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Topological superconductivity in two dimensions with mixed chirality
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We find a mixed chirality d-wave superconducting state in the coexistence region between antifer-
romagnetism and interaction-driven superconductivity in lightly doped honeycomb materials. This
state has a topological chiral d+ id-wave symmetry in one Dirac valley but d− id-wave symmetry in
the other valley and hosts two counterpropagating edge states, always protected in the absence of
intervalley scattering. A first-order topological phase transition, with no bulk gap closing, separates
the chiral d-wave state at small magnetic moments from the mixed chirality d-wave phase.

PACS numbers: 74.20.Mn, 74.20.Rp, 73.20.At, 74.72.-h

Superconducting (SC) pairing driven by strong elec-
tron repulsion in two dimensions (2D) has spin-singlet
d-wave symmetry and appears close to, or even coex-
ists with, an antiferromagnetic (AF) phase in materials
ranging from cuprates to heavy fermion compounds and
organic superconductors [1–6]. In materials with three-
and sixfold rotational lattice symmetries, the two d-wave
states, d1 = d(x2 − y2) and d2 = d(xy), are dictated to
be degenerate at the transition temperature Tc while at
lower temperatures the chiral d1 ± id2 combinations are
favored [7–16]. The chiral d-wave state is fully gapped,
topologically nontrivial with finite Chern (or winding)
number, and has two chiral edge states [17–19].

The sixfold symmetric honeycomb lattice near half fill-
ing adds further versatility by having two disjoint Fermi
surfaces, or Dirac valleys, centered at the inequivalent
Brillouin zone corners ±K. Recently, several honey-
comb materials have been proposed to be chiral d-wave
superconductors near half filling, including In3Cu2VO9

[20–23], β-Cu2V2O7 [24], SrPtAs [25–27], MoS2 [28–
30], graphene and silicene [11, 31–33], and (111) bilayer
SrIrO3 [34, 35]. Two Fermi surfaces allow for the tan-
talizing speculation of having d1 + id2 symmetry in one
valley but d1 − id2 symmetry in the other [23, 36]; a
novel state with mixed chirality even in a translationally
invariant system. However, as worked out in Ref. [37],
the sign change of the d2 component between the valleys
requires it to be spin-triplet, which is incompatible with
the distinctly spin-singlet mechanisms creating d-wave
superconductivity.

In this Rapid Communication we show that mixed
chirality d-wave superconductivity is present in the co-
existence region between AF and d-wave SC order in
strongly correlated honeycomb materials. A finite AF
moment M in a spin-singlet superconductor is known to
spontaneously generate a so-called π-triplet state [38–
43]. We find that this spin-triplet component facilitates
a phase transition at a critical Mc from the chiral d-wave
state to the mixed chirality d-wave state. Mc is well
within the AF-SC coexistence region previously reported
for hole-doped honeycomb Mott insulators, but where a

mixed chirality state was never considered [44, 45]. The
mixed chirality state is topological in each Dirac valley,
although the topological number cancels in the full Bril-
louin zone. Moreover, the phase transition between the
chiral and mixed chirality d-wave phases occurs without
the bulk energy gap closing, otherwise considered a ne-
cessity for topological phase transitions [46, 47]. At the
phase transition the two copropagating edge states of the
chiral d-wave state are discontinuously transformed into
two counterpropagating states, which are protected in
the absence of intervalley scattering. These findings es-
tablish both the existence and properties of the highly
unconventional mixed chirality SC state. In the same
way that the chiral d-wave SC state has many proper-
ties common with a quantum Hall state [48], the mixed
chirality d-wave state is similar to a quantum valley Hall
state [49, 50].
More specifically, we model electron correlations in the

limit of large on-site Hubbard repulsion, which are well
described within the t-J model [51–54]. In3Cu2VO9 [20–
23, 44] and β-Cu2V2O7 [24] are two materials recently
proposed to be well described by the t-J model on the
honeycomb lattice, but general arguments make our re-
sults also applicable to other chiral d-wave SC honey-
comb compounds, as well as bilayer honeycomb materi-
als [31–33]. We study the t-J model within renormalized
mean-field theory (RMFT) [23, 55–58]. Even if RMFT
only provides a mean-field treatment, its SC state on the
honeycomb lattice has been shown to agree with both
quantum Monte Carlo (QMC) [23] and functional renor-
malization group (fRG) [12] calculations. The SC Hamil-
tonian thus reads [19, 23]:

HSC = −t
∑

〈i,j〉,σ

(a†iσbjσ + H.c.) + µ
∑

i,σ

(a†iσaiσ + b†iσbiσ)+

∑

i,α

∆α(a
†
i↑b

†
i+Rα↓−a†i↓b

†
i+Rα↑)+

∑

α

N(|χ|2+|∆α|2)

J
(1)

with a (b) the annihilation operator on the honeycomb
sublattice A (B), using N unit cells. For transparency
we work mainly with the renormalized parameters, with
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the hopping amplitude t = gtt
′ + χ and the exchange

coupling J = 3
8gJJ

′, where the prime indicates the

bare values and gt = 2δ
1+δ

, gJ = 4
(1+δ)2 are the statis-

tical weighting factors handling the Gutzwiller projec-
tion to single-occupancy states within RMFT [55, 59].

χ = 3
8gJJ

′
∑

α,σ〈a
†
iσbi+Rασ〉 further renormalizes the ki-

netic energy and is assumed isotropic in space. The
chemical potential µ is set by fixing the filling fraction
δ = 1 − n. The mean-field SC order parameters (OPs)
∆α (α = 1, 2, 3) on the three nearest-neighbor bonds Rα

can be expressed compactly as ∆ = (∆1,∆2,∆3). Each
OP is independently determined by the self-consistency
equations ∆α = −J〈ai↓bi+Rα↑ − ai↑bi+Rα↓〉. As is well
known from graphene [60], the normal-state band struc-
ture at small δ consists of two Dirac valleys centered at
the Brillouin zone corners K = 4π/(3a) and K ′ = −K,
where a = 1 is the length of the unit cell vectors.
Beyond the SC state, it is also well known that the

t-J model displays AF order close to half filling, with
the mean-field order parameter M = 〈Sz

a〉 = −〈Sz
b 〉 and

HAF = M
∑

i S
z
ia − Sz

ib. Coexistence of SC and AF or-
ders on the honeycomb lattice has recently been found in
both mean-field theory [45] and beyond [44]. This coexis-
tence region can naturally be described by the combined
Hamiltonian H = HSC + HAF. Since we are primarily
interested in the behavior of the SC state, and since the
AF order is not notably affected by the SC order [45], we
can safely use a fixed M (but scanning possible values)
and solve H self-consistently for ∆α [70].
To proceed, we first Fourier transform and then rewrite

H in the basis where the kinetic and magnetic terms are
fully diagonal [71]:

H =
∑

k,σ

(µ− Ek)c
†
kσckσ + (µ+ Ek)d

†
kσdkσ

+
∑

k,α

(∆i
k +∆iM

k )c†
k↑c

†
−k↓ + (−∆i

k +∆iM
k )d†

k↑d
†
−k↓

+∆I
k(d

†
k↑c

†
−k↓ − c†

k↑d
†
−k↓). (2)

Here c (d) is the annihilation operator in the lower (up-
per) band with band dispersion Ek =

√

(tεk)2 +M2,
where εk = |

∑

α eik·Rα | and ϕk = arg(
∑

α eik·Rα). SC
pairing is present through the intraband terms

∆i
k =

∑

α

∆α cos(k ·Rα − ϕk),

∆iM
k = −i

M

Ek

∑

α

∆α sin(k ·Rα − ϕk) (3)

and an interband term ∆I
k

= (itεk)/Ek

∑

α ∆α sin(k ·
Rα − ϕk). Expanding the partition function for H to
order M∆i gives the same spin-triplet term ∆iM

k
. Thus,

a renormalization group (RG) flow generates the same
induced pairing, making its appearance general and not
only tied to the t-J model. The interband pairing is not

important [11, 37] and we thus focus on the intraband
pairing [72].

OPs in SC phase.—We start by analyzing the pure
SC phase at M = 0, represented by ∆i

k
. The generally

favored ∆α belongs to the 2D E2g irreducible representa-
tion of the D6h lattice point group [11]. The state can be
written as a combination of ∆ ∼ (2,−1,−1), which gives
d1-wave intraband (∆i) pairing, and ∆ ∼ (0, 1,−1), giv-
ing d2-wave intraband pairing. The d1,2-wave solutions
are degenerate at Tc, but below Tc the time-reversal sym-
metry breaking chiral combinations dp,m = d1± id2 have
the lowest energy [11, 13, 23, 37]. This follows from a
simple energy argument since the d1,2 states have nodal
quasiparticles, whereas the dp,m states are fully gapped,
see Fig. 1. The chiral dp-wave state has a N = −2 Chern
number, which can be viewed as the winding number
for the intraband OP around the Brillouin zone center
[17, 19]. We can, alternatively, consider the symmetry
of the intraband OP around K,K ′. The dp state has
−py + ipx-wave symmetry around K, but py − ipx-wave
symmetry around K ′ [61], such that each valley con-
tributes −1 to N . The sign change between the valleys is
dictated by the spin-singlet nature, which enforces even
parity with respect to the zone center.

OPs in AF-SC phase.—A finite M adds the spin-
triplet, odd-parity OP ∆iM

k
to the intraband pairing.

The existence of this spin-triplet component has dra-
matic consequences, due to the chirality and the π/2
phase shift of ∆iM relative to ∆i. Adding ∆iM to the
d1 state directly makes this state develop an imaginary
part, such that it has −py + ipx-wave symmetry around
K but the opposite py + ipx-wave chirality around K ′,
see Fig. 1. Thus, for finite M , the d1 state becomes a
time-reversal breaking mixed chirality SC state with op-
posite OP winding in the two valleys, but N = 0 when
summed over the whole Brillouin zone. This mixed chi-
rality state requires the combination of a spin-singlet (py)
and a spin-triplet (px) component, since the spin-singlet
pairing changes sign between K and K ′ but the spin-
triplet does not. This is why a magnetic momentM , with
its accompanying spin-triplet ∆iM , is necessary for gen-
erating mixed chirality d-wave superconductivity. Start-
ing instead from the d2-wave state just interchanges x
and y. With the ∆iM contribution, the d1 state becomes
fully gapped, as shown in Fig. 1. Quite the opposite hap-
pens for the dp state. At finite M it still has a N = −2
winding. However, the ∆i and ∆iM intraband terms now
start to cancel around K ′, as seen in Fig. 1. This results
in very low-lying quasiparticle excitations around K ′ (K
for dm) as M increases.

Critical magnetic moment.—The quasiparticle energy
spectrum shows that a phase transition must occur at
some critical Mc, between the chiral d-wave state favor-
able at M = 0 and the mixed chirality d-wave state. This
preference for the mixed chirality state relies on a sim-
ple energy argument and is thus general and independent



3

+i

+i+i

d
1

d
p

Intraband OP Intraband OP
M = 0 M ≠ 0

E
QP

E
QP

+

+

+

+

+

+

+

+

+

+

+

+

- -

- -
-

-

- - -

- -

-

-
++

+

+-

-

-

K'

K

FIG. 1: (Color online) Symmetry of intraband OPs and lowest quasiparticle energy band (scale on the far right) for the d1-wave,

∆ ∼ (2,−1,−1), (upper row) and dp-wave, ∆ ∼ (1, e2πi/3, e4πi/3), (lower row) states at M = 0 (left) and M = 0.6t (right)
when |∆| = 0.2t, δ = 0.135 [scale spans −0.2t (blue) to 0.2t (red) for OPs]. Black lines indicate the first Brillouin zone.

on a particular model. To find Mc specifically for H we
minimize its free energy with respect to the three bond
OPs ∆α. We plot in Fig. 2(a) the critical moment as a
function of δ for the bare parameters, in order to directly
compare with previous results for the t-J model. As seen,

Mc'/t'

M/t

Δ/t Re(Δ1)

Im(Δ2)d
1

d
2

J'/t' = 0.3
J'/t' = 0.1 J'/t' = 0.2

δ

(a)

(b)

M' (Ref. [45]) 

FIG. 2: (Color online) (a) Critical magnetic moment M ′

c/t
′

as a function of filling fraction δ for bare parameters J ′/t′.
Dashed line shows AF moment calculated in Ref. [45] for
J ′/t′ = 0.3. (b) Bond OPs ∆α as a function of magnetic mo-
ment M with a phase transition at Mc = 0.168t, where the
imaginary part (purple) of the bond OPs disappears while the
real part (black) increases, for J = 1.3t, δ = 0.05. Inset shows
d1- (red) and d2-wave (blue) characters of ∆.

M ′
c is small and also decreases towards half filling, even

approaching zero for low doping. This is highly advan-
tageous for achieving the mixed chirality state, since the
AF moment is largest at half filling. In fact, when com-
paring to the calculated magnetic moment in Ref. [45]
(dashed line), we conclude that the mixed chirality state
appears in a very large part of the phase diagram. We
also see little variation with J ′, making the mixed chiral-
ity state robust.

Phase transition.—Having established the existence of
a critical magnetic moment for entering the mixed chi-
rality state, we now analyze the phase transition itself.
For transparency we will from now on use the renor-
malized parameters J and t. In Fig. 2(b) we plot the
bond OPs as a function of M . The perfect dp solution
at M = 0, with equal parts of d1- and d2-wave char-
acter (inset), becomes a slightly imperfect dp state for
0 < M < Mc, since the imaginary part of the bond OPs
is somewhat suppressed at finite M . However, as long
as the imaginary part of the bond OP is finite chirality
is preserved. At Mc there is a sudden jump in the bond
OPs, where the imaginary part disappears and the real
part increases, such that the d1-wave character of the
bond OP jumps from 0.56 to 1 with only a 0.6% change
in the magnetization at Mc. This large discontinuous
change of the OP at Mc is accompanied by a similarly
discontinuous derivative in the free energy, strongly sup-
porting a first order phase transition between the chiral
d-wave state and the mixed chirality d-wave state. The
phase transition to the mixed chirality state is driven by
minimizing the number of low-lying quasiparticle excita-
tions. The mixed chirality state is always fully gapped,
with the gap increasing with M , whereas the chiral state
develops low-energy quasiparticle excitations at finite M ,
as seen in Fig. 1. However, the phase transition takes
place well before the chiral d-wave state develops zero-
energy states. Thus, the system remains fully gapped in
the whole AF-SC coexistence phase [73], although it is
possible that domain wall proliferation might mask the
energy gap. The fully gapped bulk energy spectrum is
very interesting because of the topological nature of the
phase transition. At M = 0, the chiral d-wave state be-
longs to symmetry class C, as it has full spin-rotation
symmetry [62, 63]. The C classification allows for Z dif-
ferent topological states in 2D. However, as soon as we
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add the AF moment, only rotations around Sz are left
invariant. This results in symmetry class A for finite
M , which also has Z topological classification [62, 63].
The chiral d-wave state is therefore always classified by a
|N | = 2 winding number. On the other hand, the mixed
chirality state at M > Mc has opposite OP windings
in the two valleys. Thus, while it is topologically non-
trivial in each valley, the topological invariant cancels
when summed over the full Brillouin zone. The phase
transition at Mc is therefore a topological phase transi-
tion between two topologically distinct phases of matter.
Topological phase transitions have widely been assumed
to require the bulk energy gap to close, as that is the only
generic way to change topological order [46, 47, 64]. The
topological transition between the chiral and the mixed
chirality d-wave states provides an explicit counterexam-
ple [74]. This is possible because the topological tran-
sition is the result of a first-order transition within the
Ginzburg-Landau paradigm.

Edge states.—A defining property of topological states
is the existence of edge modes, with the bulk-boundary
correspondence equaling the number of edge states with
the change of topological number at the edge [46].
To investigate the edge band structure we solve self-
consistently for the SC OPs at every site in a thick rib-
bon. For M < Mc the Dirac valleys at K,K ′ each give
rise to one state per edge, see Fig. 3(a), which are co-
propagating in agreement with the change of topologi-
cal number at the edge. The figure shows the result for
zigzag edges, but armchair edges behave very similarly
[18]. At M = Mc the direction of the edge states at K ′

changes discontinuously due to the first-order transition,
and the edge states instead become counterpropagating
reflecting the mixed chirality, see Fig. 3(b).

Reducing the width of the ribbon allows the study of
finite size effects. We find Mc to be significantly reduced
in all but very thick ribbons. For example, in a J =
1.3t, δ = 0.135 ribbon, perfect chiral d-wave symmetry is
reached already within 15 unit cells from the edge. Still,
Mc = 0.25t in a ribbon 100 unit cells thick, compared to
Mc = 0.29t in the bulk. Thus, ribbons provide a route
for inducing the mixed chirality state below the bulk Mc.
For very thin ribbons we find that the phase transition is
not sharply defined, instead there is gradual suppression
of the imaginary part of the bond OPs as M increases.
Reducing the ribbon thickness also hybridizes left and
right edge states. This is a scattering process within
each Dirac valley, which gaps the edge state spectra in
both phases. We find no notable difference between the
thin ribbon energy gaps deep inside the chiral and the
mixed chirality d-wave phases, see Fig. 3(c). However, for
M . Mc low-lying bulk excitations exist at K ′, resulting
in a larger gap at K ′ just prior to the phase transition.

Finally, we study the effect of disorder. We find no
influence of weak to moderate disorder on Mc. The
two chiral d-wave edge states are topologically protected

(a) (b)

L

R L

R
M = 0 M > Mc

0-π π 0-π π

(c)

0-π π

Thin ribbon

M = 0

M ! Mc

M > Mc

0-π/20a π/20a

(d)
M > Mc

Clean

Disordered

K' K

K' K

K' K

FIG. 3: (Color online) Self-consistent band structures for
zigzag ribbons. Thick ribbon with M = 0 (a) and M = 0.3t >
Mc (b), with left (red) and right (green) edge states. (c) Thin
(16a thick) ribbon with M = 0 (black), M = 0.14t . Mc (or-
ange), and M = 0.3t > Mc (blue). (d) Extended supercell
(20a wide) with M = 0.42t > Mc with Anderson disorder
W = 0.1t (purple) compared to clean system (black). Here
J = 1.3t, δ = 0.135 [|∆| = 0.27t at M = 0].

and also not sensitive to disorder [18]. The mixed chi-
rality edge states are locally protected in each valley
and thus only intervalley scattering can open a back-
scattering channel. Intervalley scattering only exists for
atomically sharp disorder, and can be relatively rare in
clean samples. Still, we can demonstrate the sensitivity
to intervalley scattering by using strong Anderson disor-
der; an atomically strongly fluctuating chemical potential
µ+ δµi, with δµi distributed randomly within the inter-
val [−W,W ]. We create disordered samples by using a
T = 20a long (perpendicular to edges) ribbon supercell,
which reduces the 1D Brillouin zone to k ∈ [−π/T, π/T ].
With the supercell momentum always preserved, inter-
valley scattering is only present for edge states centered
at k = Γ, π/T . Although this sounds as if it requires
fine tuning, we find that strong disorder often locks the
edge state to π/T , as exemplified in Fig. 3(d). While the
clean system has its zero-energy crossing located away
from π/T , strong disorder gives a small gap (< 5% of the
SC energy gap) in the edge state centered at π/T .

In summary, we have found a mixed chirality d-wave
SC state in the AF-SC coexistence region in strongly cor-
related honeycomb materials. At a finite AF moment
there is a first-order topological phase transition from
the chiral to the mixed chirality d-wave SC state. The
mixed chirality state hosts two counterpropagating edge
modes, protected in the absence of intervalley scattering.
General RG and energy arguments make our results valid
beyond the t-J model. Newly developed numerical ap-
proaches for interaction-driven time-reversal broken su-
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perconductivity [44, 65, 66] could offer precise treatments
of an even wider range of materials.
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