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Abstract

Systems with many degrees of freedom are notoriously hard to grasp intuitively
as well as capture mathematically. Thermodynamics and statistical mechanics
ideas allowed for a leap in the understanding of such complex systems at equilib-
rium over a century ago. Despite this success, little is known when our system
is taken out of equilibrium. Moreover, most of the knowledge concentrates on
system driven slightly out of equilibrium.

In the last 15 years, the macroscopic fluctuation theory was shown to be a
successful description of out of equilibrium diffusive systems. It was shown to
successfully capture the behavior of the few solvable models in the field. In this
Thesis, I will focus on the study of two properties of diffusive boundary driven
systems within the scope of the macroscopic fluctuation theory.

The first, current fluctuations, allows intuitive understanding of the physics
governing the system through the noise statistics of the steady state. Generally,
calculating the current fluctuations is hard. However, a clever guess, known
as the additivity principle, allows to obtain analytically an expression for the
current fluctuations. This Thesis presents a sufficient and necessary condition
for the validity of the additivity principle guess. Moreover, assuming the validity
of the additivity principle, the universality of current fluctuations is shown for
systems of arbitrary geometry.

The second property discussed is the density correlations. While in equilib-
rium - away from a phase transition, correlation functions are known to decay
exponentially, for systems driven out of equilibrium, correlation functions are
generically long ranged. Using known results for diffusive classical systems, it is
shown that transport in disordered quantum systems can also be studied using
the macroscopic fluctuation theory. Moreover, an exact correspondence between
classical processes and some quantum processes is found.
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List of Symbols

α, β scaling exponents

ρ̄ the denity profile solution under the AP

F̄# numerical value of the Fano factor

F̄ ? evaluation of the Fano factor

δρ density fluctuation

δj current fluctuation

δs2
AP the integrand of the variation of the action under the AP

δV A voltage drop

∆ a Laplacian

∆−1 the inverse Laplacian operator

η a white noise term

γ a complex number

ρ̂ density profile

v̂ a vector of density and momentum fluctuations

λ the cumulant generating function parameter

C the complex plain

x A position vector in d dimensions

F the large deviation functional

G a pressure functional

H a Hamiltonian

Hρρ Second functional derivative of H with respect to ρ
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Hpρ Second functional derivative of H with respect to p and ρ

Hpp Second functional derivative of H with respect to p

L Lagrangian density
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Chapter 1

Introduction

Statistical mechanics and thermodynamic ideas proved successful enough, that
their use is ubiquitous in every field of exact science. This allows to hide the fact
that most processes are taking place out of equilibrium, where only a few and
limited results are known. Spanning from living biological systems, geophysical
processes in the earth’s core, gel physics and the evolution of the universe itself,
the study of equilibrium physics is limited to building clever and simple models
without any unifying theory. Despite the clear interest, the field is lacking not
only in an encompassing theory on the scale of statistical mechanics or thermo-
dynamics, but also in a clear definition of its boundaries. A major step towards
both these goals and one of the prominent successes of mathematical physics
has been the formulation of the macroscopic fluctuation theory (MFT). The
MFT, successfully describes the macroscopic fluctuations in the non-equilibrium
steady state, thus allowing to account for various important phenomena, e.g.
current fluctuations, non-equilibrium density correlations, emergence or decay
of rare fluctuations, etc. The fundamental formula of the MFT is the prob-
ability of observing a current j (x, τ) and density ρ (x, τ) fluctuations in an
out-of-equilibrium system, within some finite time window.

The general notion one pertains is that out of equilibrium physics is model
dependent and looking for universal behavior is doomed to failure. In this
Thesis, we will focus on boundary driven processes within the framework of the
MFT. Using the MFT, we analyze problems from a general perspective, later
applying them to specific models. This allows to derive universal results as
well as understanding generic behavior. Moreover, the application of general
results allows to understand that the MFT captures the behavior of mesoscopic
systems, so far not considered within the scope of the MFT.

The outline for this Thesis is the following.
In Chapter 2, we uses a Langevin like approach to derive the MFT. This al-

lows to describe the steady state current and density fluctuations. The probabil-
ity to observe such fluctuations is given in terms of an action, like the description
with a Lagrangian formalism.

In Chapter 3, we use the MFT to characterize the current fluctuations, where

7



8 CHAPTER 1. INTRODUCTION

one is interested in the probability of observing an atypical current during a large
time window. Taking advantage of a corresponding Hamiltonian description of
the MFT, we are able to formulate a criterion for dynamical phase transitions
in current fluctuations. These phase transitions show explicit breaking of time
translational symmetry. Since the observation of a macroscopically atypical
current is exponentially unlikely for large systems, we generally do not expect to
observe such dynamical phase transitions except in the case of critical systems.

In Chapter 4, the results of Chapter 3 are used to show that in the case no
explicit breaking of time translational symmetry is found, current fluctuations
are universal with respect to the geometry of the system and we recover a
generalization of Kirchhoff rules for resistors/capacitors for current fluctuations.
This generalization expands potential theory beyond the mean current.

In Chapter 5, it is shown that using the Langevin approach, the MFT can
be shown to successfully describe transport in models of mesoscopic disordered
quantum systems. We present two such examples of mesoscopic processes where
there is a classical analog process.



Chapter 2

The Macroscopic
Fluctuations Theory

The purpose of this mathematical introduction, is to derive the MFT expression
for the probability distribution using a Langevin equation for diffusive processes.
One can also derive the probability distribution using first principles in two
different approaches [1, 2], however, for our purpose, the Langevin method is
preferable. Let us restrict ourselves to a one-dimensional system for the sake of
simplicity. A generalization for higher dimensions is straightforward. Consider a
lattice gas, such that ni (t′) , i ∈ 1, . . . , L denote the time-dependent occupancies
of the L� 1 sites of the system evolving in the time interval [0, t]. Throughout
this text, we consider only non-dissipative dynamics, such that particles may be
created or annihilated only at the boundaries. The system may be driven out of
equilibrium by initial conditions, or by fixing boundary conditions, e.g. periodic
boundary conditions or fixed density at the boundaries. Here, we wish to focus
on the latter case. The coupling of the system to two reservoirs proves useful
in the formulation and understanding of the Langevin equation. To compose
a macroscopic picture, one needs to account for the macroscopic observables.
In the simplest case (one species of particles), the observables are the density
profile ρi (t) and the particles flux Qi (t) at site i in the time window [0, t].
The continuity equation reads ∂tρi (t) = −∂iji (t), where ji (t) = ∂tQi (t) is
the current. However, to obtain a consistent diffusive macroscopic picture, we
introduce the rescaled coordinates x = i/L and τ = t/L2 such that in the
large system size L → ∞ and large times t → ∞ limits, we keep t/L2 →
const. It is therefore convenient to define a rescaled density ρ (x, τ) = ρi (t)
and particle flux Q (x, τ) = LQi (t) such that the rescaled continuity equation
becomes ∂τρ (x, τ) = −∂xj (x, τ).

For such a system, coupled to two reservoirs with fixed densities ρl,r at
the right (left) boundary1, we assume the existence of a steady state with a
corresponding steady state density profile ρs (x) and steady state current Js.

1This fixes the boundary conditions ρ (x = 0, τ) = ρl, and ρ (x = 1, τ) = ρr ∀τ .

9



10 CHAPTER 2. THE MACROSCOPIC FLUCTUATIONS THEORY

We further assume Fick’s law, Js = −D (ρs) ∂xρs. Applying the continuity
equation

∂τρ = −∂xj (2.1)

allows to identify the diffusion coefficient D. The diffusion D typically depends
on the density profile when the process includes interactions between the parti-
cles (see [3] for an example).

Next, we build on Fick’s law, and describe a current and density fluctuation
j (x, τ) , ρ (x, τ) using a Langevin equation

j(x, τ) = −D (ρ (x, τ)) ∂xρ (x, τ) +

√
σ (ρ (x, τ))

L
η (x, τ) , (2.2)

with a weak (i.e. 1/
√
L) noise, where η is a white noise term such that{

〈η (x, τ)〉 = 0
〈η (x, τ) η (x′, τ ′)〉 = δ (x− x′) δ (τ − τ ′) ,

and σ (ρ) is its strength. Here, 〈·〉 denotes averaging with respect to the steady
state distribution (yet to be defined). It is not very convenient to work with the
Langevin equation. Therefore, it is useful to obtain a path integral formulation
using the Martin-Siggia-Rose procedure [4]. It allows to write the (steady state)
probability distribution to observe a density and current fluctuation during a
time window

[
0, t/L2

]
, namely

Pt ({j, ρ}) ∼ exp

[
−L
ˆ 1

0

dx

ˆ t/L2

0

dτ L (j, ρ)

]
(2.3)

with

L (j, ρ) =
(j +D (ρ) ∂xρ)2

2σ (ρ)
, (2.4)

subjected to the continuity equation ∂τρ+∂xj = 0. It is noteworthy to mention
that D and σ are not independent but obey the Einstein relation σ/2D = χ (ρ),
where χ is the equilibrium compressibility. It is a surprising relation since D
and σ as defined, describe the far from equilibrium fluctuations in the system.
The Einstein relation also allows to identify σ as the conductivity of the system
in the corresponding case.

One may also consider applying a microscopic asymmetry between the right/left
hopping rates E/2L (see for example Figure 2.1). Using fluctuation-dissipation
relation, one can show that the Langevin equation (2.2) rewrites

j(x, τ) = −D (ρ (x, τ)) ∂xρ (x, τ) + σ (ρ (x, τ))E +

√
σ (ρ (x, τ))

L
η (x, τ) . (2.5)

Therefore, in the path integral (2.4) becomes

L (j, ρ) =
(j +D (ρ) ∂xρ− σE)2

2σ (ρ)
. (2.6)



11

Figure 2.1: In this microscopic model, we have L sites. We introduce symmetric
jump rates wi→j between neighboring sites i and j, where wi→j do not depend
on the direction of the jump. We also include an asymmetric rate, rE = E/2L
which increases the jump rate to the right (for positive E) and decreases the
rate to the left.

In the above, we have derived the probability to observe a fluctuation in an
out of equilibrium system. This is the main result of the MFT, and while it was
rigorously proven for lattice gas models [5, 6, 7], its range of validity seems to
extend beyond that case [8, 9, 2]. In the next Chapter, we will focus on cur-
rent fluctuations, an important quantity used to characterize out of equilibrium
systems. Nevertheless, it must be emphasized that the MFT is not limited to
calculation of current fluctuations [10, 11, 12, 13, 14, 15]. This will be developed
in the next chapters.
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Chapter 3

Current Fluctuations

In this Chapter, we take advantage of a resulting time translational symmetry in
order to evaluate the current fluctuations using a Hamiltonian formalism. Using
thermodynamic ideas, we discuss the possibility of breaking the time invariance
symmetry which is interpreted as a dynamical phase transition.

3.1 Current Fluctuations

Among the various applications of the MFT, we will focus here on current
fluctuations for boundary driven systems. Current fluctuations define a measure
of the distance of an atypical current from the steady state and provides useful
information about the physics of the system [16]. We will present a way to
analytically evaluate the current fluctuations.

We define by Q the number of particles flowing during a time window[
0, t/L2

]
, from the left hand side reservoir to the right hand side reservoir.

In our macroscopic language, one can obtain Q using

Q = L2

ˆ
dxdτ j (x, τ) , (3.1)

where we have assumed that no accumulation of particles takes place in the bulk
(otherwise see [17, 18]). In the long time limit, one assumes a large deviation
principle for the probability distribution Pt (Q),

Pt (Q) ∼ e−tΦ(Q/t), (3.2)

where Φ, known as the large deviation function (LDF), is a scaling function
of Q/t [19]. To obtain a formal expression of Φ, we use the MFT probability
distribution (2.3), and sum over all possible fluctuations {j (x, τ) , ρ (x, τ)} that
satisfy (3.1) and the continuity equation (2.1), namely

Pt (Q) ∼
ˆ
DjDρ exp

[
−L
ˆ
dxdτL (j, ρ)

]
δ

(
Q− L2

ˆ
dxdτ j

)
δ (∂τρ+ ∂xj) .

(3.3)

13



14 CHAPTER 3. CURRENT FLUCTUATIONS

For a large system size L � 1, we can use a saddle point approximation to
evaluate (3.3). Thus, we find that there is an optimal fluctuation {j, ρ} that
dominates Pt (Q). However, due to the two constraints, i.e. the integrated
current (3.1) and the continuity equation (2.1), finding the optimal fluctuation
{j, ρ} is a hard minimization problem. The additivity principle (AP), proposed
by Bodineau and Derrida [20], assumes that this dominant density fluctuation is
time-independent and that the optimal current fluctuation has a fixed1 J = Q/t.
It is straightforward to verify that the AP solution satisfies the two constraints
(2.1),(3.1) such that the minimization problem becomes simpler. From (3.2)
and (3.3) one finds

U (J) =
1
L

inf
ρ(x)

ˆ
dxLJ (ρ, ∂xρ) , (3.4)

with LJ (ρ, ∂xρ) = (J +D (ρ) ∂xρ)2
/2σ (ρ) and U (J) is the LDF under the AP

assumption. It is easy to verify that U (J) is an upper bound for the LDF
Φ (J). The minimization problem in (3.4) is an Euler-Lagrange problem, with
substitution of the usual integration w.r.t. time by an integration w.r.t. space.
Therefore, the optimal density fluctuation ρ̄ (x) is the solution of the Euler-
Lagrange equation δLJ

δρ = d
dx

δLJ
δ∂xρ

, which reads,

∂xxρ̄+
{
D′ (ρ̄)
D (ρ̄)

− σ′ (ρ̄)
2σ (ρ̄)

}
(∂xρ̄)2 +

σ′ (ρ̄)
2D2 (ρ̄)σ (ρ̄)

J2 = 0. (3.5)

Thus, the calculation of the LDF using the AP, boils down to solving (3.5), a
boundary value, second order non-linear ordinary differential equation. This is
a major simplification compared to the original problem2.

Setting aside the mathematical convenience of the AP, the suggested solution
may appear to be an odd guess. This time-independent guess should be com-
pletely unnatural for a system far from equilibrium and constrained to exhibit
an atypical particle flux (that can even be against the direction of the steady
state current). Despite these remarks, the AP assumption proved to be exact
for several important models [20, 22, 23, 24, 25, 26, 27]. It is thus interesting
(and useful) to find a physical interpretation and further justification for the
use of the AP.

Recall that (3.4) and (3.5) are expressions resulting from a Lagrangian for-
malism. Therefore, it is worthwhile to employ the conjugate Hamiltonian for-
malism. The Legendre transform H (ρ,Π) = Π∂xρ−LJ (ρ, ∂xρ), with Π = δLJ

δ∂xρ
gives

H (ρ,Π) =
1

2m (ρ)
[Π− eA (ρ)]2 + V (ρ) , (3.6)

1Since we are interested in the long time limit, we are not concerned with a macroscopically
negligible time scale where the system adjusts itself to the optimal solution.

2Notice that the optimal density profile is symmetric about J → −J . This symmetry is at
the basis of the well known Gallavotti-Cohen relation [21], a benchmark for out of equilibrium
systems.
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where 
m (ρ) = D2/σ

A (ρ) = D/σ

V (ρ) = −e2/σ

e = J.

This Hamiltonian representation allows to formulate the many-body, constrained
and out of equilibrium problem as a single particle problem in a weird potential
and effective mass. Moreover, as the Hamiltonian does not depend explicitly
on the spatial coordinate x, the energy density H is a conserved quantity. This
implies that the AP assumption is merely an assumption about a spatially uni-
form energy of the system. Spatial uniformity of the energy is a consequence of
thermodynamics and characterizes systems at equilibrium. It is therefore useful
to consider thermodynamical tools to address this problem, and to consider the
LDF as an out of equilibrium generalization of a thermodynamic potential [28].
This allows to explore the range of validity of the AP and many more familiar
thermodynamic ideas. Since we have assumed a unique steady state for our
boundary driven system, the AP is valid for J = Js. Therefore, it is plausible
to assume that there is always some finite region for which the AP applies. Far
from the steady state current Js, one may consider a finite Jc, beyond which
the AP is no longer valid. In this case, the energy density H will no longer
be a “constant of motion” as in the Hamiltonian formalism. This leads to a
spatial non-uniform energy distribution which resembles an equilibrium phase
transition. Moreover, the symmetry breaking of the density profiles indicates
a (second order like) phase transition. Thus it is convenient to coin dynamical
phase transitions such a breaking of the AP at some critical current Jc.

3.2 Le Chatelier Principle

The last section implies that it is useful to borrow thermodynamic concepts in
order to gain knowledge of current fluctuations. In thermodynamics, the Le
Chatelier principle allows to discuss the stability of phases. In short, it states
that starting from a system at equilibrium, any fluctuation leads back to the
equilibrium state. This is a restatement of the fact that thermodynamic poten-
tials are convex. The natural generalization for out of equilibrium systems is to
require that the optimal solution of the LDF yields a convex function with re-
spect to all possible fluctuations δj, δρ. Then, to extend the idea underlying the
Le Chatelier principle to the LDF, we require the convexity of

´
dxdτ L (J, ρ̄),

where ρ̄ (x) is the AP solution of (3.5), namely

ˆ
dτdx {L (J + δj, ρ̄+ δρ)− 2L (J, ρ̄) + L (J − δj, ρ̄− δρ)} ≥ 0, (3.7)

where the fluctuations δj, δρ must satisfy the continuity equation ∂τδρ = −∂xj,
the boundary conditions, δρ (x = 0, τ) = δρ (x = 1, τ) = 0 ∀τ , and not to con-
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tribute any excess integrated current; namely
´
dxdτ δj (x, τ) = 0. Mathemati-

cally, the Le Chatelier principle translates into a requirement that the extremal
AP solution (for a time independent density profile), is also a minimal solu-
tion (in the larger space of all the allowed currents and density fluctuations).
In Le Chatelier language, breaking of (3.7) translates into a dynamical phase
transition, as discussed above. In what follows we consider only continuous
dynamical phase transitions, where for some critical current Jc, the optimal
trajectory smoothly changes from the AP solution {J, ρ̄ (x)} to a time depen-
dent one {J + δj (x, τ) , ρ̄ (x) + δρ (x, τ)}. In that case, somewhat analogous
to a second order phase transition, one can expand (3.7) perturbatively for
small fluctuations δj, δρ. This approach proves useful for systems with periodic
boundary conditions, ρ (x = 0, τ) = ρ (x = 1, τ) where the particle number is
conserved [29, 30, 31] and exact simulations confirmed these findings [32, 33].
In [34], it was found that a sufficient and necessary condition for the validity of
the AP in periodic systems corresponds to σ′′ ≤ 034. However, for boundary
driven systems, it seems that this approach leads to a dead end [29]. This is the
result of the spatial non-uniformity in the boundary driven case (as opposed to
the periodic case). Thus, one cannot write (3.7) as a suitable quadratic diagonal
form for a general D and σ.

In thermodynamics, we are used to the fact that choosing the right thermo-
dynamic potential is essential, e.g. calculating the Gibbs free energy vs. the
Helmholtz free energy for black body radiation [35, 36]. This notion turns out
to be just as important for calculating LDFs. Let us define µ (λ), the Cumulant
Generating Function (CGF) for the current fluctuations,

µ (λ) = lim
t→∞

1
t

log
〈
eλQ/L

〉
Pt(Q)

,

where the averaging is with respect to Pt (Q). It is easy to verify that

∂nµ (λ)
∂λn

|λ=0 =
〈Qn〉C
t

,

where 〈Qn〉C is the n-th cumulant. Moreover, using the large deviation principle
(3.2), it is straight forward to verify that µ is a Legendre transform of the LDF
Φ (J) 5

µ (λ) = − 1
L

inf
J
{LΦ (J)− λJ} . (3.8)

It should be clear that the CGF and the LDF contain the same information.
The CGF is a particularly useful tool to study current fluctuations as it relaxes
the integrated current constraint (3.1), and introducing a Lagrange multiplier
p, relaxes the continuity equation constraint (2.1). The CGF can be formulated

3Hereafter the O′ will be used as a differentiation with respect to the density, e.g. σ′ ≡ dσ
dρ

.
4Where only continuous transitions were taken into account.
5The introduced 1/L scaling of λ is to ensure that the CGF µ has the same system size

scaling as the LDF.
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as a minimization problem

µ (λ) =
L

t
inf
ρ,p

ˆ
dxdτ s (x, τ) , (3.9)

with 6

s (x, τ) = p∂τρ−H (3.10)

and
H = D∂xρ∂xp−

1
2
σ (∂xp)

2 (3.11)

with the boundary conditions{
ρ (x = 0, τ) = ρl ρ (x = 1, τ) = ρr

p (x = 0, τ) = 0 p (x = 1, τ) = −λ.
(3.12)

Here, the minimization with respect to ρ and p gives Hamilton-Jacobi like equa-
tions, {

∂τρ = δH
δp

∂τp = − δHδρ ,
(3.13)

with δH
δp = ∂x (D∂xρ− σ∂xp) and − δHδρ = −D∂xxp − 1

2σ
′ (∂xp)

2. Later, it will
prove useful to notice that the first equation in (3.13) is the continuity equation
in disguise. Under the AP, the Hamilton-Jacobi equations become{

0 = ∂x (D∂xρ− σ∂xp)
0 = −D∂xxp− 1

2σ
′ (∂xp)

2
.

(3.14)

So far, it seems that using the CGF formalism simply reformulates the problem,
since instead of solving the Euler-Lagrange equation (3.5), we need to solve
(3.14). Indeed, solving either (3.5) or (3.14) is of the same order of difficulty.
However, retrying the small perturbation approach described in (3.7), produces
useful results.

3.3 Stability of Hamiltonian Systems

Consider an action-like expression

S (ρ, p) =
ˆ
dxdτ s (x, τ) , (3.15)

with s (x, τ) of the form (3.10), for some H, an explicit function of (ρ, p). The
minimization of S with respect to ρ and p gives the (possibly time-dependent)
Hamilton-Jacobi equations {

∂τρ = δH
δp

∂τp = − δHδρ .
(3.16)

6There is an extra term
´
dxdτ λx∂τρ in the CGF, however for current fluctuations and in

the long time limit, this term is negligible, provided particle do not accumulate in the system.
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Any (ρ̄, p̄) satisfying the Hamilton-Jacobi equations (3.16), are only guaranteed
to be an extremal solution. To ensure a minimal solution, we require the con-
vexity of S for any small perturbation (δρ, δp) around the extremal solution
(ρ̄, p̄), namely,

S (ρ+ δρ, p+ δp) + S (ρ− δρ, p− δp)− 2S (ρ, p) > 0.

Hereafter, we evaluate the derivatives of H at the extremal solution (ρ̄, p̄). For
small fluctuations, we require δS2 > 0 for the stability of the extremal solution,
where7

δS2 =
1
2

ˆ
dxdτ

(
δ2H
δp2

δp2 +
δ2H
δρ2

δρ2 + 2
δ2H
δρδp

δρδp− 2δp∂τδq
)
. (3.17)

It is important to note that the first equation of (3.16) is the continuity equation
in disguise, namely δH

δp = −∂xj. This implies that the perturbations (δρ, δp)
are not independent8. Linearizing the continuity equation around the extremal
solution (ρ̄, p̄) gives

∂τδq =
δ2H
δp2

δp+
δ2H
δpδρ

δρ+O
(
δρ2, δp2, δρδp

)
. (3.18)

Inserting (3.18) in (3.17) gives to second order

δS2 =
1
2

ˆ
dxdτ

(
δ2H
δρ2

δρ2 − δ2H
δp2

δp2

)
. (3.19)

We stress again that (δq, δp) are coupled. In order to obtain their explicit
expressions one must solve the set of linearized equations

∂τδq = δ2H
δp2 δp+ δ2H

δpδρδρ,

∂τδp = − δ
2H
δρ2 δρ−

δ2H
δpδρδp

(3.20)

stemming from (3.16). For S to be convex around the (ρ̄, p̄), we require δS2 ≥
0 for all the possible fluctuations that satisfy (3.20). Therefore, a sufficient
condition for the stability of the solution (ρ̄, p̄) is for the integrand of (3.19) to
be positive, namely

δ2H
δρ2 ≥ 0 and δ2H

δp2 ≤ 0. It is not a sufficient and necessary condition as δρ
and δp are coupled through (3.20).

In the case where the extremal solution is time-independent, we consider
the Fourier spectrum of the time-dependent fluctuations δρ (x, τ) and δp (x, τ)
to find a necessary and sufficient condition for the stability of the solution.
Since time is defined on

[
0, t/L2

]
, the Fourier series expansions read δρ =

7Here, all the derivatives and any other expression is to be understood as being evaluated
at the extremal solution (ρ̄, p̄).

8As to be expected form the Lagrangian formalism where the density ρ and current j are
coupled.
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∑
ω e

iωτfω (x) and δp =
∑
ω e

iωτgω (x), with the discrete frequencies ωm =
2π
t/L2m, for m ∈ Z. The linearized equations (3.20) become

iωfω = Hppgω +Hpρfω,
iωgω = −Hρρfω −Hpρgω,

(3.21)

with9

Hpp = δ2H
δp2 ,

Hρρ = δ2H
δρ2 , Hpρ = δ2H

δpδρ .

One can rewrite (3.21) as a linear eigenvalue problem,

H̄v = iωv̂, (3.22)

for v̂ =
(
fω
gω

)
and H̄ (ρ̄, p̄) =

(
Hpp Hpρ
−Hρρ −Hpρ

)
. Using the equalities

´
dτ δq2 =

∑
ω>0 |fω|

2 and,
´
dτ δp2 =

∑
ω>0 |gω|

2, allows to rewrite (3.19)
as δS2 =

∑
ω>0 δs

2
ω, with

δs2
ω =

1
2

ˆ
dx

(
δ2H
δρ2
|fω|2 −

δ2H
δp2
|gω|2

)
. (3.23)

Now, we can formulate a sufficient and necessary condition for the convexity of
S. S is convex about the extremal solution (ρ̄, p̄) if and only if δs2

ω ≥ 0 for any
solution (fω, gω) of (3.21) and ∀ω > 0.

Proof: Let us assume that δs2
ω ≥ 0 for any solution (fω, gω) of (3.21) and

∀ω > 0. Then, necessarily, δS2 ≥ 0 for any fluctuation (δρ, δp) that
satisfies (3.20) and (ρ̄, p̄) is a minimal solution. Conversely, if there exists
a mode ω0, such that for the solution (fω0 , gω0) of (3.21) δs2

ω0
< 0, then,

one can choose δρ = eiω0τfω0 + e−iω0τf?ω0
and δp = eiω0τgω0 + e−iω0τg?ω0

so that δs2
ω = 0 for any ω 6= ω0. Therefore, this fluctuation leads to a

value of the action lower than the extremal (ρ̄, p̄) solution, though not
necessarily a new minimum.

3.4 Validity of the Additivity Principle

The general stability conditions derived in the previous section provide the
theoretical framework needed to understand the validity of the AP. In the case
of the MFT, H is given by (3.11). So, the quadratic diagonal form (3.19) is
δS2 = 1

2

´
dxdτ δs2

AP , with1011,

δs2
AP =

D′0σ
′
0 −D0σ

′′
0

2D0
(∂xp̄)

2
δρ2 + σ0 (∂xδp)

2
. (3.24)

9Notice that Hpp,Hpρ,Hρρ are evaluated at (ρ̄, p̄) and are differential operators, which
may in principle include spatial derivatives or non-linear functions of ρ̄, p̄.

10the zero subscript denotes evaluation at the AP solution D0 = D (ρ̄).
11Notice that now the variation of the action with respect to δp, has to be written with

∂xδp.
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It is then straight forward to see that a sufficient condition for the validity of
the AP becomes

D′0σ
′
0 ≥ D0σ

′′
0 . (3.25)

A similar condition was found in [37], where it was shown that D′σ′ ≥ Dσ′′

for any density profile is a sufficient condition for the validity of the AP. The
sufficient condition (3.25) is less stringent than the one derived in [37], as it
allows to verify the validity of the AP for a specific boundary conditions ρl,r
and for some value of λ. For a more detailed discussion, see the appendix of
[38].

The sufficient and necessary condition for the validity of the AP, expressed
in (3.21) and (3.23) translates here to requiring δs2

ω ≥ 0 for any solution (fω, gω)
of

iωfω = ∂x (D′0∂xρ̄fω +D0∂xfω − σ′0∂xp̄fω − σ0∂xgω)
iωgω =

(
−D′0∂xxp̄− 1

2σ
′′
0 (∂xp̄)

2
)
fω −D0∂xxgω − σ′0∂xp̄∂xgω,

(3.26)

with the boundary conditions

fω (x = 0, 1) = gω (x = 0, 1) = 0, (3.27)

as the new fluctuation must satisfy the original boundary conditions and with

δs2
ω =
ˆ
dx

(
D′0σ

′
0 −D0σ

′′
0

2D0
(∂xp̄)

2 |fω|2 + σ0 |∂xgω|2
)
. (3.28)

It is to be understood that explicitly solving (3.26) and (3.28) is difficult. How-
ever, one can express (3.26) as a coupled linear ordinary differential equation
which makes it numerically valuable. Therefore, the sufficient and necessary
condition provides a useful numerical tool to prove the validity of the AP for
specific boundary conditions and specific currents (in terms of the conjugate λ
values).

3.4.1 The validity of the additivity principle for systems
under a weak applied field

Considering now applying on the system a weak field E. One can show that H
becomes

HE = −D∂xρ∂xp−
1
2
σ
[
(∂xp)

2 + 2E∂xp
]
,

so that the AP Hamilton-Jacobi equations (3.14) rewrite{
0 = ∂x (D∂xρ− σ [∂xp+ E])

0 = −D∂xxp− 1
2σ
′
[
(∂xp)

2 + 2E∂xp
]
.

(3.29)

One can then show that

δs2
ω =
ˆ
dx

(
D′0σ

′
0 −D0σ

′′
0

2D0

[
(∂xp̄)

2 + 2E∂xp̄
]
|fω|2 + σ0 |∂xgω|2

)
.
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In principle, one can reproduce the previous approach for that case in order
obtain a reformulation of the sufficient and necessary criterion for boundary
driven systems with an applied field E. We notice that the generalization to the
sufficient condition seems non trivial, as we need to also require that (∂xp̄)

2 +
2E∂xp̄ ≥ 0. However, it turns out that in the case of constant E, it is possible
to show that indeed (∂xp̄)

2 + 2E∂xp̄ ≥ 0 for any E through an implicit solution
of (3.29). Defining u = ∂xp̄ + E allows to write the second equation of (3.29)
under the form

du

u2 − E2
= − σ′0

2D0
dx. (3.30)

Next, we define h (x) ≡ −
´
dx

σ′0
2D0

, for a known density profile ρ̄. An in-
tegral of (3.30) is implicitly obtained in terms of h (x) under the form u =
E coth (E h (x)). Therefore, (∂xp̄)

2 + 2E∂xp̄ = E2/ sinh2 (E h (x)) > 0 for any
E and (3.25) remains a sufficient condition for the validity of the AP for any E.

In what follows, we present two straightforward applications of the sufficient
condition (3.25) and the sufficient and necessary condition expressed through
(3.26) and (3.28).

3.5 Applications

3.5.1 The Weakly Asymmetric Exclusion Process

The first immediate application is for the weakly asymmetric exclusion process
(WASEP). To define the WASEP, we consider a lattice gas, where each site
can be occupied by no more than one particle. Particles can hop to empty
neighboring sites with rates 1 ± E/2L, where the plus sign is for a right hand
side jump and the minus for a left hand side jump12 and with L the number of
lattice sites. Macroscopically, we have D = 1 and σ (ρ) = 2ρ (1− ρ) [39]. For
E = 0, the process is known as the simple symmetric exclusion process (SSEP).
The sufficient condition (3.25) immediately shows that the AP is valid for the
WASEP, as well as for the SSEP. While the SSEP is a well known example for a
process that satisfies the AP [20, 37, 40], the validity of the AP in the WASEP
was explored only numerically [27].

It is interesting to note that the WASEP was found to break the AP for
some particular values of E in the case of periodic boundary conditions [34, 33].
We will revisit this point soon enough.

3.5.2 The KMP Process

Another model of interest is the KMP process13 [8]. It is a heat transfer model
between two thermal baths (instead of particle reservoirs), where one can ex-
plicitly prove Fourier’s law. This process does not correspond to the lattice

12This of course defines the WASEP for a 1d case.
13after Kipnis, Marchioro and Presutti.
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gas picture presented in Chapter 2. However, it turns out that a macroscopic
description is possible with D = 1 and σ = 2ρ2, where the temperatures of
the thermal baths is given by ρl,r ∈ [0,∞). A simple calculation shows that
the sufficient condition (3.25) is not satisfied. Therefore, we must explore the
sufficient and necessary condition numerically. To do that, one needs to solve
(3.14) to obtain the AP solution in the CGF formalism. Secondly, one needs to
solve (3.26). Numerically, it is advantageous to bring (3.26) to the form of two
coupled differential equations, namely

∂xxfω = Affω +Bf∂xfω − iω σ0
D2

0
gω + Cf∂xgω

∂xxgω = σ′0D
′
0−D0σ

′′
0

2D2
0

(∂xp̄)
2
fω − iω

D0
gω − σ′

D0
∂xp̄∂xgω,

(3.31)

with 
Af = 1

D0
iω +

{
D′20 −D

′′
0D0

D2
0

}
(∂xρ̄)2 +

{
D0σ

′′
0−D

′
0σ
′
0

D2
0

}
∂xρ̄∂xp̄.

+ 1
2D3

0

{
2D′0σ0σ

′
0 −D0σ

′2
0 −D0σ0σ

′′
0

}
(∂xp̄)

2

Bf = 1
D0

(σ′0∂xp̄− 2D′0∂xρ̄)

Cf = σ′0
D0
∂xρ̄− σ0σ

′
0

D2
0
∂xp̄.

The linearity of (3.31) lead to degenerate solutions. Therefore, due to the bound-
ary conditions (3.27), f = g = 0 is a trivial solution. In order to obtain a useful
solution, we assume the existence of a non-trivial solution

(
f̃ω, g̃ω

)
. Due to the

linearity of (3.31), there exists some γ ∈ C such that
(
f̄ω, ḡω

)
=
(
γf̃ω, γg̃ω

)
is

also a solution of (3.31), and
(
f̄ω, ḡω

)
satisfy the boundary conditions{

f̄ω (x = 0) = 0 f̄ω (x = 1) = 0
ḡω (x = 0) = 0 ∂xḡω (x = 0) = 1.

(3.32)

This change of boundary conditions, allows to numerically search for the solution(
f̄ω, ḡω

)
, avoiding the trivial solution. If

(
f̄ω, ḡω

)
satisfies ḡω (x = 1) = 0, then

it is also a solution to the boundary value problem f̄ω (x = 0) = f̄ω (x = 1) =
ḡω (x = 0) = ḡω (x = 1) = 0. Conversely, if ḡω (x = 1) 6= 0, then the trivial
solution is the only solution.

Employing this numerical procedure, we find only trivial solutions for a large
range of currents J ∈ [−14, 30] for the boundary conditions ρl = 1, ρr = 214

(see Figures 3.1,3.2 and 3.3 ). The values J (λ) are found using the relation
∂λµ (λ) = J derived from (3.8) with µ (λ) is evaluated at the AP solution. This
implies that the AP is valid for any current for the KMP process. We stress
that we are able to verify this for a noticeably larger range of currents then was
previously obtained via a direct simulation [22, 23, 24, 26]. It is also noteworthy
that for periodic boundary conditions, one finds a breaking of the AP at some
current J , sufficiently far (but of the same order of magnitude) from the steady
state [34, 31, 32]. Together with the example of the WASEP, it would seem to

14As well as for other boundary conditions
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Figure 3.1: The λ to J conversion for the KMP model, with ρl = 1, ρr = 2.

Figure 3.2: Stability analysis for the KMP model, with ρl = 1, ρr = 2. We
show here |gω (x = 1)| as a function of the current J for different values of ω.
The full lines indicate |gω (x = 1)| and the dashed lines, the estimated errors
on evaluating gω. The values of |gω (x)| are decreasing to zero, but they never
reach it as the numerical error is much too small.
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Figure 3.3: Stability analysis for the KMP model, with ρl = 1, ρr = 2.
|gω (x = 1)| is displayed as a function of the frequency ω for different values
of λ. The full lines indicate |gω (x = 1)| and the dashed lines, the estimated
errors on evaluating gω. The values of |gω (x)| are decreasing to zero, but they
never reach it as the numerical error is much too small.

suggest a trend where boundary driven processes are more AP stable than the
same process on a ring geometry. We make this consideration more precise in
the next section.

3.6 Remarks on dynamical phase transitions

So far, we have considered a continuous breaking of the AP solution. Namely,
if there exists some critical value Jc, beyond which the AP is no longer valid,
then the solution changes continuously at the breaking. This seems to corre-
spond to a second order phase transition. One can also consider first order
phase transitions, where at Jc, there are two (or more) different solutions to the
minimization problem (3.3) with the first being the AP solution. Since (3.5) is
a boundary value nonlinear differential equation, there is no guarantee for the
existence of a unique solution. Therefore, it is possible that the second solution
is also time-independent. Using the Hamiltonian formalism (3.6), this problem
becomes equivalent to finding degenerate classical trajectories (in one spatial di-
mension) a classical particle takes from a point ρl to a point ρr at the normalized
“time” x ∈ [0, 1]. An example for such degeneracies, was shown in [41], however
the macroscopic model does not follow any microscopic physical picture. The
present equivalence allows to give a physical meaning to such degeneracies.

Another possibility for a first order transition is to find, aside from the AP
solution, a second time-dependent solution for the Hamilton-Jacobi equations
(3.13). Such a time-dependent solution give rise to a transfer of Q particles
between the reservoirs in an efficient way that competes with the AP solution.
Quantitatively, the options are limited. One such mechanism is for the particles
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to flow between the reservoirs in “big” bunches, at some velocity. The bunched
are separated by a macroscopic distance15, which translates to a macroscopic
time delay α t

L2 between the arrival of each bunch to a reservoir, where they are
being depleted. We can also consider a mechanism where the particles bunch to
a single group, that flows with some velocity between the reservoirs. Building
up on one end and being depleted on the other.

Back to second order phase transitions. We recall that for the KMP process
and the WASEP, a dynamical phase transition was found for a ring geometry
(periodic boundary conditions), but not for boundary driven processes. We
propose that this condition is rather general, and one can expect that boundary
driven processes are more stable than processes on a ring. The mechanism
found for these second order phase transitions [31, 34, 42, 37], is a traveling
wave, carrying a bulk of particles, responsible for the current. Periodic systems
generate this wave once, and then propagate it. For boundary driven systems,
there is an additional cost in the LDF for such a traveling wave, since it is created
and destroyed a number of times, scaling like t, at the boundaries. Therefore,
this mechanism is less likely in boundary driven systems. Mathematically, this
condition can be proven exactly for certain processes. For periodic systems, it
was found that a necessary condition for the breaking of the AP is σ′′ > 0.
For a process with D′σ′

D > σ′′ > 0, this implies a phase transition for a ring
geometry. However, for a boundary driven process, the sufficient condition
(3.25) is satisfied, and the process is stable. Moreover, even for D′σ′

D − σ′′ not
strictly positive, this does not imply a phase transition for the boundary driven
process, since (3.25) is a sufficient condition only. Prominent examples for this
are the KMP process which is unstable for periodic systems, but stable for
boundary driven processes, as well as the WASEP.

15To be discernible in the MFT and different from the AP solution.
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Chapter 4

Universal Current
Fluctuations

Building on the stability of the AP assumption, we discuss in this chapter the
universality of current fluctuations for arbitrary geometries. The CGF is found
to be universal up to a scaling factor, depending only on the geometry of the
system. This scaling factor is shown to be the effective capacitance of the
system, just like in potential theory. In the last section, we provide numerical
evidence for our claim for the SSEP. The analytical proof in Section 4.1 mostly
follows [43].

4.1 Universality of the CGF

We are interested in finding the probability to observe Qt particles flowing from
reservoir A to reservoir B, after a long time t. Assuming that particles cannot
accumulate in the system, we obtain that asymptotically Qt = QAt = QBt for
t → ∞, where QAt

(
QBt
)

are the number of particles that flowed from (to) the
reservoir A (B) into (from) the system. For an arbitrary graph with vertices i ∈
G, coupled to two reservoirs i = A,B at fixed densities ρa, ρb correspondingly,
we define qi,j (t) to be the number of particles that flowed from site i to site j (if
they share a link) after time t. Moreover, we introduce a potential like function
Vi which is constraint at A,B to VA = 1 and VB = 0. Asymptotically for a
large time t,

Qt =
1
2

∑
i,j

(Vi − Vj) qi,j (t) . (4.1)

27
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Using that ni (t)− ni (0) =
∑
i∼j qi,j (t)1, with ni (t) being the number of par-

ticles at site i and time t, we rewrite (4.1) as

Qt =
∑
i

Vi
∑
j∼i

qi,j (t) = VA
∑
j∼A

qA,j (t)+VB
∑
j∼B

qB,j (t)+
∑
i6=A,B

Vi (ni (t)− ni (0)) .

(4.2)
We obtain that asymptotically, Qt =

∑
j∼A qA,j (t) = QAt , since we choose

VA = 1, VB = 0 and the third term in (4.2) is bounded as the graph can
only accommodate a finite number of particles, while Qt, QAt scale linearly in
time. In what follows, we choose V to be the solution of the Laplace equation
∆V = 0, with the boundary conditions VA = 1, VB = 0, which translates to
∆Vi =

∑
j∼i Vj − Vi.

Extending the MFT to d dimensions changes the fundamental formula (2.3)
to

Pt ({j, ρ}) ∼ exp−Ld
ˆ 1

0

ddx
ˆ t/L2

0

dτ L (j, ρ) , (4.3)

with
Qt = L2

ˆ
dτddx∇v (x) · j (x, τ) ,

as a continuous version of (4.1), where v (x) is the continuous version of Vi .
The CGF can be written as

µG (λ) =
Ld

t
inf
ρ,p

ˆ
ddxdτ s (x) , (4.4)

with
s (x) = −D∇ρ∇p+

1
2
σ (∇p)2

,

where the boundary value of p is now p (x = B) = 0 and p (x = A) = −λ . The
corresponding Hamilton-Jacobi equations under the AP are{

0 = ∇ (D∇ρ− σ∇p)
0 = −D∇2p+ 1

2σ (∇p)2
.

(4.5)

Consider now the AP solution to the corresponding one dimensional problem,
ρ̄ (x) , p̄ (x). It is easy to check that ρ̄ (v (x)) , p̄ (v (x)) is the AP solution to (4.5)
provided ∆v (x) = 0, for VA = 1, VB . A similar idea was used in [2]. Using this
solution in (4.4), we find that

µG (λ) = Ld−2

ˆ
ddx (∇v (x))2

(
−D (ρ̄)∇ρ̄∇p̄+

1
2
σ (ρ̄) (∇p̄)2

)
. (4.6)

A useful integral identity shows that
ˆ
dx v (x)n (∇v)2 =

1
n+ 1

ˆ
dx (∇v)2 =

ˆ 1

0

dxxn ×
ˆ
dx (∇v (x))2

.

1i ∼ j denotes summing over all the neighbors j of i.
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Therefore for any smooth function s̃ (x), we find
ˆ
ddx s̃ (v (x)) (∇v (x))2 =

ˆ 1

0

dx s̃ (x)×
ˆ
ddx (∇v (x))2

, (4.7)

where we assumed s̃ can be written as a polynomial series in x. Using (4.7) for
(4.6), we find

µG (λ) = Ceff × µ1 (λ) , (4.8)

where

µ1 (λ) =
ˆ 1

0

dx

(
−D (ρ̄ (x)) ∂xρ̄ (x) ∂xp̄ (x) +

1
2
σ (ρ̄ (x)) (∂xp̄ (x))2

)
is the solution to the one dimensional problem and Ceff =

´
ddx (∇v (x))2 is a

geometrical factor, independent on the system dynamics D,σ or on the values
of λ, ρa, ρb. It is tempting to understand (4.8) and particularly Ceff in terms of
potential theory and of effective capacitance for the system. This is the content
of the next section.

4.2 Energy Forms

For a network of capacitors, coupled to a voltage drop δV , it is well known
that one can replace the entire network by a single effective capacitor. One way
to find the value of the effective capacitance of the system, is by using energy
forms. We consider the same graph G as before, where at each bond connecting
vertices x and y, lies a capacitor cxy. The energy of the bond is given by
1
2cxy (V (x)− V (y))2. Therefore, one may write the energy of the network as a
minimization problem

EG = min
V

1
2

∑
x∼y

cxy (V (x)− V (y))2
,

where V is constrained only at the boundaries A,B. Simple dimensional anal-
ysis shows that EG = 1

2Ceff (δV )2, where Ceff is a function of all the {cxy}x∼y.
Therefore, Ceff here turns out to be the effective capacitance of the capaci-
tors system. Setting all the cxy = 1, δV = 1, allows to recast the minimiza-
tion problem of EG, as the Laplace equation ∆V =

∑
x∼y V (x) − V (y) = 0,

with the boundary conditions VA = 1, VB = 0. We thus obtain that2 EG =
1
2CeffδV

2 = 1
2

∑
x∼y (V (x)− V (y))2. The continuous version amounts to solv-

ing the Laplace equation ∆v (x) = 0, with EG/ 1
2δV

2 = Ld−2
´
ddx (∇v (x))2 =

Ceff. Therefore, Ceff is the effective capacitance of the system.
For the MFT, the capacitance is basically the inverse of the effective system

size Ceff = 1/L? for a 1d system. Due to the similarity with potential theory, we
expect the Kirchhoff laws to apply as a method to find the effective conductance.

2Where the 1
2

factor is due to double counting.
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Figure 4.1: The graphs of the first group. (a) the Sierpinski gasket (b) the
square lattice (c) the cubic lattice. All the graphs are coupled to the reservoirs
A and B through a single bond. A bond indicates that a particle can hop
between the vertices with rate 1. Vertices indicate sites.

Connecting systems in series and in parallel was already shown to follow the
usual Kirchhoff rules of adding capacitors in series and parallel in [20]. Here it
was shown for the first time that the analogy is exact. As a last remark, let
us stress that Ceff follows Kirchhoff laws only if the system is coupled to each
reservoir through a single bond. If this is not the case, potential theory still
gives the correct results. While Kirchhoff rules are generally not satisfied, we
can expect that for large enough systems, they still hold if the connection of
the system to the reservoirs is through a finite (and small) number of bonds.
In the next section, we present numerical data supporting our claims as well as
a discussion on the finite size corrections to the hydrodynamically exact result
and some possible generalizations.

4.3 Numerical Results

In this section, we provide numerical evidence for the universality of currents
for the SSEP using the method explained in appendix A. We present the results
for a few distinct geometries. We also discuss finite size corrections and possible
generalizations.

We present the first few cumulants of the current fluctuations for two groups
of graphs.

1. The Sierpinski gasket, a square lattice and a cubic lattice, depicted in
Figure 4.1.

2. A set of three fractals known as diamond fractals, depicted in Figure 4.4.

Each reservoir is connected to the graph through one bond. The reservoir
densities are set to be source & drain. Through the numerical method described
in appendix A, the mean current I, the Fano factor F , defined as the ratio of the
second and first cumulants, and the second Fano factor F2, defined as the ratio
of the third and second cumulants, have been obtained. For the first group,
according to Kirchhoff rules, we expect the effective number of sites L? to go
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Figure 4.2: The convergence of the Fano factor F (a), and of the second
Fano factor F2 (b), are presented for the first group of geometries. F and
F2 are plotted versus the inverse effective number of sites for a finite graph
and compared with exact results for the 1d (linear) chain. The plots indicate
convergence to the expected values F = 1/3 and F2 = 1/5.

to infinity. Comparing with the exact results for a 1d chain [40], we expect the
Fano factor to converge to 1/3 for (effective) small capacitance and the second
Fano factor to converge to 1/5 (see Figure 4.2). We expect that the finite
size corrections for a finite system depends on the effective number of sites.
The MFT cannot account for 1/L corrections and indeed for a 1d chain, the
exact result corresponds to this 1/L correction [40]. For different geometries,
nothing guarantees that the corrections will not be smaller, which is what we
find (Figure 4.3). However, the scaling of the corrections are expected to be the
same for the first and second Fano factor. For the range of values we were able
to explore numerically, it seems to be indeed the case (Table 4.1). We therefore
deduce that the finite size corrections are not universal, which is to be expected.

For the second group of graphs, Kirchhoff rules imply that L? → const. So
that F and F2 do not converge to 1/3 and to 1/5. Therefore, it is difficult to
ascertain any power law corrections, as L? spans over a small region. The results
for the convergence of F, F2 of the second group are summarized on Table 4.2,
where the simulation values are presented together with the expected values
using Kirchhoff rules.
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Figure 4.3: A log-log plot of the finite size corrections for the Fano factor F
convergence to 1/3 (a) and the second Fano factor F2 to 1/5 (b) versus the
inverse of the effective system size are presented for the first group of geometries.
For large effective system size, we find power law corrections F = 1/3+O (L?α)
and F = 1/3 +O

(
L?β

)
. As expected, α and β are not universal, however, they

seem to satisfy α ≈ β (see Table 4.1).

Table 4.1: Scaling exponents for the finite size corrections. The finite size
corrections to the Fano factor F scale like ∼ L?α, while for F2 they scale like
∼ L?β , with L? the effective number of sites expected from Kirchhoff resistor
rules. From the MFT, one expects that for a linear chain α = β ≤ −1. Moreover,
for any graph, one should expect α = β which seems to be supported by our
findings, considering the low effective number of sites we are able to achieve
numerically. The MFT cannot account for the value of α, β.

Graph α β

Linear chain −0.9441 −0.9399

Sierpinski gasket −2.5385 −2.4433

Square lattice −2.7636 −2.5527

Cubic lattice −2.1639 −1.9326
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Figure 4.4: Graphs of the second group. Each line represents the iteration rule
for the fractal (first to second column) and the full fractal appear in the third
column for (a) Diamond D6,3 fractal, (b) Diamond D6,2 fractal and (c) Diamond
D4.2 fractal. All the graphs are coupled to the reservoirs A and B through a
single bond.
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Table 4.2: Cumulants of the SSEP on the second group graphs. (a) the diamond
fractal D6,2, (b) the diamond fractal D6,2, (c) the diamond fractal D4,2. The
tables read as follows: n is the iteration level; I the current; L# = 1/I is the
numerically evaluated effective number of sites; L? is the theoretical effective
number of sites for Kirchhoff resistor rules, F# is the numerically evaluated
Fano factor; F ? is the theoretical prediction for the Fano factor from Kirchhoff
rules.

The diamond fractal D6,3 (a) in Figure 4.4.(a).

n̂ I L# L? F̄# F̄ ?

2 0.4091 2.4444 2 + (2/3)2 = 2.4444 0.4256 0.4301

3 0.4355 2.2962 2 + (2/3)3 = 2.2963 0.4436 0.4345

The diamond fractal D6,2, (b) in Figure 4.4.(b).

n̂ I L# L? F̄# F̄ ?

2 0.2353 4.2499 2 + (3/2)2 = 4.25 0.3573 0.3968

3 0.1860 5.3763 2 + (3/2)3 = 5.375 0.3442 0.3856

The diamond fractal D4,2 (c) in Figure 4.4.(c).

n̂ I L# L? F̄# F̄ ?

1 0.3333 3 3 0.3889 0.4167

2 0.3333 3 3 0.3845 0.4167

3 0.3333 3 3 0.3833 0.4167

In summary, we find an excellent agreement with the theoretical prediction
given in (4.8). We have probed the finite size scaling for various graphs and
have shown that there are non-universal as expected. We also understand the
behavior of current fluctuations for systems coupled to more than two reservoirs
through Kirchhoff rules, although the results are expected to converge more
slowly [43].



Chapter 5

The MFT and Quantum
Transport

The purpose of this chapter is to demonstrate how the MFT allows to study a
wider class of processes than is currently considered. We use the results obtained
in all previous chapter to argue that the MFT is an appropriate framework to
study the noise and current statistics in disordered quantum mesoscopic con-
ductors (at zero temperature), wave speckles [44, 45], non equilibrium spins in
superconductors [46] and thermal transport [47, 48] to name a few. In the first
section, we show how the Langevin equation at the basis of the MFT can be mod-
ified to address transport problems in disordered quantum processes or waves.
In the second section, we discuss another relevant quantity; namely (out-of-
equilibrium) density correlations. As density correlations are time-independent,
their MFT description under the AP should be exact for mesoscopic systems.
In the third section, we present two examples of a correspondence between clas-
sical and disordered quantum processes and we show that they lead to identical
results, for current fluctuations and (out-of-equilibrium) density correlations. In
the last part, we comment on future directions.

5.1 Langevin Approach to Mesoscopics

In Chapter 2, we discussed the Langevin approach to derive the MFT. Starting
from (2.2), and for a white noise η allows to deduce the probability to observe a
fluctuation. It is clear that (2.2) is a stochastic equation. While the microscopic
evolution of the particles may be deterministic, it is often useful when dealing
with many degrees of freedom to use a stochastic equation. Moreover, the
source of stochasticity (thermal, quantum, disorder, etc.) is immaterial for any
quantity derived from the Langevin equation. In the lattice gas case, one may
consider that the system kept at a fixed, non-zero temperature. Then thermal
fluctuations are the cause of the stochasticity.

It is tempting to try to use the Langevin approach to describe different

35
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out of equilibrium systems, where the stochasticity does not arise from thermal
fluctuations. Let us try and use these ideas to transport of quantum particles,
flowing through a disordered medium at zero temperature. The current can be
induced e.g. by a change of chemical potential, caused by a voltage drop. The
disorder is accounted by quenched scatterers. At the simplest level, we consider
the quantum particles to be non-interacting. Thus, their motion consists of a
series of ballistic motion, occurring between elastic collision events. In the case of
multiple scattering and for weak disorder, it is possible to write the propagation
of the particle using a diffusion equation due to a diagrammatic expansion (see
[44] for a full derivation). The resulting diffusion constant is D = leve/d, where
ve is the group velocity of the particle, d is the dimensionality of the system
and le is the resulting transport mean free path. This description implies that
a large system size L � le is required to observe this diffusive behavior. One
can therefore consider the classical Langevin equation (2.2) to govern the steady
state fluctuations of the density profile and of the current. The conductivity σ
can be obtained from the Kubo formula [44], where the diffusion coefficient D
and the conductivity σ obtain all the relevant quantum information. This is in
essence a semi-classical and coarse grained description of the system. Now, as
the temperature is set to zero, the thermodynamic Einstein relation becomes
[44, 49]

σ/D = e2ν, (5.1)

with ν being the density of states and e is the “charge” of the quantum particle.
Obtaining D and σ, one deduce the Langevin equation. In what follows, we

consider quenched scatterers,{
η (x, τ) = 0
η (x, τ) η (x′, τ ′) = 1

Lδ (x− x′) ,
(5.2)

where the averaging O is with respect to the realizations of disorder. The
probability to observe a density and current fluctuation is1

Pt ({j (x) , ρ (x)}) ∼ exp− t
L

ˆ 1

0

dxL (j, ρ) (5.3)

with

L (j, ρ) =
(j (x) +D (ρ (x)) ∂xρ (x))2

2σ (ρ (x))
.

The purpose of the rest of this Chapter is to present a correspondence between
such disordered quantum processes to classical processes. This analogy is for
processes with identical D and σ2. However, for the classical processes we have
considered so far, time dependence was allowed. Therefore, the correspondence
holds only for quantities where the time dependence does not explicitly manifest

1For the sake of simplicity, we address the diffusion and the conductivity as dimensionless
quantities.

2Up to irrelevant pre-factors.
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itself such as current fluctuations, where the AP holds. Another quantity is the
(out of equilibrium) density correlations function [30, 12, 1]. In the next section,
we shortly summarize how to obtain the density correlations within the MFT
formalism.

5.2 Density Correlations

For out of equilibrium systems, one generically finds long range correlations
[50, 51]. Fortunately, the MFT allows to obtain analytic expressions for different
processes characterized by D and σ. In this discussion, we follow ideas presented
in [12]. We consider 1d systems for simplicity, however, the forthcoming results
can be generalized to all dimensions. We define correlations functions by

Cn (x1, x2, ..., xn) = 〈ρ (x1) ρ (x2) ...ρ (xn)〉 . (5.4)

To evaluate Cn, it is useful to consider first the large deviation functional
F (ρ̂ (x)),

exp [−LF (ρ̂ (x))] = min
j,ρ

ˆ
DjDρ e−L

´
dxdτ L(j,ρ)δ

(
ρ
(
x, τ = t/L2

)
− ρ̂ (x)

)
,

(5.5)
which evaluates the probability to observe a density fluctuation ρ̂ (x) at some
long time t starting from the steady state density profile at a given initial time3.
Using the more convenient Hamiltonian form, leads to

exp [−LF (ρ̂ (x))] = min
ρ,p

ˆ
DpDρ e−L

´
dxdτ p∂τρ−H(j,ρ), (5.6)

where we have suppressed the constraint ρ
(
x, τ = t/L2

)
= ρ̂ (x). A simple use

of analytical mechanics (see [5, 6, 52]), shows that
ˆ
dxH

(
ρ,
δF
δρ

)
= 0. (5.7)

It is also useful to define a pressure functional,

G (h) = max
ρ̂

{ˆ
dx [h (x) ρ̂ (x)]−F (ρ̂ (x))

}
. (5.8)

By Legendre duality, we identify h = δF
δρ̂ and ρ̂ = δG

δh , so that (5.7) implies
ˆ
dx

[
1
2
σ

(
δG
δh

)
(∂xh)2 − ∂xhD

(
δG
δh

)
∂x
δG
δh

]
= 0, (5.9)

recalling that h vanishes at the boundaries. The pressure functional G (h), is a
generating function, namely

Cn =
δnG (h)

δh (x1) δh (x1) ...δh (xn)

∣∣∣∣
h=0

.

3When we consider t→∞, it should be clear that this initial time is not relevant.
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Since F has a minimum for ρs the steady state density profile, one can expand
G to second order in h,

G (h) =
ˆ
dy h (y) ρs (y) +

1
2

ˆ
dy C2 (x, y)h (x)h (y) +O

(
h2
)
.

Expanding also (5.9) up to second order in h, we obtain
ˆ
dx ∂xh

[
1
2
σ (ρs) (∂xh)− ∂x

[
1
2
D (ρs)

ˆ
dy C2 (x, y)h (y)

]]
= 0. (5.10)

Therefore, defining

C2 (x, y) = Ceq (x) δ (x− y) +B (x, y) (5.11)

where
Ceq (x) = D−1 (ρs (x))σ (ρs (x)) (5.12)

defines the equilibrium correlations for the steady state density profile ρs (x),
and B (x, y) defines the out-of-equilibrium correlations. Setting (5.11) in (5.10),
and using integration by parts, one can show that B (x, y) satisfies

R†B (x, y) = a (x) δ (x− y) , (5.13)

where R† is the formal adjoint of R = Rx +Ry4 with{
Rx = D (ρs (x)) ∂xx
Ry = D (ρs (y)) ∂yy

and
a (x) = −∂xx [σ (ρs (x))] .

In the case of quadratic σ and constant D as for the KMP or the SSEP, we
obtain

B (x, y) = − σ
′′

2D
(∂xρs) ∆−1 (x, y) , (5.14)

where ∆−1 (x, y) is the Green’s function of the Dirichlet Laplacian; namely
(∂xx + ∂yy) ∆−1 (x, y) = δ (x, y).

The previous results can be generalized to the correlation function C2 (x,y)
in d dimensions. We recover (5.11), with the equilibrium fluctuations (5.12).
The long range term B (x,y) is still given by (5.13) with x→ x

a (x) = −∂xi
[
σij (ρs (x))D−1

jk (ρs (x))Dkl (ρs (x)) ∂lρs (x)
]

with i, j, k, l running over the spatial directions and R† is the formal adjoint of
R = Rx +Ry with

Rx = Dij (ρs (x)) ∂xi∂xj .

In the following section, we consider two examples in mesoscopic physics,
where application of the MFT formalism reproduces known and new results.

4We choose to symmetrize R. One can also take R = 2Rx to obtain similar results.
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5.3 Applications

5.3.1 Intensity Fluctuations of Coherent Light and the
KMP

In this section, following [45], we wish to study the mesoscopic fluctuations of
the optical transparency of dielectric media which scatter light elastically. The
intensity of the scattered light from an incident coherent light beam fluctuates
as a result of the location of the scatterers. The interference pattern resulting
from the scattering is known as a speckle. We are interested to develop a theory
that accounts for intensity fluctuations in the case of many scattering events
in the medium due to different disorder realizations in the medium. In this
context, O denotes averaging with respect to the different disorder realizations.

We consider the regime λ � le � L, where λ is the wavelength of the
light, le is the mean free path between scattering events and L is the system
size. We assume that the absorption length and the coherence length are much
larger than the system size (no losses and coherent light). The intensity of light,
averaged with respect to disorder realizations Id (r), follows a diffusion equation
(see [44] Chapter 4.7)

−D∆Id (r) = δ (r− r0) , (5.15)

where r0 is the location the incident beam impinges on the scattering medium5.
D is the diffusion coefficient, given by D = lec

d , with c the propagation velocity
of light in the medium and d the dimensionality of the medium. We would like
to write an equation for the fluctuations in the energy flux J. The intensity is
related to the energy density u by Id = cu. The continuity equation for the
energy density reads ∂tu = −∇ · J. Applying (5.15) for the continuity equation
allows to obtain the steady state energy flux J = −D∇u. The energy density
u (r), and the energy flux J are assumed to vary smoothly over distances of
the scale of le. The fluctuations over small scales due the different disorder
realizations can be considered through a Langevin approach in the form of
extraneous fluxes jext (r), namely

J (r) = −D∇n (r) + jext (r) ,

where the jext (r) = 0 follows the steady state intensity flux. From a detailed
microscopic calculation [45] the correlator of the random extraneous fluxes is
given by jext (r) jext (r′) = δijσ (u) δ (r− r′) for |r− r′| � le, where i, j de-
note the spatial directions and σ = 2π

3 leλ
2c2u2. The idea behind this Langevin

formalism, is that the intensity fluxes and densities resulting from random in-
terference of the waves scattered by the randomly distributed scatterers can be
grouped to microscopic fluctuations for |r− r′| < le and diffusive fluctuations
for |r− r′| > le. From this approach, one can go on and obtain the spatial
intensity correlations [45] which was our goal here.

This Langevin approach is no different than the one used to develop the
MFT formalism. So, this coarse grained approach, introduced in [45], describes

5One can generalize this to any incident beam and not jut a point source.
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the fluctuations of the intensity flux and density using the diffusion D and
conductivity σ only. Moreover, we identify that the problem of intensity fluc-
tuations of coherent light in disordered medium, corresponds in the language
of the MFT to the KMP process. At the first level, it allows to obtain the
spatial intensity correlations using the method presented in section (5.2). In
[53], it was shown that the Langevin approach of [45] allows to write the inten-
sity correlation function C2 = Cshort + Clong corresponding to the short range
correlations |r − r′| � le and the long range correlations6. It was found that
Cshort = D−1σ (u (r)) δijδ (r− r′) which exactly matches to the equilibrium
correlations Ceq in the language of the MFT. The long range correlations are
indeed described by the result obtained in (5.14).

Considering this Langevin description, we expect that the MFT formalism
allows to describe other quantities for coherent light aside from intensity cor-
relations. One such example is the calculation of current fluctuations. For the
KMP process, under the AP assumption, the CGF was found to be [54]

µ (λ) =

−
(

sinh−1
√

Ω
)2

for Ω > 0

+
(
sinh−1

√
−Ω
)2

for Ω < 0,

where Ω (λ, ρl, ρr) =
(
1− eλ

) [
e−λρl − ρr −

(
e−λ − 1

)
ρlρr

]
. Moreover, as the

AP is valid for the KMP process (see Chapter 3), the universality of current fluc-
tuations discussed in Chapter 4 should be found also for coherent light. Namely,
for a quasi-one-dimensional sample, the Fano factor is a universal number.

Another elegant outcome of the MFT formalism is the Gallavotti-Cohen
relation [21]. It suggests a relation between a trajectory and its time reversal for
a Markovian system, coupled to two reservoirs. The Gallavotti-Cohen relation
is a natural result of the MFT [1, 28], where in the language of the LDF, it
reads

Φ (J)− Φ (−J) = J

ˆ ρr

ρl

dρ
D (ρ)
2σ (ρ)

. (5.16)

This can be easily seen in the case where the AP applies. The Euler-Lagrange
equation (3.5) admits the same density profile for both J and −J . Therefore,

Φ (J)− Φ (−J) =
ˆ
dx

{
[J +D∂xρ]2

2σ
− [−J +D∂xρ]2

2σ

}

which implies (5.16).
The Gallavotti-Cohen relation generalizes the Einstein relation for systems

completely out-of-equilibrium; namely for J → Js and for ρr → ρl, (5.16)
reduces to the Einstein relation (which can be shown by presenting (5.16) in
the CGF formalism and expanding the CGF to second order in λ for a small
density gradient). We have seen that the MFT allows to describe fluctuations

6The short range term was actually missed in the original paper [45] and later identified
in [53].
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Figure 5.1: Electronic transport through a disordered conductor (schematic).
A potential drop causes a shift in the Fermi level (dashed blue line) of the
left reservoir. Thus free electrons flow through the system from the left lead
(reservoir) to the right lead.

of coherent light in disordered medium. Therefore, the Gallavotti-Cohen rela-
tion must manifest itself for coherent light as well. This is both a beautiful
and a puzzling result. It suggests a time reversal property for the propagation
of coherent light in disordered medium at the microscopic level. However, as
the Gallavotti-Cohen relation generalizes the Einstein relation and fluctuation-
dissipation theorem, a few puzzling questions arise. The concept of Einstein
relation (quantum or classical), imply a connection between an equilibrium and
a slightly out-of-equilibrium states of a system. For coherent light, there is
no concept of “slightly out-of-equilibrium”. Furthermore, usually to achieve
a slightly out-of-equilibrium state, one may apply a field that couples to the
particles creating the current. For light propagation in turbid (scattering) me-
dia, there is no notion of applied field dragging the medium out of equilibrium.
Moreover, the Einstein relation (5.1) suggests that the diffusion and conductiv-
ity are related by the charge. For light, there is no such charge. It is still an
open and ongoing problem.

5.3.2 Electron Transport Through a Disordered Conduc-
tor and the SSEP

The second example we wish to study here is the current fluctuations of electron
transport through a disordered conductor, produced by an applied voltage drop.
The disordered conductor is coupled to two leads with a voltage drop V (Figure
5.1). The classical Johnson-Nyquist noise formula gives a good description of
current fluctuations due to thermal fluctuations. However, at low temperature
thermal fluctuations are small and the main contribution to noise is from the
discreteness of the electrons, quantum fluctuations and from the randomness of
the disorder.

We consider a diffusive quasi-one-dimensional disordered wire, of size L7,

7Typically of the order of a micron.
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Figure 5.2: The Fermi-Dirac distribution function for the two reservoirs with
a chemical potential gradient ∆µ. It is easy to see that for a small chemical
potential gradient, there is a narrow energy band of electrons that contribute
to the transport. Here we choose the left (right) chemical potential to be µl =
0.9,µr = 1.1 such that ∆µ = 0.2 with temperature kBT → 0 in arbitrary energy
units.

small enough such that the electron-electron Coulomb interaction may be dis-
regarded. Namely, the diffusion time τd ∼ l2e

D is small compared to the electron-
electron elastic time τee8, where it is understood that for a diffusive behavior
le � L. We also require that the wire length is short compared to the coherence
length. In these systems the Fano factor, i.e. the ratio between shot noise and
current takes the value F = 1/3 irrespective of the nature of the disorder or the
shape of the wire.

Since we are in the diffusive regime, the steady state current of electrons
is induced by the chemical potential gradient at the leads, due to the poten-
tial drop. One can also express the steady state current J using Fick’s law,
J = −D∇ρ (r) where ρ is the density of the electrons in the metal, D = leve

d

is the diffusion constant and O denotes averaging with respect to the disorder
realization. Here, the diffusion coefficient is independent of the distribution,
where ve is the group velocity of the electrons. Before addressing the fluctua-
tions, let us discuss the boundary conditions on the leads. The electrons at the
leads of the conductor are at equilibrium. Then, the electronic distribution is
the Fermi-Dirac distribution. For kBT/eV → 0, the Fermi-Dirac distributions
of the two leads are different only for a small energy band (see Figure 5.2).
Therefore, only electrons belonging to this energy band contribute to the trans-
port, with distribution fl = 1, fr = 0 at the left and right leads. The density
of electrons at energy ε, is given by ρε = fεgε, where gε is the density of states.

8For systems below τee, the Coulomb interaction gives negligible changes to the trajectory
of the electrons.
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It is useful to consider the steady state current using the distribution function
gradient, namely J = −D̃∇f (r) as gε is spatially independent to a good ap-
proximation, and where D̃ = Dgε. Next, we wish to consider fluctuations. The
fluctuations over small scales due the different disorder realizations, much like
intensity fluctuations of coherent light, can be considered through a Langevin
approach in the form of extraneous currents jext (r)

J (r) = −D̃∇f (r) + jext (r) , (5.17)

where the jext (r) = 0 follows the steady state current. We consider the correla-
tor of the random extraneous fluxes is given by jext (r) jext (r′) = δijσ

(
f
)
δ (r− r′)

for |r− r′| � le, where i, j denote the spatial directions and σ (f) ∝ f (1− f).
This conductivity is conjectured as the simplest way to support the Pauli ex-
clusion [2]. It should be noted that detailed microscopic calculations do not
fully agree with this conjectured conductivity [55]. In the same manner as for
coherent light, the idea behind the Langevin formalism, is that the current
and densities resulting from random interference of the electron wave-function
scattered by the randomly distributed scatterers can be grouped to microscopic
fluctuations for |r− r′| < le and diffusive fluctuations for |r− r′| > le. From this
approach, one can obtain the current fluctuations for this electronic transport.

In the language of the MFT, this process has the same macroscopic dynamics
as the SSEP. Solving the Euler-Lagrange equation (3.5) (or Hamilton’s equations
(3.14)) for our D and σ, one can find for our boundary conditions [40, 54]

µ (λ) ∝
(

sinh−1
√
eλ − 1

)2

. (5.18)

The CGF obtained here for the SSEP, matches exactly to the CGF of electron
transport obtained in various methods [49, 56]9. We note that this classical
description was already realized in [40, 2]. From (5.18), it can be verified that
the Fano factor value is indeed 1/3. The universality of current fluctuations
obtained in Chapter 4, implies that the value of the Fano factor is independent
of the geometry of the conductor. This remarkable observation is indeed found
both theoretically and experimentally (see [44, 49] and references within for a
detailed discussion). For higher order cumulants, additional effects must be
taken into account [55].

Again, we have seen that the MFT formalism allows to describe a meso-
scopic system. It is natural to assume as before that the distribution spatial
correlations can be successfully described by the MFT approach as well. For
the constant diffusion and quadratic conductivity, the correlations are given by
the simple form presented in Section 5.2 by (5.11),(5.12) and (5.14).

Also, it was noticed that for a small but non-zero temperature, the CGF
maintains the symmetry (see [49] Chapter 10.4)

µ (λ) = µ

(
−λ+

eV

T

)
. (5.19)

9Apart from a eV gD prefactor, with gD = e2vD/L the mean conductance of the system,
and where v is the density of states, integrated over the cross section of the sample.
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In the language of the MFT, this is the expression obtained by the Gallavotti-
Cohen relation for the SSEP (see [28] Section 12), namely

µ (λ) = µ

(
−λ− log

fl
1− fl

+ log
fr

1− fr

)
. (5.20)

Since at the boundaries, fl,r are taken from the Fermi-Dirac distributions, the
main contribution for the current is around energy ε = µ/2 = eV/2. We find
fl ≈ exp [−eV/2kBT ] and fr ≈ 1 − exp [−eV/2kBT ] for eV/kBT � 1. From
(5.20) and the values of fl,r we recover (5.19). The MFT description is therefore
found to be appealing for electronic transport as it successfully captures the
physics of current fluctuations as well as help to identify and uncover the origin
of the CGF symmetry (5.19) in finite temperature.

5.4 Overview

In this Chapter we have shown that in two cases, the MFT is a convenient tool
to describe mesoscopic systems. It was shown also that aside from obtaining
known mesoscopic results, new general results such as the universal current fluc-
tuations of Chapter 4 and the Gallavotti-Cohen relation are naturally obtained
through the MFT description. These general results are not resulting from a
unique microscopic symmetry, or the quantum statistics of the mesoscopic sys-
tem, but are rather general. Moreover, we propose that the MFT can be used
to probe other mesoscopic systems, when a diffusive description of the system
in terms of the diffusion and the conductivity is available. This allows for a
much easier coarse grained mathematical formalism than the usual microscopic
and phenomenological mesoscopic description.

It is interesting to note that any outcome resulting of the MFT formalism,
depends only on the diffusion and conductivity as well as on the constraints
of the system, i.e. boundary conditions, initial conditions, conservation rules
etc. Therefore, quantities such as current fluctuations cannot give new insights
on the physics of a system. All the information is already stored in the first
two cumulants (albeit for any possible boundary conditions). While measuring
the diffusion and conductivity is usually simple experimentally, measuring the
higher cumulants, especially in mesoscopic systems, is hard. Therefore, an im-
mediate conclusion from the MFT description is that trying to experimentally
measure high cumulants of the current is at best an indirect and a hard approach
to extract information about the physics of the system. Moreover, microscopic
details tend to be washed out in such measurements, as the success of the MFT
clearly shows.



Chapter 6

Summary

In this Thesis we presented three major results. In Chapter 3, we have given a
sufficient and necessary condition to the validity of the AP assumption and ana-
lyzed the possibility of breakdown of the AP assumption using thermodynamic
tools of phase transitions. In Chapter 4, we have shown that under the AP
assumption, current fluctuations become universal, namely it depends on the
geometry of the system only by a multiplicative geometrical factor which is the
effective capacitance of the system. In Chapter 5, we have shown that the MFT
is a useful description for transport in disordered quantum systems. This allows
to understand such quantum systems from a coarse grained viewpoint and to
deduce general (model independent) properties such as the ones introduced in
previous chapters.

From a chronological point of view, it was known that the CGF of the SSEP
in 1d was identical to that of the electronic transport. In mesoscopic physics,
the universality of current fluctuations was known for some time. This lead
for the search for such universality in the MFT (which preceded the results of
Chapter 3). Then, in order to address the MFT - mesoscopics correspondence
in a formal way, it was necessary to understand whether the AP assumption is
useful for system other than the SSEP.
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Appendix A

Numerical Methods

It is intuitively understandable that calculating the current fluctuations of a
system requires probing rare events, which are, as described by the MFT, ex-
ponentially unlikely. Therefore, it is generally impossible to find through exact
methods the current fluctuations. Instead of trying to do that, we limit our-
selves to trying to extract as many cumulants as we possibly can. Recall that
the cumulants are extracted from the CGF,

〈Qn〉C
t

=
∂nµ (λ)
∂λn

∣∣∣∣
λ=0

,

where 〈Qn〉C is the n-th cumulant. In the last section, we have shown that
the CGF for some arbitrary graph, is the same as for a linear chain of sites,
up to an effective conductance. One can rewrite this as µG (λ) = µ1 (λ, L?),
where L? is the effective length of the system. Therefore, it will be convenient
to compare ratios of cumulants to get rid of this factor. In this case, it is to be
understood that for large systems (where the MFT is valid), we expect that the
cumulant ratios are universal. We will see that this is indeed the case, but only
for L? � 1, as the graph can store many vertices, but has an small effective
length. In that case, it is to be expected that the exact solution and the MFT
solution differs[40].

There are a number of methods to numerically obtain the cumulants of SSEP.
The method of choice here is the one portrayed in the appendix of [57]. The
following method advantage is in its robustness; it can easily be adjusted to any
graph, however it may be connected to the two (or more) reservoirs. Although
[57] shows only how to calculate the first two cumulants of SSEP for source &
drain, it can easily be extended to obtain any higher cumulants and to account
for different reservoir densities.

The SSEP can be described by a master equation, evolving the probability to
observe a configuration of particles in the L system sites. Due to the particle-
hole symmetry of the SSEP, it is possible to map the master equation to an
equilibrium process described a Hamiltonian that operates on L spatially fixed
spin 1

2 particles. The CGF inherits a free energy form, and allows to extract
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the cumulants via a set of Ln linear equations (where n represents the cumulant
number). As the problem becomes harder for large L and for large n, we can
only extract the first three cumulants for the SSEP1.

Here, we consider the simple case of ρa = 1 and ρb = 0, namely the system
is coupled to a source and a drain. In order to solve the first cumulant (the
current) one must solve the set of linear equations

− ki,S =
∑
j(i)

Tj − kiTi (A.1)

for any i. ki counts the number of neighbors a site i has on the graph plus
the number of connections to the reservoirs. ki,S counts the number of bonds
connecting the site i directly with the source. The summation over j (i) means
running over all the neighbors j of the site i in the graph, and finally Ti =
Ti (λ = 0) here denotes the steady state occupation of the site i. The graph sets
ki and ki,S so all the Ti’s are extracted from the simulation. After obtaining Ti,
one can simply plug it in

I =
∑
i∈S

(1− Ti) (A.2)

to obtain the current, where the sum runs over all the sites i connected to the
source (i ∈ S).

The ratio between the second cumulant to the first cumulant is known as
the Fano factor, which is simply the noise to signal ratio. It is given by

F = 1−
2
∑
i∈S T

′
i∑

i∈S (1− Ti)
, (A.3)

where T ′i = ∂λTi (λ = 0), are obtained from the two following sets of equations:
∑
l(j),l 6=i Uil +

∑
l(i),l 6=j Ujl − (ki + kj − 2dij)Uij = −kj,STi − ki,STj i 6= j

∑
l∈S (Uli − TlTi) =

∑
j(i) T

′
j − kiT ′i .

(A.4)
In the first set of Eq.(A.1), dij counts the number of bonds between sites i and
j. Uij = Uij (λ = 0) is the two point correlation function at sites i, j, where if
i = j then Uii is defined2 to be 2Ti − 1. So, after obtaining all the T ′is from
Eq.(A.1), one needs to solve the first set in Eq.(A.4) to obtain all the Uij ’s, and
then use them in the second set of Eq.(A.4) to obtain all the T ′i . Then, from
(A.3) one can obtain the Fano factor.

The second Fano factor is the ratio between the third cumulant to the second.
It can be obtained by solving

Uij (kj,S + ki,S + µ′ (0))−
(
kj,STi + ki,STj + kj,ST

′
i + ki,ST

′
j

)
=∑

m(j),m 6=i U
′
im +

∑
m(i),m 6=j U

′
jm − U ′ij {ki + kj − 2dij}

(A.5)

1The cumulants must also be evaluated successively through a hierarchy of equations.
2This is a matter of convenience in notation
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and then solving

µ′′ (0)Ti + 2µ′ (0)T ′i −
∑
l∈S

(2T ′i − 2U ′il + Ti − Uil) =
∑
j(i)

T ′′j − kiT ′′i (A.6)

to obtain

F2 =
∑
l∈S (1− Tl − 3T ′l − 3T ′′l )∑

l∈S (1− Tl − 2T ′l )
. (A.7)

We have also searched for the first two cumulants in the case where the densities
of the reservoirs are not 0 and 1. In this case, a more general set of equations is
derived if one sets a general α, β, γ, δ which gives for the SSEP ρa = α

α+γ and
ρb = δ

β+δ . One observes then that Eq.(A.2) and Eq.(A.3) are reformed to{
I = α

∑
i∈A (1− Ti)− γ

∑
i∈A Ti

F = 1− 2 (α+γ)
∑
i∈A T

′
i−γ

∑
i∈A Ti

α
∑
i∈A(1−Ti)−γ

∑
i∈A Ti

.
(A.8)

To obtain Ti, T
′
i and Uij one must solve the set

1)
∑
j(i) Tj − (ki + (α+ γ − 1) ki,A + (β + δ − 1) ki,B)Ti = −αki,A − δki,B

2)
∑
j(l) T

′
j − (ki + (α+ γ − 1) ki,A + (β + δ − 1) ki,B)T ′l

= α
∑
i∈A (Uil − TlTi)− γ

(∑
i∈A (TlTi − Uil) + kl,A (2Tl − 1)

)
3)

∑
j(m),j 6=l (Ulj − Ulm) +

∑
j(l),j 6=m (Ujm − Ulm)

+α {km,A (Tl − Ulm) + kl,A (Tm − Ulm)} − γ {km,AUlm + kl,AUlm}
δ (km,B (Tl − Ulm) + kl,B (Tm − Ulm))− β (km,B + kl,B)Ulm

= 0.

(A.9)
To conclude this section, if one has a graph of L sites, one must solve a set of
order ∼ Ln linear equations to obtain any cumulant of order higher than one.
This makes the simulation run efficiently only on small graphs, luckily, the MFT
limit seems to be achieved for relatively small number of sites.
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Hebrew Abstract II

כלים של פיתוח אציג בנוסף, לקהילה. ערך בעלי מודלים בשני מתקיים ההחיבוריות" ש"עקרון להראות כדי זה, בתנאי אשתמש
אציג לכך, מעבר החיבוריות". "עקרון של שבירה על המבשר דינמי פאזה מעבר נראה אנו ומתי האם לחשב המאפשרים נומריים,
החיבוריות". "עקרון על הסתמכות תוך כלשהי, גיאומטריה עם מערכות לגבי הזרם פלוקטואציות של האוניברסליות את זאת בתיזה

פאזה, ממעבר רחוק משקל, בשיווי משקל. לשיווי מחוץ הצפיפות פונקציית של קורלציות הוא נדבר עליו השני האופייני הגודל
חוק כמו דועכות הקורלציה פונקציית משקל, משיווי הרחוקות במערכות זאת, לעומת אקספוננציאלית. דועכת הקורלציה פונקציית
אראה המקרוסקופיות, הפלוקטואציות תורת של ידועות תוצאות בעזרת טווח. ארוכות קורולציות למצוא מצפים אנו כלומר, חזקה.
המקרוסקופיות הפלקטואציות תורת כי נלמד, מכך אי־סדר. עם מזוסקופיות מערכות של למודלים קלאסיים מודלים בין מלאה התאמה

קוונטיות. או קלאסיות סטוכסטיות, במערכות לדון לנו מאפשרת



תקציר

ממאה יותר כבר משקל. בשיווי הנמצאות רבות, חופש דרגות בעלות מערכות של במידול עוסקות סטטיסטית ומכניקה תרמודינמיקה
בשיווי במערכות הטבע. מדעי תחומי בכל ונוגעים סביבנו העולם את להבין עוזרים משקל, בשיווי מערכות עבור שפותחו הרעיונות שנה
ונפח, לחץ,טמפרטורה כמו התרמודינמיים הגדלים בין וקושרת בלבד, ממוצעים לגדלים חיזוי יכולת לנו נותנת התרמודינמיקה משקל
כלל בדרך הוא הממוצע המצב גדולות שבמערכות מיקרוסקופי, חישוב בעזרת לנו מספרת סטטיסטית מכניקה מצב. משוואות בעזרת
האפשריים האנרגטיים המצבים של ספירה כי ההנחה נטועה הסטטיסטית המכניקה של בליבה לכך, מעבר ביותר. המסתבר המצב גם
המצבים בין המעבר קצבי של לדינמיקה חשיבות כלל אין כלומר, התרמודינמיים. לגדלים ביטוי לתת בכדי מספיקה המערכת של

האנרגטיים.
בתהליכים, התמקדה כלל ובדרך מועטה, הייתה משקל לשיווי מחוץ תהליכים של בהבנה ההתקדמות הזאת, ההצלחה למרות
חשובה הדינמיקה משקל, בשיווי לפיסיקה שבניגוד היא, המועטה להתקדמות הסיבה קטנה. בהם תרמודינמי משקל שיווי של שההפרה
המצבים בין לעבוד למערכת שגורמים הסתברות, זרמי תמיד וישנם קריטי תפקיד משחק הזמן משקל; לשיווי מחוץ במערכות מאוד

טריוויאלית. לא בצורה השונים
מבט מנקודת משקל לשיווי מחוץ דיפוסיביות מערכות של במחקר ממשית התקדמות מציעה המקרוסקופיות הפלוקטואציות תורת
לשיווי מחוץ תהליכים של ופתירים פשוטים מודלים עבור תוצאות לשחזר מצליחה שהיא הוכח, לתרמודינמיקה. בדומה מקרוסקופית,
לתת־ המערכת את לחלק אפשר דיפוסיבית, היא הדינמיקה שכאשר הוא, המקרוסקופיות הפלוקטואציות תורת מאחורי הרעיון משקל.
שימוש בעזרת ממוצעים. גדלים על־ידי לתיאור וניתנת מקומי משקל בשיווי נמצאת מהן אחת שכל כך רבות, מזוסקופיות מערכות
מקרוסקופית, למערכת חזרה המזוסקופיות המערכות ותפירת התרמודינמי, המשקל שיווי את מעט המפרות מערכות על שנצבר בידע

ובמרחב. בזמן המערכת של ההתפתחות לגבי תחזיות נותנת המקרוסקופיות הפלוקטואציות תורת
כאשר חלקיקים, של אמבטים שני על־ידי משקל לשיווי מחוץ שנשמרות דיפוסיביות במערכות אתמקד אני זאת מחקר בעבודת
גדלים שני על ארחיב המקרוסקופיות. הפלקטואציות תורת של התיאור במסגרת זאת כל – אמבט בכל שונה חלקיקים צפיפות

משקל. לשיווי מחוץ מערכות שמאפיינים
הרעש על המידע מתוך במערכת ששולטת הפיסיקה על אינטואיציה לקבל מאפשר הזרם, של פלקטואציות הראשון, האופייני הגודל
ניחוש אולם, נומרית. ואפילו אנליטית טריוויאלי דבר אינו הזרם פלוקטואציות של חישוב גנריות, במערכות הזרם. של הסטטיסטי
שבירה לפרש ניתן כי אראה אני זרמים. של פלקטואציות עבור אנליטי ביטוי לקבל מאפשר ההחיבוריות", "עקרון בשם הידוע חכם,
לה־שטלייה עקרון בעזרת ההחיבוריות" "עקרון של בשבירה לדון יהיה ניתן כך ועל־ידי דינמי, פאזה כמעבר ההחיבוריות" "עקרון של

החיבוריות". "עקרון של הקיום עבור והכרחי מספיק תנאי אציג זאת בתיזה מתרמודינמיקה. המפורסם

I





לפיסיקה בפקולטה אקרמן אריק פרופסור בהנחיית נעשה המחקר

בהשתלמותי הנדיבה הכספית התמיכה על לטכניון מודה אני
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