(k) = 5(—](?1:') + 23 Sin(—kpé')(k + kF) + 0(33(k s kF)s)
~ vp(—k— kr) - '

We work now with- two maior simplifications: "

o Linear spectrum vp(+k — kp) extended over ,the.whole range of k.
e Addition of “unphysical” states with a spectrum that is

— linear

— unbounded below
These approximations restrict the validity of the model to
o LOW TEMPERATURES

We have arrived at the assumptions of the free Luttinger Hamiltonian.
The mapping of the interaction part is not shown here.
3 Bosonization

We first consider the free case without interaction.

In terms of the Fourier-components cI, k> Cr,k Of the fermi field the demsity operator is:

[ S @#0) -
i :Zk:n,,k: (gi=10)
The hermitian conjugate is given by:
Ay = o | e

as shows the following computation (r omitted)

. t
y t
pp - (Z Ck+Pck)
k

= 1
= Z CrCr+p
: k
= Z cltc—pck

k

= p—P




3 BOSONIZATION

A straightforward calculation gives the following commutator

L
2 Pri—gt] = = 6p 5q,q’r2_': (27)

However this result that can only be obtained if the unphysical states ‘are présent:

Let’s assume ¢ > 0. Routine commutator manipulation leads to

[Pea.hpea.—q'] = bg.q Z (n'@,k)o' = <nﬂ),k;q)0
¢ k b

the sum into 0.

Let us assume that there isaky < kp with all levels below occupied. Above ko arbitrarily
many particle-hole states may be excited: @

};(n@,k)o ~(Poi-gy = - (Z h Z) ((nok-g) = (no.),)

k2ka  k<kq
= = 3 ((nou-g), - (Ro.i),)
E>ko .
= = ( Z <n€B.k>o = Z (n&%k)a)
k>ko—g E>kq '
= Z . <n€>,k>o'
ku—qsk<ko "
kY .
A, '—27r P : 2
Thé following' operators tﬁrn out to be bosonic: _ (.
b; >:= - 2‘7I-Z:@)(7'9)pr,q o | -(28)
' Llg| % -
27
b i O(rp)p, _ 29)

Reversively:

pro = bron +\ /2 t0rg)tt 1 0(-rgps, (30)
The bosonic cozﬁmutation relations are satisfied:

[b0:8L] = 6, [6},61] =0 - (31)

q g7 7q’




Proof:

r.r!

_ L
== 64,4’zr:lq,e( Q)

& 5«.4’

2r 1 :
bq, b;, = e @ r @ T‘I ! r—q9 ,.l,q/ .
[ j I oo & 908 a)le ,,.. ]

2r 1 v
b by = T ==3"0(r,0)0(r'q") [pry, pir. ]
LiLd L Jlallg| &= v

o Fll%-qurq@("q)@("'g)
= 0

e b, annihilates the ground state

b, '¢0) = 1:2_,7;" Z e(T‘J)Pr,—q l¢0>

= » 2. 0(rg)el sy 90)
20 ﬂ‘)zf |60) =0
= ?é*e,mq;%.k |#0) =0

e bl creates exited states but does not raise the fermion number.

The commutator [b,, Hy] is given by

[banO] = Ur IQI bq ’ (32)
The commutator of the corresponding construction operator is now simply

(o] <o Bt = folort (33)

We thus have the algebra of harmonic oscillators with w(q) = |q] v} and consequently
the free Hamiltonian H, on the space Hp spanned by the excited states with respect to
bl is given by:

3 BOSONIZATION o ' 7




3 BOSONIZATION

: Hop := UFZ'QIbzbq ' (34)
q

It can be shown, that Hp = H, so that the boson states form a complete set. Then
H, = Hop and the fermonic system can completley be represented in terms of bosonic
states. 7 : - ' ‘ o

So far we have not gained any advantages by using boson operators but merely got
acquainted with them. This will change when we introduce the interaction of the model.
H = H, + H; still corresponds to a free, massless bosonic field. -

The following fields are defined:

T 1 —al2l iz
Ko) = ~iT 5 2B (g + poy) (35)
~q
T 1 —oldl g
0z) = iz) —e*Te ™ (pgq — po,) (36)
L% |
Commutator: -
[4(2),8(y)] = i 5sign(z — y) (37)
The gradient of 6:
m —aldl iy .
VO =72 e e (0o, — pos) (38) -
q
Define the field conjugate to ¢: o
vé o .
Il = —;— (39)
Commutator: :
[¢(2), I(y)] = i6(z — y) (40)
Define:
| 1
u = %\/(271"05' +94)% — g3 (41)
. 2 - g
K P \/ TUF +g4 g2 (42)
2mvp _+ ga+ g2 .

The crucial steps in Bosonization are the following claims:

H=t /Ldm {7”;]{]:[2 + 2:K(6;¢)2} — : | (43)

2o

. A
() o eirhre _____gil0-rel (44)
v ,




. which in our case evaluates to

3 BOSONIZATION o 9

The expression for the Hamﬂtoman can be verified by a stra.lghtforwa.rd ca.lculatlon just
inserting the expressions for the fields ¢ and II '

The Hamiltonian has the form of an elastic string, which in it’s standard. form looks
like: '

) ' _ {1 s € 3 . "o
H=[da {zyn +5(0:9) } o (45)
In our case 1 ‘ '
s U
_ , muK’ *=IK . 48)
The eigenfrequencies of such a string are given by . B
€
e \/: B
"

i : -
wp = u k] = %\/(mp +94)? — g2 |k| (47)
We can imediatley compute the Specific Heat out of that result:
With

q

1 1
U= Z‘f(k)m, ek)=ulk], B:= T (48)

SRR -
“ = T2Z ()(eﬂs(k)—1)2

2

_ ¢
T 4T ; sinh? (.5_“1)
3

: .
d
T2 or ( ) 4 v 81nh2(x)

Q

Lr1
= —=-T
S
e L7r 1
= ‘ 4
Cy == uT (49)
For free fermlons u must be replaced by vr an we get
CV (%3
oW o ZF ' (50
| Sr (50)
Since in our model 9+ = ¢, and g, € vp we can approximate:
V Cy g2 V
— ~1- , 01
CVO 27”)1-" ( )

Since here g, > 0 the specific heat decreases.




¢ FREE MASSLESS FIELD

4 TFree Massless Field

This section states some facts about free massless boson fields that we will need later
on. ' ' :

The Hamiltonian of the classical free massless field is given by

L

1 : B : 5 ' ,
=3[ & @@ +ETs@P) (52)
0 - .
~ Quantization is performed by replacing H afd 4 by correspondmg hermitian field-
operators with their commutator being . : 4 .
[4(z), H(y)] Z5(27 - ) . (53)

The fields can be expressed in terms of the bosonic Operators ¢(g), ¢'(q):

o T 1 eiq'x t/ e—iqz; |
$(z) 4 g T [4(a) +¢'(g)e™] - (54)
O(@) = —i _/ dg — 'q'  [60e - ¢lig)e] (55)

Here _
[4(2), 6'(0)] = 276(g ~ p) (56)

The Ha.mjltonian now becomes

Hp = / dg = Iql¢’(q)¢(q) \ (57)

Later on we will need the following correlation function:

G(z) == (¢(z)$(0) — 4°(0)) = —In P (58)

- 7 1 7 1
6w = [ R 2 /2]

<¢(q)¢T(P)> (€7 — 1) e~eHe-olst



4 FREE MASSLESS FIELD

[ee) 1 ., E
- =g
_l dg 47qul(e )

1 7.1,
= — [dg=(e*" =1
4m()/qq(e_ )

N
—_ d = —14.1.‘_1
+.47T0/ qg(e' )

' 1 o o

= (- )
4.7r<na—zx+ a+tix/

1 a?

dr a2 4 z?

) The following identity is important:

. AB4A2+82 B’>
etef = 418, e< 2

This leads to

&

2
Gy = (¥ — ( 2‘:_ 2)
(87 T

Gy = <: i P(#(z)-4(0)) :> |

8 (#(2)8(0)-(6*(0)+4(=))/2)

2 gy
= et e +z

R

a2
. - a? + 12
" Note that due to translational invariance
(¢*(0)) = (¢*(z))

Renormalizing the field avoids vanishing of the correlator as o tends to zero:

r

11

(61)

(62)




5 CORRELATOR IN LUTTINGER MODEL S 12

5 Correlator in Luttinger Model

The aim is to calculate the correlation function

S x@mt = (e te0,0) (63)
o) = po+po+ (Yo +he) (64)
lim 61z + EWbole = ) = pcrie® (83)

This follows immediatley from the representations of the fermion-field in terms of the
boson fields ¢ and 6, if the following commutator vanishes:

lim[#(z +€) — (z +€),0(z — €) + d(z — €)] = 0 (66)

L.H.S

[¢(z +€),8(z — &)] + [¢(z — £),8(z + €)]
= ig(sign(z +&—z+¢§) +sign(z —€—z — £€))

= 1(sign(2) + sign(—2¢))
= 0

(NN

Writing out the terms of y we get the following types: -

o (Vé(2)V4(0))
P <ei2¢v¢)
o (e2¢(=)ei20(0)
* cos(2kr) (ei2¢(=)g-i26(0))
All but the last term can be disposed of by subtle arguments. Thus we only look at the

last term.

In order to apply the results of the last section we have to work with

= V7 KII

1
Y

) R
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In other words 8 = 2\/7K. We get

/ | <ef2¢(r)e-f2¢(0)> - ( o ) . (67)

a2+x2

For large;x @ in the-denominator is neglectable. We obt;ﬁn a power law:

oc(l)m'. - . (68)

T
6 Spin
"If we introduce spin, every operator in the starting equations acquires a spin index. We
now have
Ho=vp ) (rk —kp)(c!, cops — (Prk,s)o) (69)
k,r,s ’
Backward scattering:
HI,I == Z glc@,k,,ce,p,tc®,}7+2k1-*+q.ice.k—2kr—-q,s ({O)
kpgst

1 .
Hp, = 52{292%,%,/)@.-4,:

gst

+94[00,4.500,~q ¢ + Po-qsPogtl} (71)

One now defines fields ¢ and II for the two spin projections T and | in analogy to the
spinless case., '

Outi of these charge and spin bosons are constructed:

e charge bosons

b+ e _
¢p S \/§ ((2)

_ HT + Hl
I, := 75 (73)

~® spin bosons.

_ $1—9 : -
¢¢7 = \/i . (/4.-)
m = D-I (75)

>




6 SPIN . 14

These obey: A
: [6.(2), ILu(y)] = i6,,6(z — y) (76)
The Ha.mjltonian beC9més: _
29; | e '
. H= H+H+(2g)2/d~’vcos(\/—¢e)'    ()
With K, _ I
H = [d [”“; I 4 (o, ¢,)] )

e e
. 2rvp + 294, + 9, - '
Ky = .

_27”)1"‘ + 294,11 -4y

9 = g1—2¢
go = N
94,0 = Y4

s = D

For a noninteracting system we have

U, = vp : ) (79)
that is charge and spin velocities a,rje equal. _ ’
For g, =0: ’

e charge and spin oscillations are independent

If g, # 0 one has to treat the cosine term perturbativeley.

This gives rise to the phenonemon of
e spin charge separation

from the Heisenberg equation of motion one obtains due to the linear spéctrum: .

p(:l:,‘t) = p(z —u,t)
o(z,t) = o(z —u.t)
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Let us now consider the case of adding a particle at zo to the system in ground state:

(B0l o (zo)p(2)bl (20) [B0) = 6(z — o)
(B0l Yo(20)0.(2)8} (o) [do) = 6(z — o)

v‘ Then at time ¢:

(#ol Bo(20)p(e — u ) (zo) de) = 6( — 70— u,t)
(B0l Po(20):(z — ust)phly(20) l¢_0)A = 6(z — zo — u,t)

Since in the interaction case u, # u, = vp

e spin waves are unaffected by the interaction
e charge waves are affected

e charge and spin will spearate completely
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