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A stability analysis is presented for boundary-driven and out-of-equilibrium systems in the framework of
the hydrodynamic macroscopic fluctuation theory. A Hamiltonian description is proposed which allows us
to thermodynamically interpret the additivity principle. A necessary and sufficient condition for the validity
of the additivity principle is obtained as an extension of the Le Chatelier principle. These stability
conditions result from a diagonal quadratic form obtained using the cumulant generating function. This
approach allows us to provide a proof for the stability of the weakly asymmetric exclusion process and to
reduce the search for stability to the solution of two coupled linear ordinary differential equations instead of
nonlinear partial differential equations. Additional potential applications of these results are discussed in
the realm of classical and quantum systems.
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Understanding out-of-equilibrium systems is an essential
problem in physics [1] but surprisingly enough, it still
lacks both a macroscopic approach comparable to thermo-
dynamics and a microscopic theory. However, a fruitful
hydrodynamic description of driven diffusive systems far
from equilibrium, the macroscopic fluctuation theory
(MFT), has been proposed [2]. It is based on a variational
principle that provides equations for the time evolution of
the most probable density profile corresponding to a given
fluctuation. TheMFTwas used to explore aspects of out-of-
equilibrium systems [3–8]. The case of current fluctuations
has been singled out due to its relevance to problems
generically known as full counting statistics, which play
an important role both in classical and quantum systems
[9–13]. Quite often, a classical description is convenient
enough to account for the behavior of quantum systems
driven out of equilibrium [14–18]. A great amount of effort
has been devoted to the investigation of large current
fluctuations since they provide a measure of the likeliness
of the system to return to equilibrium. Current fluctuations
close to the steady state are expected to be time independent,
but far away, the system may choose a time-dependent
fluctuation, very much like a phase transition.
To make these considerations more precise, we consider

a large system of size L connected to reservoirs of particles
at different densities. The system reaches a nonequilibrium
steady state with a fluctuating particle current. These
fluctuations are characterized by the probability PtðQÞ
for having Q particles flowing through the system during a
time t. In the long time limit, this probability follows a large
deviation principle [19,20],

1

t
logPtðQÞ≡ −

1

L
ΦðQ=tÞ: ð1Þ

Finding an explicit expression for the large deviation
function Φ is a difficult optimization problem. However, a

useful and elegant additivity principle (AP) has been
formulated [21], which, by assuming that the optimal current
trajectory is time independent, reduces the calculation of Φ
to solving an Euler-Lagrange equation. A breakdown of the
AP signals the onset of a dynamical phase transition. One
purpose of this Letter is to formulate a necessary and
sufficient condition for the validity of the AP for boun-
dary-driven systems with and without a uniform external
field E. This will extend previous results [22–24] and allow
us to discuss the existence and nature of such transitions.
Although out-of-equilibrium physics requires new

approaches, different from the familiar thermodynamic
concepts, it is intuitively helpful to relate these two
situations. A powerful idea to study systems at thermody-
namic equilibrium is provided by the Le Chatelier princi-
ple, which states that the net outcome of a fluctuation is to
bring the system back to equilibrium, or, stated otherwise,
thermodynamic potentials are concave (convex) functions.
It is possible, using the Onsager relations, to extend the Le
Chatelier principle to systems out of equilibrium. To that
purpose, we recall that a system brought slightly out of
equilibrium by the application of forces Xi such as temper-
ature or density gradients behaves diffusively and creates
fluxes J i linearly related to the forces, J i ¼

P
jLijXj.

Forces and their related fluxes are such that the products
J iXi are additive terms in the corresponding entropy
creation. A generalization of the Le Chatelier principle
is obtained from the expression s ¼ P

iJ iXi of the entropy
creation per unit time. Thus, using the definition of the J i’s
and the symmetry of the Lij’s leads to the positive quadratic
form

s ¼
X
ij

LijXiXj; ð2Þ

which implies that Lmm ≥ 0. Then, varying the force Xm by
δXm, we obtain from Eq. (2) that J mδXm ≥ 0; namely, the
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flux and the fluctuation generating it are always of the same
sign, so that the response of the system tends to act against
the perturbation. This is the content of the Le Chatelier
principle for nonequilibrium and its breakdown signals the
possible onset of a phase transition.
We wish now to implement these ideas using the MFT.

To that purpose and for the sake of simplicity, we restrict
our study to one-dimensional systems although general-
izations to higher dimensions have been proposed [25].
We consider a lattice gas such that niðtÞ, i ∈ 1;…; L denote
the time-dependent occupancies of the L ≫ 1 sites of the
system coupled to two reservoirs at its endpoints. The MFT
relies on the replacement of the dynamics of the system
(either deterministic or not) by a stochastic hydrodynamic
equation that describes correctly the fluctuations of the
driven system in the long time and large size limits. The
relevant physical quantities are the density ρðx; τÞ and
the current density jðx; τÞ of a fluctuating diffusive system,
with the scaling x ¼ i=L and τ ¼ t=L2. The boundary
conditions for the density are fixed by ρl;r at the left and
right boundaries x ¼ 0, 1. The evolution of the system in
the presence of an external field E is described by a
Langevin equation

jðx; τÞ ¼ −DðρÞ∂xρþ EσðρÞ þ
ffiffiffiffiffiffiffiffiffi
σðρÞ

p
ηðx; τÞ; ð3Þ

together with the continuity equation ∂τρ ¼ −∂xj. The
term ηðx; τÞ is a multiplicative white noise with zero mean
and variance ð1=LÞδðx − x0Þδðτ − τ0Þ. The phenomenologi-
cal diffusion DðρÞ and conductivity (transport) σðρÞ coef-
ficients may be obtained from the details of the microscopic
process. On average, the current is determined by Fick’s
law and by a term proportional to the applied field E (linear
response to a weak field). The strength σðρÞ of the noise
term (dissipative conductivity) is related to the Fick’s term
by means of an Einstein relation just as in the equilibrium
fluctuation-dissipation relation [26]. This generalizes the
usual Langevin equation where the strength of the stochas-
tic noise is driven by temperature only.
The number of particlesQ in Eq. (1) is the integral of the

current density

Q ¼ L2

Z
1

0

dx
Z

t=L2

0

dτjðx; τÞ: ð4Þ

The two coefficients DðρÞ and σðρÞ can be expressed
using the first two cumulants of the probability PtðQÞ. To
further establish these expressions, we consider now the
case E ¼ 0 in Eq. (3). In the limit ρR − ρL ¼ Δρ ≪ 1 of a
slightly out-of-equilibrium system, the steady state aver-
age current hQi=t is obtained from Eq. (4) and given by
hQi=t ¼ −ð1=LÞDðρÞΔρ. For Δρ → 0, the variance of the
integrated current is hQ2iC=t ¼ ð1=LÞσðρÞ.
The probability PtðQ; ρL; ρRÞ is obtained in this frame-

work using a stochastic path integral representation [9,27,28]

Ptðfj; ρgÞ ∼ exp

�
−L

Z
t=L2

0

dτ
Z

1

0

dxL
�
; ð5Þ

corresponding to a set fjðx; τÞ; ρðx; τÞg of current and
density trajectories. The Lagrangian density Lðρ; ∂xρÞ is

L ¼ ½jþDðρÞ∂xρ�2
2σðρÞ ; ð6Þ

and a saddle point approximation for large L allows us to
rewrite the large deviation function in Eq. (1) as [22]

Φ

�
Q
t

�
¼ L2

t
inf
j;ρ

Z
t=L2

0

dτ
Z

1

0

dxL; ð7Þ

where the minimum is over all ρðx; τÞ and jðx; τÞ profiles
defined in the time interval 0 < τ < t=L2 and which satisfy
the continuity equation and relation (4). The hard minimi-
zation problem of finding the optimal current trajectory
jðx; τÞ greatly simplifies by assuming the optimal current to
be constant, jðx; τÞ ¼ J (up to a macroscopically negligible
transient), so that Eq. (4) rewritesQ=t ¼ J. This assumption
introduced in Ref. [21] is known as the AP. A spatially
constant current implies, through the continuity equation, a
stationary density ρðxÞ, so that the corresponding Lagrangian
density obtained from Eq. (6) and now denoted LJ becomes
time independent. Therefore, the AP amounts to replacing
ΦðJÞ in Eq. (7) by

UðJÞ ¼ inf
ρðxÞ

Z
1

0

dxLJ(ρðxÞ; ∂xρðxÞ): ð8Þ

Note that the time variable in the usual Lagrangian descrip-
tion is replaced here by the spatial coordinate. The approxi-
mate large deviation function UðJÞ and the “trajectory” of
ρðxÞ for the stationary density profile under the AP
assumption are then obtained from the associated Euler-
Lagrange equation ðd=dxÞðδLJ=δ∂xρÞ ¼ ðδLJ=δρÞ. It is
useful to look at the equivalent Hamiltonian formalism,
where the corresponding Hamiltonian is [29]

HðP; qÞ ¼ 1

2mðqÞ ½P − eAðqÞ�2 þ VðqÞ ð9Þ

with the definitions q ¼ ρ and P ¼ δL
δ∂xρ for the conjugate

momentum. The Hamiltonian (9) describes a single particle
of q-dependent mass mðqÞ ¼ D2ðqÞ=σðqÞ and of charge
e ¼ J placed in scalar VðqÞ ¼ −e2=2σðqÞ and “vector”
AðqÞ ¼ DðqÞ=σðqÞ potentials. As just stressed, space repla-
ces time; namely, time conservation in Hamiltonian systems
translates here into a conservation in space of the associated
energyHðP; qÞ, so that the energy is spatially uniform. This
provides a useful analogy with thermodynamics, where, at
equilibrium, the total energy is uniformly distributed in
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space. Therefore, the AP provides, for out-of-equilibrium
systems, the analog of a thermodynamic description.
A careful study of the conditions under which the AP is

valid thus appears to be essential, since a breakdown of the
AP may signal the onset of a (dynamical) phase transition.
This question has been investigated in Ref. [22] for closed
systems with periodic boundary conditions ρð0; τÞ ¼
ρð1; τÞ, and a sufficient and necessary condition for the
validity of the AP has been given. However, in that case,
periodic boundary conditions and particle conservation
greatly simplify the problem. Here, we wish to provide
a necessary and sufficient condition for the validity of the
AP in boundary-driven systems. This question has been
addressed using a direct stability analysis of the large
deviation function against time dependent perturbations
[30], but without a conclusive formulation of a validity
criterion for the AP. Although the large deviation function
is usually considered to study the stability of the AP
solution, we find it far more convenient to work with its
Legendre transform

μðλÞ ¼ −
1

L
inf
J
fΦðJÞ − λJg ¼ 1

t
lnheλQ=Li; ð10Þ

since this choice allows to relax the continuity equation
constraint and to reformulate Eq. (4) as a boundary
condition [31,32]. The notation h·i stands for averaging
with respect to PtðQÞ given in Eq. (1). Being cautious about
the corresponding change of boundary conditions, it is
possible to relate μðλÞ to the MFT description by

heλQ=Li ¼
Z

DqDp exp

�
−L

Z
dxdτSðx; τÞ

�
; ð11Þ

where q stands for the density, p is a Lagrange multiplier
associated with the continuity equation [32], and the action
Sðx; τÞ is given by

Sðx; τÞ ¼ D∂xq∂xp −
σ

2
ð∂xpÞ2 þ ðp − λxÞ∂τq: ð12Þ

The corresponding equations of motion can be readily
obtained from δS=δq ¼ δS=δp ¼ 0 [33]

∂τq ¼ ∂xðD∂xqÞ − ∂xðσ∂xpÞ;

∂τp ¼ −D∂xxp −
σ0

2
ð∂xpÞ2; ð13Þ

where the notations ðD0; σ0Þ stand for derivatives with
respect to the density q. Now, we consider the AP, which
assumes a time-independent density and momentum, so
that taking ∂τq ¼ ∂τp ¼ 0 the AP equations of motion
become two ordinary differential equations for the corre-
sponding ðq0; p0Þ with the time-independent boundary
conditions

qð0; τÞ ¼ ρl;

qð1; τÞ ¼ ρr;

pð0; τÞ ¼ 0;

pð1; τÞ ¼ −λ: ð14Þ

The most probable density profile under the AP is obtained
by solving these Hamilton-Jacobi equations with boundary
conditions (14).
To discuss the stability of the AP solution, we consider

the effect of time-dependent fluctuations δqðx; τÞ and
δpðx; τÞ on the extremum solution ðq0; p0Þ and we calcu-
late the variation δS2AP of the action (12) up to second order
in ðδq; δpÞ [34].
Using a general result for the stability of Hamiltonian

systems, the variation δS2AP, can be written as the diagonal
quadratic form [32,35]

δS2APðx; τÞ ¼ −
D0σ0 − σ00D

4D
ð∂xp0Þ2δq2 −

σ

2
ð∂xδpÞ2: ð15Þ

This expression constitutes one of the main results of this
Letter. It could not be obtained or even anticipated [32]
using the large deviation function formalism. The diagonal
quadratic form makes it easy to discuss the validity of
the AP approximation, which requires

R
dxdτδS2AP < 0, a

condition equivalent to the Le Chatelier condition (2).
Noting that σ and D are non-negative (for any q) then,
having

D0σ0 ≥ σ00D ð16Þ

in Eq. (15) implies
R
dxdτδS2AP ≤ 0 for any fluctuation

ðδq; δpÞ. Therefore, Eq. (16) is a sufficient condition for the
validity of the AP solution. An apparently related but much
more stringent condition has been obtained by Bertini et al.
[22]. Indeed, whereas Eq. (16) needs to be only valid for the
density profile q0 ¼ ρAP, the related condition in Ref. [22]
must be verified for all values of q [36]. However, since the
variations δq and δp are not independent but related by (the
conveniently linearized) Eqs. (13), it is clear that Eq. (16) is
not a necessary condition for stability. Stated otherwise, the
AP solution becomes unstable if and only if there exists a
fluctuation ðδq; δpÞ such that

R
dxdτδS2AP > 0.

To find a necessary and sufficient condition for the
stability of the AP solution, we now consider the Fourier
spectrum of the time-dependent fluctuations δqðx; τÞ and
δpðx; τÞ. Since time is defined on ½0; T� where T ¼ t=L2,
these fluctuations admit the Fourier series expansion
δq ¼ P

ωe
iωτfωðxÞ and δp ¼ P

ωe
iωτgωðxÞ with discrete

frequencies ωm ¼ ð2π=TÞm, (m ∈ Z). The linearization of
Eqs. (13) used to obtain the quadratic form (15) togetherwith
having real valued fluctuations lead for the Fourier ampli-
tudes to the set of coupled differential linear equations [35]
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iωfω ¼ ∂x(D0∂xq0fω þD∂xfω − σ0ð∂xp0Þfω − σ∂xgω);

iωgω ¼
�
−D0∂xxp0 −

σ00

2
ð∂xp0Þ2

�
fω −D∂xxgω

− σ0∂xp0∂xgω; ð17Þ

which, using the equalities
R
dτδq2 ¼ P

ω>0jfωj2 andR
dτð∂xδpÞ2 ¼

P
ω>0j∂xgωj2, allows us to rewrite the fluc-

tuation (15)of theactionas
R
dxdτδS2APðx; τÞ ¼ −

P
ω>0δs

2
ω,

where [35]

δs2ω ≡
Z

dx
D0σ0 −Dσ00

4D
ð∂xp0Þ2jfωðxÞj2 þ

σ

2
j∂xgωðxÞj2:

ð18Þ

The AP is stable if and only if δs2ω ≥ 0 for any solution
ðfω; gωÞ of Eq. (17) and∀ω > 0. To prove this statement,we
first assume that δs2ω ≥ 0 for any solution ðfω; gωÞ and
∀ω > 0.Then,necessarily

P
ω>0δs

2
ω ≥ 0and

R
dxdτδS2AP ≤

0 for any solution ðδq; δpÞ so that the AP is stable.
Conversely, if there exists a mode ω0 such that for the
solution ðfω0

; gω0
Þ of Eq. (17) δs2ω0

< 0, then one can choose
δq ¼ eiω0τfω0

þ e−iω0τf⋆ω0
and δp ¼ eiω0τgω0

þ e−iω0τg⋆ω0

so that δs2ω ¼ 0 for any ω ≠ ω0. Therefore, this fluctuation
leads to a value of the action lower than the AP solution,
though not necessarily a new minimum.
Similar considerations applied to systems with periodic

boundary conditions [23,37–39] lead to a closed expression
for the unstable frequency ω0. Unfortunately, such an
expression can hardly be obtained for open systems. But
the following general conclusion seems to hold in that case
as well; namely, for a finite size L and long time limit
t → ∞, the first unstable mode is expected to be the
fundamental so that the system is driven through a
continuous, second-order-like transition [23].
There is another important unanticipated outcome of our

approach using the cumulant generating function. It allows
us to prove the yet unresolved question of the stability of
driven systems in the presence of an applied field E ≠ 0,
e.g., the weakly asymmetric exclusion process (WASEP) [3].
Starting from the stochastic equation (3), the corresponding
Lagrangian rewrites LE ¼ ½J þDðρÞ∂xρ − EσðρÞ�2=2σðρÞ
instead of Eq. (6). The new time-independent AP Hamilton-
Jacobi equations

∂xðD∂xq − EσÞ − ∂xðσ∂xpÞ ¼ 0;

−D∂xxp − Eσ0∂xp −
σ0

2
ð∂xpÞ2 ¼ 0 ð19Þ

with the same boundary conditions (14) are now obtained
from the modified action SEðx; τÞ ¼ ðD∂xq − EσÞ∂xp −
ðσ=2Þð∂xpÞ2 þ ðp − λxÞ∂τq instead of Eq. (12). To study
the stability of the AP solution, we again evaluate the
variation δS2E up to second order of the AP action under

the effect of a fluctuation δq of the density and δp of its
conjugate momentum. δS2E is given by the diagonal quad-
ratic form (15) except for the replacement of ð∂xp0Þ2 by
ð∂xp0Þ2 þ 2E∂xp0. Therefore, unlike the case E ¼ 0, we
cannot a priori conclude that Eq. (16) is a sufficient
condition for the stability of the AP solution. However,
it happens that we indeed always have ð∂xp0Þ2þ
2E∂xp0 > 0. This is a consequence of theAP equations (19).
Defining u ¼ ∂xp0 þ E allows us to rewrite the second
equation of Eqs. (19) under the form [35]

∂xu
u2 − E2

¼ −
σ0

2D
: ð20Þ

Next, we define hðxÞ≡ R
dx½σ0ðq0Þ=2Dðq0Þ� for a known

AP density profile q0ðxÞ. An integral of Eq. (20) is implicitly
obtained in terms of hðxÞ as u ¼ E coth (EhðxÞ). Therefore,
ð∂xp0Þ2 þ 2E∂xp0 ¼ E2=sinh2(EhðxÞ) > 0 for any E and
Eq. (16), D0σ0 ≥ Dσ00, remains a sufficient condition for the
stability of the AP solution for E ≠ 0.
An immediate application of the sufficient condition (16)

with an applied field E is to examine the validity of the AP
for the yet unsolved WASEP [40,41]. The WASEP dynam-
ics is described by the dynamics of the symmetric exclusion
process [42,43]; namely, D ¼ 1 and σ ¼ 2ρð1 − ρÞ with a
field E. It is thus clear from Eq. (16) that the AP is valid for
the WASEP.
It is nevertheless worth noting that in the case of periodic

boundary conditions, Eq. (16) is no longer applicable due
to the additional constraint of particle conservation. And
indeed for periodic systems, the WASEP was found to be
unstable and certain values of the current J ¼ Q=t lead to
traveling wave solutions [23].
Another problem where the previous approach proves

useful is the Kipnis, Marchioro,Presutti (KMP) model [44],
whose MFT dynamics is defined by D ¼ 1 and σ ¼ 2ρ2.
Clearly, the KMP model does not satisfy Eq. (16), thus
being nonconclusive about its stability. However, by
solving numerically the linear differential system (17),
we have been able to obtain conclusive evidence regarding
the stability of the KMP model for values of the current J
[45,46] significantly higher than previously obtained in the
literature. This suggests that the KMP model should also be
stable for boundary-driven systems, in agreement with
Ref. [47].
In summary, we have presented a new quantitative

approach to study the stability of boundary-driven systems
out of equilibrium. This approach based on the stochastic
MFT provides a necessary and sufficient condition
expressed by Eqs. (17) and (18) for the stability of the
AP solution. It constitutes a generalization of the Le
Chatelier principle. Moreover, in that framework, we have
been able to prove the stability of the (boundary-driven)
WASEP model.
Finally, we wish to give a glimpse of additional potential

applications of the MFT in the realm of quantum or wave
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systems. A list of relevant examples includes thermal
conductance in quantum chains [10], cold atoms [48],
polarized spins injected into superconductors [16], and
coherent mesoscopic transport in a random potential [14].
For these out-of-equilibrium systems, the MFT allows us to
obtain the full counting statistics, and other stationary
properties, e.g., density correlations [49].
For mesoscopic wave transport, a successful approach

has been proposed [15] based on a Langevin equation as in
Eq. (3) and which relates the current density jdðrÞ in the
diffusive regime to the local intensity IðrÞ of the wave, an
equivalent of the density ρ in Eq. (3). The corresponding
diffusion coefficient is constant and the white noise term is
characterized by the function σðIÞ ∝ I2, a result analogous
to the aforementioned KMP model. The density correla-
tions obtained from the MFT corroborates this relation
between the KMP process [49] and the transport of
classical waves through disordered media [14], as well
as the symmetric exclusion process [49] and the transport
of electrons in a disordered metal [14].
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