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Abstract

One of the first theoretical proposals for understanding high temperature superconductivity

in the cuprates was Anderson’s RVB theory using a Gutzwiller projected BCS wave function as

an approximate ground state. Recent work by Paramekanti, Randeria and Trivedi has shown

that this variational approach gives a semi-quantitative understanding of the doping dependences

of a variety of experimental observables in the superconducting state of the cuprates. In this

paper we revisit these issues using the “renormalized mean field theory” of Zhang, Gros, Rice and

Shiba based on the Gutzwiller approximation in which the kinetic and superexchange energies are

renormalized by different doping-dependent factors gt and gS respectively. We point out a number

of consequences of this early mean field theory for experimental measurements which were not

available when it was first explored, and observe that it is able to explain the existence of the

pseudogap, properties of nodal quasiparticles and approximate spin-charge separation, the latter

leading to large renormalizations of the Drude weight and superfluid density. We use the Lee-Wen

theory of the phase transition as caused by thermal excitation of nodal quasiparticles, and also

obtain a number of further experimental confirmations. Finally, we remark that superexchange,

and not phonons, are responsible for d-wave superconductivity in the cuprates.
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Introduction

The resonating valence bond (RVB) liquid was suggested in 1973 by Anderson and Fazekas

(Anderson, 1973; Fazekas and Anderson, 1974) as a possible quantum state for antiferromag-

netically coupled S = 1/2 spins in a low dimensions. Their ideas were based on numerical

estimates of the ground state energy. Instead of orienting the atomic magnets on separate,

oppositely-directed sublattices, in the liquid they were supposed to form singlet “valence

bonds” in pairs, and regain some of the lost antiferromagnetic exchange energy by resonat-

ing quantum-mechanically among many different pairing configurations. Such states form

the basis of Pauling’s early theories of aromatic molecules such as benzene (as well as of

his unsuccessful theories of metals), and are a fair description of Bethe’s (1931) antiferro-

magnetic linear chain. The S = 1/2 antiferromagnetic Heisenberg model arises naturally in

Mott insulators. Unlike conventional band insulators, Mott insulators have an odd number

of electrons per unit cell and are insulating by virtue of the strong Coulomb repulsion be-

tween two electrons on the same site. Virtual hopping favors anti-parallel spin alignment,

leading to antiferromagnetic exchange coupling J between the spins (Anderson, 1959). In

the RVB picture, S = 1/2 is important because strong quantum fluctuations favor singlet

formation rather than the classically ordered Néel state.

In 1986 the high Tc cuprates were discovered (Bednorz and Muller, 1986), and it was soon

realized (Anderson, 1987a) that the operative element in their electronic structures was the

square planar CuO2 lattice. In the “undoped” condition, where the Cu is stoichiometrically

Cu++, the CuO2 plane is just such an antiferromagnetically coupled Mott insulator. In

many instances these planes are weakly coupled to each other. Anderson (1987a, 1987b),

in response to this discovery, showed that an RVB state could be formally generated as a

Gutzwiller projection of a BCS pair superconducting state. This is a much more convenient

and suggestive representation than those based on atomic spins, and it immediately makes

a connection with superconductivity.

The method of Gutzwiller (1963) was initially proposed as a theory of magnetic metals,

in conjunction with the Hubbard model. His proposal was to take into account the strong

local Coulomb repulsion of the electrons by taking a simple band Fermi sea state and simply

removing, by projection, all (or, in the early version, a fraction) of the components in it

which have two electrons on the same site. When one projects a half-filled band in this way

the result is to leave only singly-occupied sites with spins. The new idea is to project a BCS
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FIG. 1: Snapshot of a resonating valence bond (RVB) configuration showing singlet pairs of

electrons and, in addition, a fraction x of doped holes. The many-body ground state wavefunction

is a linear superposition of such configurations with the spatial dependence of the singlet pairing

amplitudes determined by the function ϕ(r − r′) defined in eq. (4).

paired superconducting state; then the spins are paired up in singlet pairs to make a liquid

of pair “bonds”; see Fig. 1.

But of course, with exactly one spin at every site, this state is a Mott insulator, not a

metal. Such an RVB liquid state is of rare occurrence in real Mott insulators, which usually

exhibit either antiferromagnetic long range order as in the cuprates, or possibly have ordered

“frozen” arrays of bonds. i.e., valence bond crystals rather than liquids. However, the

importance of the RVB liquid was the suggestion that as one doped this state with added

electrons or holes, the resulting metal would be a high Tc superconductor, retaining the

singlet pairs but allowing them to carry charge and support supercurrents. The motivation

for the pairing would be the antiferromagnetic superexchange of the original Mott insulator.

For over a decade and a half a number of theorists have been trying to implement this

suggestion along a bewildering variety of routes. One main avenue has resulted from the

proposal by several authors (Kotliar and Liu, 1988; Suzumura et al., 1988; Gros, 1988;
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Yokoyama and Shiba, 1988; Affleck et al. 1988; Zhanget al. 1988), that Anderson’s original

s-wave BCS be replaced by an exotic, d-wave state. The d-wave approach in the early days

was quantitatively carried through by Gros (1989) using variational Monte Carlo methods

and by Zhang, Gros, Rice and Shiba (1988) on a simplified model, and using very rough

approximation methods. Recently the Gutzwiller-RVB wavefunction approach was revived

by Paramekanti, Randeria, and Trivedi (2001; 2003) who used careful numerical methods

to calculate many quantities of direct experimental relevance. Their results turn out to

correspond remarkably well to the experimental phenomena observed in the cuprates across

a very broad spectrum of types of data, a spectrum that was simply not available in 1987-88

when the original work was done. It may be because of this absence of data at the time that

the original paper was for so long not followed up.

All of this work relies on one basic assumption, an assumption which has gone unquestioned

among a large fraction of those theorists concerned with this problem, from the beginning.

This is the assumption that the physics of these materials is dominated by the strong re-

pulsive interactions of a single non-degenerate band of electrons on the CuO2 planes, and

is specifically not at all similar to that of the conventional BCS superconductors. In the

latter the direct electron interactions are heavily screened, and the lattice vibrations play

the dominant role. We feel that the demonstration of d-wave superconductivity in par-

ticular makes phonons as major players difficult to support, even though there are some

notable physicists, such as Mott, Friedel, Muller, and Abrikosov, who disagree. The phonon

mechanisms are local in space, extended in time, making the dynamic screening mechanism

emphasized by Schrieffer and Anderson relevant and leading to s-wave pairing (Schrieffer,

1964). This mechanism works better the more electrons there are per unit cell, and fails for

monovalent metals. D-wave pairing, on the other hand, is essentially non-local in space and

deals with strong repulsions by conventional space avoidance, as suggested by Anderson and

Morel (1961) and by Kohn and Luttinger (1965). Phonon interactions, especially via optical

phonons, are local and cannot easily lead to higher angular momentum pairing.

It has been argued that certain specific phonons in the presence of strong correlation

can enhance d-wave pairing (Shen et al., 2002). However, such couplings are reduced for

small doping by the renormalization factor g2
t as discussed later in the article. Even more

cogent is the fact that, as we shall see, the attractive potential for d-wave pairing is more

than adequate without phonons, and even if they contribute positively to it the effect will
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be minor. (It has been argued that in some cases the contribution is negative (Anderson

2002)).

Furthermore, it is now known that the energy gap in high Tc superconductors is much larger

than predicted by BCS theory, and can reach a value of order 50 meV. This is comparable

to or exceeds typical phonon frequencies, making it obvious that a phonon cannot be the

key player.

We prefer not to further burden this discussion with the equally strong chemical, angle

resolved photoemission spectra and optical evidence for using only a single band; this subject

is treated in, for instance, the paper by Zhang and Rice (1988), or in Anderson’s book (1997).

These considerations suggested the use of models where the strong repulsive correlations

are emphasized, specifically the Hubbard model, which takes as the only interaction a strong

on-site repulsion. The Hubbard model can be transformed by a perturbative canonical trans-

formation (Kohn 1964) into a block-diagonal form in which double occupancy is excluded,

and replaced by an exchange interaction between neighboring sites as pointed out early

on by Gros, Joynt and Rice (1986). This procedure converges well for sufficiently strong

on-site interaction U , but presumably fails at the critical U for the Mott transition; the

singly-occupied “undoped” case is unquestionably a Mott insulator in the cuprates and this

transformation ipso facto works. The further simplified t−J model is often used; for refined

calculations it has been argued (Paramekanti et al., 2001; 2003) that this simplification may

be too great, but for the semi-quantitative purposes of this article we will at least think in

terms of that model.

The Mott insulator based theory for the cuprates has been expressed in a variety of forms

other than straightforward Gutzwiller projection and we do not claim any great overall su-

periority for our method. Early on, Baskaran, Zou and Anderson (1987) (see also, Anderson

(1987b) and Zou and Anderson (1988)) introduced the ideas of spin-charge separation (see

also Kivelson, Rokhsar and Sethna, 1987) and of slave bosons and gauge fields introduced

to implement the Gutzwiller constraint, and quite a number of authors (Ruckenstein et al.,

1987, Weng et al., 1996) have followed this direction, most notably Baskaran (Anderson,

Baskaran, Zou and Hsu, 1987; Baskaran and Anderson, 1988), Fukuyama (Suzumura et al.,

1988; Fukuyama, 1992) Kotliar (Kotliar and Liu, 1988), Ioffe and Larkin (1989) and a series

of publications by P. A. Lee and co-workers (Nagaosa and Lee, 1990; Wen and Lee, 1996).

A related method is the Schwinger boson, slave fermion technique which has been discussed
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by a number of authors (Weigmann, 1988; Shraiman and Siggia, 1989; Lee, 1989). Undoubt-

edly for discussions of the precise nature of the phase transition and of the complicated mix

of phenomena such as the pseudogap regime which occur above Tc these theories will be

essential, but we here focus on properties of the ground state and of low-lying excitations,

which by good fortune includes the basic physics of Tc. We feel that what we can calculate

indicates the correctness of the fundamental Mott-based picture in such a way as to support

the further effort needed to work out these theories.

The Method

Starting from the Hubbard Hamiltonian (which may be generalized in various ways without

affecting the following arguments)

H = T + U
∑

i

ni↑ni↓ (1)

where T is the kinetic energy. We suppose that there is a canonical transformation eiS

which eliminates U from the block which contains no states with ni↑ + ni↓ = 2, and which

presumably contains all the low-lying eigenstates and thus the ground state; there are no

matrix elements of the transformed Hamiltonian connecting these to doubly-occupied states.

Thus

eiSHe−iS = Ht−J = PTP + J
∑

ij

Si · Sj (2)

Here P =
∏

i (1 − ni↑ni↓) is the Gutzwiller projection operator, which projects out double

occupancy. The kinetic energy T is actually modified to include a 3-site hopping term, which

we will neglect here, realizing that our Fermi surface and velocity are heuristically adjusted

in any case. The low-lying eigenstates of this Hamiltonian are necessarily of the form P |Φ〉,

where |Φ〉 is a completely general state of the appropriate number of electrons in the band.

Thus Gutzwiller projection is necessary if one is to use the canonical transformation to

eliminate U .

We make the fundamental assumption that the correct |Φ〉 may be approximated by a

general product wave function of Hartree-Fock-BCS type, so that

P |Φ〉 = P
∏

~k

(

u~k + v~kc
†
~k↑

c†
−~k↓

)

|0〉 . (3)
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In fact, one can simply rewrite P |Φ〉 for a fixed number of electrons (N) as

P |Φ〉 = P





∑

~r,~r′

ϕ(~r − ~r′)c†~r↑c
†

~r′↓





N/2

|0〉 , (4)

where ϕ(~r − ~r′) is the Fourier transform of v~k/u~k. This real space wavefunction may be

visualized in terms of a linear superposition of configurations consisting of singlet pairs and

vacancies with no double occupancy. Each valence bond is the snapshot of a preformed pair

of electrons, while the vacancies correspond to doped holes; see Fig. 1.

In the conventional theory of metals, the Hartree-Fock BCS ansatz turns out to be justifi-

able as the first step in a perturbation series which preserves many of the properties of the

non-interacting particle model, relying on adiabatic continuation arguments in a qualitative

way. We see no reason why it cannot be equally effective in this case. We emphasize that

we are not approximating the actual wave- function eiSP |Φ〉 as a product function, but the

function to be projected, |Φ〉, and we are searching for an effective mean field Hamiltonian

which determines this function. The projected Hamiltonian is a hermitian operator which

acts on this function, in complete analogy to an ordinary interacting Hamiltonian, and we

may treat it in mean field theory if we so desire. We accept that the wave functions are

enormously underspecified by this Hamiltonian, but in fact that makes it more likely, rather

than less, that a simple product will be a fairly good approximation.

The philosophy of this method is analogous to that used by BCS for superconductivity,

and by Laughlin for the fractional quantum Hall effect: simply guess a wave function. Is

there any better way to solve a non- perturbative many-body problem?

While the main focus of this paper is on the physical properties of the projected

wavefunction, we briefly mention what is known about its energy as a variational state

for the t-J model (Hsu, 1990; Yokoyama and Ogata, 1996). At half filling, the projected

d-wave BCS state does remarkably well, with an energy of –0.3199 J per bond compared

with the best estimate of –0.3346 J (Trivedi and Ceperley, 1989). Interestingly, projecting

the BCS state does just about as well as projecting a spin density wave state which has

long range order (–0.3206 J). This state also has an ordering moment which is much too

large (0.9). The best trial state is obtained by combining the two, which achieves an energy

of –0.3322 J and a staggered magnetization of 0.75, which is close to the best numerical

estimates. Upon doping, AF co-exists with d-wave superconductivity up to x = 0.11 for
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J/t = 0.3 (Giamarchii and Lhuillier, 1991; Himeda and Ogata, 1999; Ogata and Himeda,

2003). This is in disagreement with experiments which show that AF order is destroyed

beyond 3 to 5% doping. However, more recent work which combines Gutzwiller projection

with a Jastrow factor finds that the energy of the d-wave superconductor is considerably

lowered and Sorella et al. (2002a) have presented numerical evidence that the ground

state of the 2D t − J model has d-wave superconducting long range order over a wide

doping range; see also the work of Maier et al. (2000) on the Hubbard model. This issue

is controversial (Zhang et al., 1997; Shih et al., 1998; White and Scalapino 1999; Lee et

al., 2002; Sorella et al., 2002b) and not easy to settle because of technical difficulties with

fermion simulations. Nevertheless, the most important point from our perspective is that

the superconducting ground state is energetically highly competitive over a broad range of

doping, and thus the variational state whose properties we are describing in this paper will

be a good approximation to the ground state of a model close to the t − J model.

Mean Field Theory

In evaluating the energy of these wave functions Zhang et al. (1988) used a rough approx-

imation first proposed by Gutzwiller (1963) which involves assuming complete statistical

independence of the populations on the sites; see also Vollhardt’s (1984) review for a clear

explanation. This is not too bad, since the one-particle states are defined as momentum

eigenstates, but not perfect, as pointed out by Zhang et al. (1988) by comparing with Monte

Carlo calculations for a particular case. But in order to understand the results qualitatively

we will follow this simple procedure here. The evaluations in Paramekanti et al. (2001;

2003) are carried out without this approximation.

In the product wave function |Φ〉 with the chemical potential fixed so that there are,

on average, 1 − x electrons per site, with x the fraction of holes, the states with 0, 1

and 2 electrons on a given site have probabilities (1 + x)2 /4, (1 − x2) /2 and (1 − x)2 /4,

respectively. The corresponding numbers after projection are x, 1 − x and 0. Thus the

relative number of pairs of sites on which a hole can hop from one to the other may be

calculated to be gt = 2x/(1 + x), while the relative number of pairs of sites which can

experience spin exchange is gS = 4/(1 + x)2. These are taken to be the renormalization

factors for the kinetic energy and superexchange terms in the t−J Hamiltonian; that is, the

Hubbard Hamiltonian is first transformed into the t− J Hamiltonian, and then its effect on
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the actual product wave-function is estimated in this way. More accurate estimates could

be calculated using Monte-Carlo methods, and the extra correlated hopping terms could be

included, but we actually doubt if the latter change things much.

Essentially, in this approximation all terms of the nature of spin interactions have a single

renormalization factor, gS while all terms in the kinetic energy are renormalized by a factor

gt. The ratio of these is quite large, being about a factor of 8 even at 20% doping. Thus

this method results in an approximate (or quantitative) spin-charge separation, which is as

effective for experimental purposes (Anderson, 2000) as the qualitative one of more radical

theories. In reality, the wave function will have some correlations of occupancy, but these

are higher order in x – in the limit of small x the holes move independently. Also in reality

the dispersion relation may not scale perfectly, but again we do not think this is a very large

effect.

Thus the renormalized Hamiltonian simply takes the form of a modified t−J Hamiltonian,

Heff = gtT + gSJ
∑

Si · Sj (5)

(Again, we ignore the three-site hopping terms). Zhang et al. (1988) showed that if we treat

this within Hartree-Fock-BCS approximation, we arrive at a modified BCS gap equation.

The kinetic energy is renormalized downwards, and the interaction term Si · Sj , which can

be written in the form of four fermion operators c†c†cc alike, can be factorized in two ways.

It can be factorized in such a way that it leads to an anomalous self-energy term of the form,

J
〈

c†i↑c
†
j↓

〉

cj↓ci↑ + h.c., which will lead to a gap; or it can be factorized in such a way as to

give a Fock exchange self-energy χij =
〈

c†iσcjσ

〉

, with χ~k its Fourier transform, which is of

nearly the same form as the kinetic energy, and adds to it. Exhaustive study of this form of

wave function has led to the conclusion that the optimum gap equation solution is a d-wave

of symmetry dx2−y2 (Kotliar and Liu, 1988; Suzumura et al., 1988; Gros 1988; Yokoyama

and Shiba, 1988; Affleck et al., 1988; Zhang et al., 1988). The outcome is a pair of coupled

equations, one for the anomalous self-energy and the other for the effective particle kinetic

energy:

∆~k =
3

4
gSJ

∑

~k

γ~k−~k′

∆~k′

2E~k′

(6)
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FIG. 2: (a) The amplitude of the (dimensionless) d-wave gap ∆ (called ∆̃ in Zhang et al., (1988))

and the superconducting order parameter (OP) as functions of hole doping x in the t − J model

for J/t = 0.2 calculated in the renormalized mean field theory of Zhang et al. (1988). (b) The

spectral gap (in meV) for Bi2212 as measured by ARPES (Campuzano et al., 1999) and Tc as a

function of doping. The x values for the measured Tc were obtained by using the empirical relation

Tc/T
max
c = 1 − 82.6(x − 0.16)2 (Presland et al., 1991) with Tmax

c = 95K.

which is an orthodox BCS equation, and

χ~k = −
3

4
gSJ

∑

~k

γ~k−~k′

ξ~k′

2E~k′

. (7)

Here ξ~k = gtε~k −µ−χ~k , and ε~k is the band energy, and µ is an effective chemical potential,

γ~k is the Fourier transform of the exchange interaction, initially simply the nearest neighbor

result

γ~k = 2 (cos kx + cos ky) (8)

and µ is set to give the right number of electrons Ne, which commutes with the projection

operator. E~k =
√

ξ2
~k

+ ∆2
~k
, which has the same form as in the BCS theory.

Zhang et al. (1988) gave the result of solving these gap equations in the oversimplified

case where only nearest neighbor hopping is allowed, and we reproduce their figure here as
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Fig. 2(a). We see that ∆, the magnitude of the d-wave symmetry gap, falls almost linearly

with x from a number of order J , and vanishes around x = 0.3 for J/t = 0.2. The more

realistic model of Paramekanti et al. (2001; 2003) gives a similar result. We presume that

this quantity represents the pseudogap, which is known to vary experimentally in this way.

(A calculation by an entirely different method (Anderson, 2001) gave the same result.)

Also plotted on this graph is the physical amplitude of the order parameter (OP) ∆SC =

〈ci↑cj↓〉, which is supposed to renormalize with gt. This is actually true but the argument

is more subtle than that given in Zhang et al. (1988). It is necessary to recognize that the

two states connected by this operator contain different numbers of particles. The simpler

argument is to realize, as was remarked in Paramekanti et al. (2001; 2003) that the physically

real quantity is the off diagonal long range order eigenvalue of the density matrix, which is

the square root of the product of
〈

c†i↑c
†
j↓ci+l↑cj+l↓

〉

for large distance l which is renormalized

by a factor of g2
t . This quantity in this early graph, and in the more accurate work of

Paramekanti et al. (2001; 2003), bears a striking resemblance to the variation of Tc with

doping, and was by implication suggested to be a measure of Tc; but it was not until 1997

that the Wen-Lee theory for the renormalization of Tc (to be discussed below) appeared,

and it is not quite true that the order parameter and Tc are identical.

Before turning to Tc, we briefly mention results on nodal quasiparticles (“nodons”) ob-

tained from our approach. These are the important low-lying excitations in the super-

conducting state and dominate low temperature thermodynamics, transport and response

functions (Hardy et al., 1993; Krishana et al., 1995; Zhang et al., 2000; Chiao et al., 2000),

in addition to controlling Tc (see below). The Gutzwiller projected d-wave superconducting

ground state supports sharp nodal quasiparticle excitations (Paramekanti et al., 2001; 2003)

whose coherent spectral weight Z goes to zero as gt but whose Fermi velocity vF is very

weakly doping dependent and remains non-zero as the hole doping x → 0. These results

imply that the real part of the self-energy Σ′(k, ω) for the gapless nodal quasiparticles has

singular energy and momentum dependences: Z ∼ x means that |∂Σ′/∂ω| ∼ 1/x which

in turn implies ∂Σ′/∂k ∼ 1/x in order to have a non-zero nodal vF . These predictions

are in very good agreement with recent ARPES data as shown in Fig. 3, and in addition

also explain the remarkable doping dependence of the “high energy” dispersion of the nodal

quasiparticles, above the so-called kink scale (Lanzara et al., 2000), which is found to be

dominated by ∂Σ′/∂k (Randeria et al., 2003).
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FIG. 3: (a): Doping dependence of the nodal quasiparticle weight Z in Bi2212 extracted from

ARPES data (Johnson et al. 2001) with x calculated from sample Tc using the empirical formula

of Presland et al. (1991) with Tmax
c = 91K. (b): Z(x) predicted from the variational Monte Carlo

calculation of Paramekanti et al. (2001). The dashed line is the Gutzwiller approximation result

Z = 2x/(1 + x). (c): The low energy nodal Fermi velocity vlow
F from ARPES data in Bi2212 (open

squares from Johnson et al. (2001)) and LSCO (open triangles from Zhou et al. (2003)) is nearly

doping independent. (d): Predicted renormalized vlow
F from Paramekanti et al. (2001) as a function

of x; the dashed line is the bare band structure Fermi velocity v0
F . This figure is adapted from

Randeria et al. (2003).

Transition Temperature

It is also a consequence of our theory that the electromagnetic response function ρs (the

phase stiffness, or more conventionally 1/λ2, with λ the penetration depth) renormalizes

with gt, as does the kinetic energy. In 1997 Lee and Wen (1997) pointed out that the rate

of linear decrease of ρs with temperature, which was the earliest experimental evidence for

d-wave symmetry (Hardy et al., 1993), maintains its magnitude independently of doping.

They argue that the decrease is caused by the thermal excitation of quasiparticles near the
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nodes and is an electromagnetic response function of these quasiparticles. In the BCS paper

it is pointed out that the electromagnetic response consists of two parts, the diamagnetic

current which is the acceleration in the field, and the paramagnetic current, which is a

perturbative response of the excited quasiparticles and exactly cancels the diamagnetic term

in the normal state (Schrieffer, 1964). The number of these quasiparticles in a d-wave state

is only proportional to T 2, because the density of states is only linear in energy. But the

amount of decrease of ρs per quasiparticle is inversely proportional to its energy, canceling

one factor of T . The key to their argument is the assumption that the current carried by

each quasiparticle is evF . This is the case in BCS theory, where the quasiparticle does not

carry a definite charge because it is a superposition of an electron and hole, but each of the

partners carries the same current evF . Later it was pointed out by Millis et al. (1998) (see

also Paramekanti and Randeria (2002)) that there can be a Fermi liquid renormalization of

this current to αevF where α is a Fermi liquid parameter inherited from the normal state.

The slope of ρs vs T is now proportional to α2 and we assume that α is of order unity and

relatively insensitive to doping. Thus ρs at T = 0 decreases proportionally to doping, yet

its rate of decrease with temperature does not vanish with x, but instead remains relatively

constant. The decrease of ρs to zero is considered by these authors to determine Tc. At Tc

the system loses phase coherence, but continues to have an energy gap over much of the

Fermi surface for small x. The insensitivity of the linear T slope in ρs(T ) to doping was

experimentally demonstrated by Lemberger and co-workers (Boyce et al., 2000; Stajic et al.,

2003) and verifies our assumption.

As the quasiparticles reduce ρs, eventually there will develop thermally generated vortices

(in truly two-dimensional systems like LSCO and Bi2212) and the actual phase transition

takes place as a Kosterlitz-Thouless (K-T) type of phenomenon (Corson et al.; 1999) The

notion that a small ρs would lead to strong phase fluctuations which determine Tc was

introduced by Emery and Kivelson (1995) but we must recognize that the ρs which controls

the K-T transition is not ρs(T = 0) but the ρs(T ) which is greatly reduced by quasiparticle

excitations. By combining these effects, the decrease of ρs(T ) becomes faster than linear,

and eventually infinitely steep. But this happens only quite near to Tc, because the K-T ρs

is relatively low; thus the quasiparticle mechanism gives us a good estimate of Tc, as was

pointed out by Lee and Wen, and fits various empirically proposed relationships (Uemura

et al., 1989). In materials such as YBCO which are more three-dimensional, the transition
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will be more conventional but is still mediated by phase fluctuations near Tc, as of course it

is in ordinary superconductors but not over as broad a critical range.

The Lee-Wen mechanism of Tc described above is relevant for the underdoped side of the

phase diagram where it offers a natural explanation for Tc ∼ ρs(0) and holds all the way up

to optimality. On the overdoped side of the phase diagram, ρs(T ) continues to be linearly

suppressed in temperature due to thermally excited quasiparticles, but now the stiffness

corresponding to ρs(0) is much larger than the energy gap. Thus superconductivity is lost

by gap collapse and Tc would be expected to scale like the gap for overdoped systems, as in

conventional BCS theory.

Discussion Of Results

The correspondences between the results of our mean field theory and the very unusual

experimental observations on the high Tc cuprate superconductors are so striking that it

is hard to credit that they have had so little general notice, especially considering the fact

that many of them constituted predictions made in 1988 before the experimental situation

became clear, sometimes many years before. The d-wave nature of the energy gap (Kotliar

and Liu 1988; Suzumura et al. 1988; Gros 1988; Yokoyama and Shiba, 1988) confirmed

only in 1993-94 (Wollmann et al., 1993; Tsuei et al., 1994), is the most striking. The d-

wave pairing symmetry was also predicted by the “spin fluctuation theory” based on a more

orthodox structure (Bickers, Scalapino and Scalettar, 1987; Monthoux, Balatsky and Pines,

1991). This follows earlier predictions of d-wave superconductivity in models with strong

repulsion in connection with the heavy fermions (Hirsch, 1985; Miyake, Schmitt-Rink and

Varma, 1986). We emphasize that our theory, though spin-based, is by construction not a

spin-fluctuation theory, since the latter is based on Fermi liquid theory. Such a Fermi-liquid

based approach may be relevant to the overdoped side of the cuprate phase diagram, but is

unable to deal with the unusual properties in the vicinity of the Mott insulator.

A second prediction of the RVB approach is the large energy scale represented by ∆,

which was first observed as a spin gap by NMR at the end of the eighties (Alloul et al.

1989; Walstedt and Warren 1990; Takigawa et al. 1991). Its significance was only slowly

recognized by the mid-nineties and it has come to be called the pseudogap. It merges

with the superconducting gap below Tc, but is visible in many different kinds of density of

states measurements far above Tc (Ding et al. 1996; Loesser et al. 1996; Ch. Renner et
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al. 1998). For well underdoped samples it expunges the Fermi surface in the anti-nodal

direction (Norman et al., 1998). Its value has been studied in detail by Tallon and Loram

(2000), and their numbers are in striking agreement with the calculations of Zhang et al.

(1988) or Paramekanti et al. (2001; 2003), if we leave aside their claim that it falls to zero

in the midst of the superconducting range. The pseudogap is often associated roughly with

a temperature scale “T ∗” below which its effects are first felt. Of course, in a rigorous sense

our mean field theory is a theory of the superconducting phase at low temperatures, but

the pseudogap appears both in the spectra obtained at low temperature as well as in the

“mysterious” pseudogap state above Tc.

The effects of the renormalization gt on ρs and on the Drude weight, which was shown by

Sawatzky and coworkers (Eskes et al., 1991; Tajima et al., 1990) to be renormalized with

precisely the factor 2x, is a natural consequence of the RVB based theories, including the

mean field theory described here.

One important observation also postdated the original paper: that the Green’s function

of the quasiparticles in the superconducting state contains a sharp “coherence peak” at the

quasiparticle energy on top of a very broad incoherent spectrum, and ARPES experiments

(Feng et al., 2000; Ding et al., 2001) have estimated that the amplitude of that peak is

proportional to 2x.

One result has not been previously mentioned in the literature. The renormalization gt

applies to any term in the Hamiltonian which is a one-electron energy. Therefore matrix

elements for ordinary time-reverse invariant scattering are reduced by a factor of about 2x,

and their squares, which enter into such physical effects as the predicted reduction in Tc,

or into resistivity, are reduced by more than an order of magnitude. At the same time

the effects of magnetic scattering are relatively enhanced. Thus the effects of impurities on

high Tc superconductivity – the notorious contrast of the effects of Zn or Ni substitutions

in the plane relative to non-magnetic doping impurities which lie off the plane, (Fukuzumi

et al., 1996) – are explained without having any mysterious spin-charge separation in the

formal sense. The same reduction will, on the whole, apply to the effects of electron-phonon

scattering which, like ordinary impurity scattering, seem to have little influence on the resis-

tivity. The electron-phonon interaction, which enters into ordinary BCS superconductivity,

is renormalized relative to the spin interaction by the factor g2
t /gS ∼ x2 and seems unlikely

to play a role.
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Finally, a word as to the Nernst effect experiments of Ong and coworkers (Xu et al., 2000;

Ong and Wang, 2003) which measure the electric field transverse to an applied thermal

gradient in the presence of a perpendicular magnetic field. The Nernst signal is expected

to be dominated by the motion of vortices, and the results on two dimensional materials

are very consistent with expectations for a generalization of the Kosterlitz-Thouless type

of transition. What is seen is a Nernst signal at and below Tc varying at low magnetic

field B as B ln B (Ong and Wang, 2003) indicating that the underlying ρs of the effective

Ginsburg-Landau free energy does not vanish at Tc; the ln B variation, giving an infinite

slope, follows from thermal proliferation of large vortices whose energies vary as ρs ln B. As

B is increased, however, the signal does not drop to zero until a very large B is reached,

indicating a retention of phase stiffness at short length scales long after superconducting

long-range order has disappeared. We believe that this is a natural and probably calculable

effect. But with increasing temperature the Nernst effect disappears well below T ∗, at least

for low fields. In this region we are well out of the region of applicability of mean field

theory, and expect very large fluctuation effects for which we have no controlled theory.

An additional experimental phenomenon which, we think, supports the essential validity

of a projected wave function is the particle-hole asymmetry of the tunneling conductance as

a function of voltage. We will discuss single-particle excited states and tunneling asymmetry

in a forthcoming paper (Anderson et al., 2003)

Conclusion

In broad outline, our basic assumptions as to the physics of the cuprates, together with a

mean field theory which is little less manageable than BCS theory, seem to give a remarkably

complete picture of the unusual nature of the superconducting state. The RVB state is still

a pairing state between electrons. It has its genesis in the BCS state and is smoothly

connected to it, a fact which is made clear in the recent studies of a partially projected BCS

state (Laughlin, 2002; Zhang, 2003). Furthermore, its low lying excitations are well defined

quasiparticles which dominate the low temperature physics. Thus the RVB state is in some

ways rather conventional. What is unusual is the reduction of the superfluid density and the

quasiparticle spectral weight. With increasing degrees of projection, the state evolves from

pairing of quasiparticles to one which is better understood as a spin singlet formation with

coherent hole motion. This evolution has the following dramatic consequence. The BCS

16



pairing is driven by a gain in the attractive potential at the expense of kinetic energy, since

the energy gap smears out the Fermi occupation n(~k). With projection, n(~k) is already

strongly smeared in the non-Fermi liquid normal state, and superconductivity is instead

stabilized by a gain in kinetic energy due to coherent hole motion. This picture has been

verified by experiments which monitor the kinetic energy via the optical sum rule (van der

Marel et al., 2003)

Why then is the subject so controversial? Aside from purely socio-political reasons, there

is a real difficulty: the proliferation of nearby alternative states of different symmetry. Here

we mention a number of possibilities that are actively being considered. One important issue

is the evolution to the antiferromagnet at very low doping. On general principles (Baskaran,

2000; Anderson and Baskaran, 2001), mesoscopically inhomogeneous states (“stripes”) are

likely to be stable at low doping on some scale. They show up in some numerical calculations

(White and Scalapino, 1999) and a few of the cuprates show indications of them as static

(Tranquada et al., 1995) or dynamical excitations (see Stock et al., 2004). While static

stripes are undoubtedly detrimental to superconductivity, there have been arguments that

dynamical stripes may be the source of pairing (see Carlson et al., 2004). We note that in

this scenario, the pairing originates from the ladder structure of the hole-free part of the

stripe which also has its origin in RVB physics. Given the success of the uniform projected

wavefunction, we find these more complex scenarios neither necessary nor sufficient for the

intermediate doping range.

A second class of competing states has its origin in the SU(2) gauge symmetry first identi-

fied for the projected wavefunction at half-filling. The states of an undoped RVB, or in fact

any state of the Mott insulator, can be represented by an enormous number of wave func-

tions before projection; in fact, as pointed out by Affleck et al. (1988) (see also Anderson

(1987b) and Zhang et al. (1988)), it has an SU(2) gauge symmetry. In the undoped state,

with exactly one electron per site, the presence of an up spin is equivalent to the absence of

a down spin and vice versa, thus permitting independent SU(2) rotations at each site. This

degeneracy in the representation of the wave function does not imply any true degeneracy,

it is merely the consequence of our using an underdetermined representation.

When we add holes, this gauge freedom gradually becomes physical, which we experience

as the development of a stiffness to phase fluctuations which grows from zero proportionally

to x. The fluctuations can actually take place in a larger space of gauge degrees of freedom
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which we can represent in terms of staggered flux phases, etc. (Affleck and Marston, 1988) as

possible Hartree-Fock states, but we expect that these are higher energy than the supercon-

ducting state for the interesting values of x. However, the energy difference is small for small

x, and Wen and Lee (1996) have proposed that in the underdoped region SU(2) rotations

which connect fluctuations of staggered flux states and d-wave superconductivity may play

a role in explaining the pseudogap phenomenon. Remarkably, orbital current correlations

which decay rather slowly as power law have been seen in projected d-wave wavefunctions

(Ivanov et al., 2000). These fluctuations are very natural in the SU(2) gauge theory but

are otherwise unexpected. In a related development, a static orbital current state, called

d-density wave, has been proposed to describe the pseudogap on phenomenological grounds

(Chakravarty et al., 2001).

In this review we have focused our attention on the ground state and low-lying excitations

in the underdoped region. Due to the multitude of competing states mentioned above,

much work remains before a full understanding of the pseudogap is achieved. The situation

becomes even worse for doping to the right of the T ∗ crossover line, commonly called the

“strange metal” phase. Here one sees highly anomalous transport properties such as the

linear resistivity which played such an important role in early thinking. While the RVB

theory leads naturally to a crossover from pseudogap to strange metal and to Fermi liquid

as one increases the doping at a temperature above the optimal Tc, the ideas presented

here are no help in understanding the breakdown of Fermi liquid behavior in the strange

metal. Instead of a smooth crossover, many workers ascribe the anomalous behavior to a

quantum critical point which lies in the middle of the superconducting dome (Varma, 1997;

Tallon and Loram, 2000; Varma, 2003). We simply remark that the quantum critical point,

if it exists, is different from any previous examples in that there is no sign of a diverging

correlation length scale in any physical observable, and it is difficult to draw lessons from

past experience even phenomenologically.

Finally, what about phonons? Of course there is some coupling to optical phonons, which

will influence both the phonons themselves – an influence which will change sign with the

phonon wave vector Q, because of coherence factors – and the dispersion of quasiparticles.

But as remarked, the net effect of an optical phonon on d-wave superconductivity will tend

to cancel out over the Brillouin zone. It certainly will not play a controlling role in a system

so dominated by Coulomb repulsion. In any case, phonon effects on electron self-energies
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will tend to be renormalized downwards by the square of gt, as we pointed out before.

We close by remarking that great strides have been made in the discovery of un-

conventional superconductors since 1986. Today, non-s-wave pairing states are almost

commonplace in heavy fermions, organic superconductors, and in transition metal oxides.

Even time reversal symmetry is not sacrosanct (see the review on Sr2RuO4 by MacKenzie

and Maeno, 2003). The discovery of high Tc has opened our eyes to the possibility that

superconductivity is an excellent choice as the ground state of a strongly correlated sys-

tem. This may be the most important message to be learned from this remarkable discovery.
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