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When an electron with well-defined momentum tunnels into a nonchiral Luttinger liquid, it breaks
up into two separate wave packets that carry fractional charges and move in opposite directions. A
direct observation of this phenomenon has proven elusive, mainly due to single-particle and plasmon
backscattering caused by measurement probes. This paper theoretically introduces two topological
insulator devices that are naturally suited for detecting fractional charges and their velocities directly
and in a noninvasive fashion.

PACS numbers:

I. INTRODUCTION

One dimensional (1D) electron systems, known as Lut-
tinger liquids (LLs), have been long predicted to exhibit
a plethora of phenomena that are caused by electron-
electron interactions and possess no analogues in higher
dimensional liquids.1 One of those predictions is “charge
fractionalization”,2 whereby a charge q injected unidi-
rectionally in the middle of a LL breaks apart into two
counterpropagating pulses. These pulses carry definite
charge fractions q(1 + g)/2 and q(1 − g)/2, where g is
the Luttinger parameter that quantifies the strength of
electron correlations (g = 1 for free electrons, g < 1 for
repulsive interactions).

Although the detection of said charge fractions would
constitute a milestone toward the characterization of
LLs, it remains a challenging endeavor. Most experi-
mental difficulties originate from the fact that fractional
charges reside inside the LL (g < 1), whereas measure-
ment probes that couple to the LL are higher-dimensional
Fermi liquids (g = 1). As a result, fractional charges are
partially reflected and hence degraded at the interface
between the LL and the detection probe. Charge reflec-
tion occurs in two forms: (i) single-particle backscatter-
ing (when the probe-LL interface is not smooth or when
there are sharp impurities in the LL) and (ii) wave (or
“plasmon”) backscattering. The latter is present even
in atomically smooth LL-probe interfaces, because of a
mismatch in g (or equivalently in the plasmon index-of-
refraction).3 In recent years, various proposals have been
put forward in order to bypass the aforementioned diffi-
culties: dephasing of quantum interference in 1D rings,4

d.c. conductance in three-terminal nanowire geometries,5

and high-frequency shot noise in unidirectional (chiral)
LLs of integer quantum Hall systems,6 are all believed to
display fingerprints of charge fractionalization. At any
rate, a well-controlled charge measurement that would
provide a smoking gun for fractional charges in nonchiral
LLs is still nonexistent.

In this paper we intend to help overcome such challenge
by designing two two-dimensional (2D) topological insu-
lator (TI) circuits with capacitive coupling to noninvasive
charge sensors. 2D TIs, dubbed quantum spin-Hall in-

sulators (QSHI), are insulating in the bulk but endowed
with topologically protected conducting edge states.7 In
presence of electron interactions, these edge states behave
as helical (nonchiral) LLs,8 whose right- and left-moving
excitations are spin-polarized along opposite directions.
The main message from the present study is that helical
LLs constitute favorable platforms to measure fractional
charges and their propagation speeds directly and with-
out distortion.

II. PROPOSED EXPERIMENTAL SETUPS

The suggested devices are shown in Figs. 1 and 2.
Fig. 1 may be regarded as a topologically nontrivial coun-
terpart to the quantum RC circuit discussed in ordinary
2D electron systems.9,10 The upper part of the device
is in the QSHI regime (chemical potential µ inside the
bulk gap), and contains a narrow constriction (a quantum
point contact or QPC) that opens onto a quantum dot.
A helical LL flows along the edges of the QSHI, as well as
around the internal walls of the dot. The QPC is open,
i.e. edge states outside the dot are seamlessly connnected
with edge states inside the dot, and therefore there is no
Coulomb blockade in the dot. The dot is coupled through
a capacitance Cm to a charge sensing circuit, such as an
rf-single-electron-transistor (rf-SET),12 which can detect
small variations of charge inside the dot with little back-
action. The QPC is wider than the decay length of the
edge states into the bulk,13 yet narrower than the charac-
teristic decay length of long-range Coulomb interactions.
The lower part of the device is a circuit that injects

unidirectional electrons onto an edge of the QSHI. Unidi-
rectional injection can be achieved by either momentum-
resolved tunneling from a parallel quantum wire5 or
by tunneling from a magnetic scanning electron micro-
scope,14 both of which require magnetic elements or
fields. In Fig. 1 we display an alternative mechanism,
which is not only all-electric but also available in current
experiments on 2D TIs.15 Split gates drive the injector
into a metallic spin-Hall phase (µ within a bulk band).
Owing to the spin-Hall effect,16 a longitudinal electric
field in the injector leads to a nonequilibrium spin ac-
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FIG. 1: Sketch of the first proposed device (not to scale). A
top gate drives the upper half of the device into the QSHI
regime, with counter propagating helical edge states shown in
dot-dashed (blue) and dashed (red) lines. Dotted and crossed
circles describe net spin densities along the growth direction
(i.e. perpendicular to this page). Another top gate drives
the lower half of the device into the metallic spin-Hall phase.
A longitudinal electric field (V2 6= V1) in the doped 2D TI
produces a spin accumulation at the tunnel barrier, which is
injected into the QSHI edge states when V3 − V1 = VSD 6=
0. The spin densities of the two counterpropagating pulses
emanating from the injection region are opposite in direction
and unequal in magnitude (see Appendix).
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FIG. 2: Sketch of the second proposed device (not to scale).
The injector is the same as in Fig. 1. The top gate that drives
the upper half of the device into the QSHI phase is split in
two pieces: one of them is a detector gate coupled to a HEMT
(shown in the figure); the other gate covers the rest of the edge
so as to avoid inhomogeneities in the Luttinger parameter.

cumulation at the tunnel barrier. Accordingly, electrons
injected onto the QSHI edge are momentum-resolved.

Fig. 2 is a quantum-spin Hall counterpart to the cir-
cular mesas employed for detection of edge magnetoplas-
mons in ordinary quantum Hall systems,11 and thus we
refer to it as a TI mesa. The injector part of Fig. 2 is the
same as in Fig. 1. However, in lieu of a quantum dot, a fi-
nite segment of the 2D TI edge is coupled to an extended
gate. This gate detects charge passing underneath, and is
connected to a high-electron-mobility-transistor (HEMT)
by a conducting wire. As elaborated below, an important
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FIG. 3: (a) Unfolded line used for the model calculation.
x = 0 is the injection point, x = L1 is the coordinate at the
entrance to the quantum dot (in case of Fig. 1) or to the region
beneath the detector gate (in case of Fig. 2). x = L2 = L1+Ld

is the coordinate at the exit from the dot (in case of Fig. 1) or
from the region beneath the detector gate (in case of Fig. 2).
x = L coincides with x = 0. (b) Spatial profile of the charging
energy in Fig. (1). The transition from Ec(x) ≃ 0 outside the
dot to Ec(x) ≃ Ec0 inside the dot occurs smoothly.

difference between Fig. 2 and the setup of Ref. [11] is that
the former requires additional gates in order to avoid
plasmon backscattering. This difference originates from
the fact that edge magnetoplasmons propagate along chi-
ral edge states (where no backscattering is possible),
whereas the fractional charges we study propagate along
helical edge states (where backscattering is possible).

III. TI RC CIRCUIT

This section is directed to theoretically modeling the
device of Fig. 1.

A. Model

Away from commensurate fillings (so that Umklapp
scattering may be neglected), the low-energy properties
of the QSHI in Fig. 1 can be modeled with a Hamiltonian
H = HLL +Hbs +Hc +HT defined on an unfolded line
with periodic boundary conditions (Fig. 3a).

HLL = (~u/2)

∫ L

0

dx[(1/g)(∂xφ)
2 + g(∂xθ)

2] (1)

is the unperturbed Hamiltonian of a helical LL8 (identi-
cal to that of a spinless LL) with a plasmon propagation
velocity u. φ and θ are bosonic fields describing entan-
gled spin and charge degrees of freedom and satisfying
[θ(x), ∂yφ(y)] = iδ(x− y). L is the total perimeter of the
QSHI region.

Hbs = α~vF
∑

σ

Ψ†
σ(L2)Ψσ(L1) + h.c. (2)
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is the single-particle backscattering Hamiltonian, which
encodes spin-conserving interedge tunneling at the QPC.
α is the backscattering amplitude, vF = ug is the Fermi
velocity, σ =↑, ↓ is the spin direction, Ψσ = exp[i

√
π(θ−

σφ)]/
√
2πa represents a right-moving (with σ =↓) or left-

moving (with σ =↑) free fermion at the edge, and a is a
short-distance cutoff. Below we justify Hbs = 0.
For a small enough quantum dot, the long-range part

of the Coulomb interaction (not included in Eq. 1) leads
to a charging Hamiltonian of the form

Hc ≃ Ec0

[

(φ(L1)− φ(L2)) /
√
π −Ng

]2
. (3)

Eq. (3) relies on a constant capacitance model, which
may apply approximately in the quantum spin-Hall
regime. Ec0 is the charging energy of the dot, nonzero
only for x ∈ (L1, L2). In HgTe quantum wells, we esti-
mate Ec0 ≃ 0.1meV for a dot of perimeter Ld ≡ (L2 −
L1) & 1µm. Q̂ =

∫ L2

L1

dx∂xφ/
√
π = [φ(L1) − φ(L2)]/

√
π

is the edge charge of the dot (in units of e) and Ng is the
edge charge induced by a gate voltage applied to the dot.
The bulk charge of the QSHI is constant at energy scales
of interest, and does not enter in our model.
In absence of single-particle backscattering at the

QPC, Hc enforces 〈Q̂(t)〉 = Ng at temperatures below

Ec0,
9 with Qrms ≡ (〈Q̂(t)2〉 − N2

g )
1/2 ≃ [e2g2 ln(µ/ξ) −

N2
g ]

1/2 ∼ O(e). Here ξ ≃ Ec0 when Ec0 ≫ ~u/Ld, and
ξ ≃ ~u/Ld when Ec0 ≪ ~u/Ld. In TI quantum dots the
ratio between Ec0 and ~u/Ld is independent of Ld. In
the case of HgTe quantum wells we expect Ec0 ≃ ~u/Ld,
whereas in InAs/GaSb/AlSb quantum wells17 we expect
Ec0 ≫ ~u/Ld due to significantly slower edge states.
By taming equilibrium charge fluctuations, the quantum
dot facilitates a detection of injected (nonequilibrium)
charges.
Finally,

HT = t2Ψ
†
2↑(0)Ψ↑(0) + h.c. (4)

is the tunneling Hamiltonian describing unidirectional
(i.e. spin-polarized) charge injection onto the helical liq-
uid. t2 is the tunneling amplitude and Ψ2↑ is a spin-up
fermion operator in the injector. For simplicity we as-
sume that injection occurs at a single point (x = 0),
which is appropriate when the linear dimensions of the
tunnel barrier are smalller than Ld.

B. Elastic Charge Backscattering

A key advantage of the TI RC circuit in comparison
to topologically trivial devices made of ordinary quan-
tum wires and quantum dots is that it (ideally) elimi-
nates both plasmon and single-particle elastic backscat-
tering, thereby allowing for a real-time measurement of
fractional charges.
On one hand, time-reversal symmetry bans elastic

single-particle backscattering away from the QPC. At the

QPC, Hbs can open a gap in the energy spectrum of the
edge states.13,18 If the QPC is wide compared to ~vF /µ,
the fate of Hbs can be analyzed perturbatively. We begin
from its bosonized form

Hbs = α̃ cos[
√
π(φ(L2)− φ(L1))] cos[

√
π(θ(L2)− θ(L1))],

where α̃ = 2α~vF /(πa). At temperatures T < Ec0, Q̂ ≃
〈Q̂〉 = Ng and thus Hbs ≃ α̃ cos(πNg) cos[

√
π(θ(L2) −

θ(L1))]. From here we derive the renormalization group
flow

dα̃

dl
=

(

1− 1

2g

)

α̃, (5)

where l = ln(Ec0/T ). Hence, single-particle backscatter-
ing is relevant for g > 0.5 and irrelevant for g < 0.5.
Multi-particle interedge scattering processes have been
ignored throughout because they are either irrelevant
or reduced to c-numbers by the charging energy. Like-
wise, the interedge electrostatic coupling at the QPC,
β∂xφ(L1)∂xφ(L2), is irrelevant (dβ/dl = −β). In HgTe
quantum wells,19 various estimates18,20 yield g ∼ 0.5 −
0.9. For this range, α is relevant and grows large (∼ 1)
as T → 0. Fortunately, the gate voltage can be chosen
such that Ng = 1/2, which eliminates Hbs completely for
any g. Alternatively, g < 0.5 might be achieved through
gate engineering.21

On the other hand, plasmon backscattering away from
the QPC is suppressed assuming that g is uniform along
the edge. In order to satisfy this assumption, the gate
electrodes must be engineered in such a way that the
capacitance per unit length between the edge and the
nearest gate is uniform across the QSHI. However, it is
not necessary that the gate voltage Vg be spatially uni-
form because

∫

dxVg(x)∂xφ can be eliminated by a shift
in φ, without renormalizing g. At the QPC, the TI RC
circuit prevents a mismatch in g and is thus free from
plasmon backscattering because (i) charge entering in a
TI quantum dot flows along a helical LL at the inner
wall of the dot, and (ii) the charging energy in the dot
(which can be treated exactly) is found not to alter the
value of g. In contrast, an interface between a topo-
logically trivial quantum wire and dot would inevitably
lead to a mismatch in g across the QPC. Indeed, ordi-
nary semiconductor quantum dots are 2D Fermi liquids
(g = 1), whereas the quantum wire is a Luttinger liquid
with g < 1.22

IV. TI MESA

In this section we model the setup of Fig. 2, which
is inspired by the time-resolved detection of edge mag-
netoplasmons in ordinary quantum Hall systems.11 Un-
like in chiral quantum-Hall systems, where the Luttinger
parameter is a topological invariant immune to external
gates, coupling a segment of a 2D TI edge to a detec-
tor gate will result in a change of g for that particular
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section of the wire.21 Since vF is independent of energy
in the linear dispersion regime, a mismatch of g would
be tantamount to a mismatch in the plasmon velocity
u = vF /g. This would induce plasmon backscattering23

and thus ruin the measurement of fractional charges.
In order to avoid this problem and keep g uniform

along the edge, we require that the rest of the edge be
coupled to another gate located at the same distance from
the QSHI edge as the detector gate. Namely, once again
the gate electrodes must be engineered in such a way
that the capacitance per unit length between the edge
and the nearest gate is uniform across the QSHI. With
this proviso, the Hamiltonian for Fig. 2 can be written
as

H = HLL − VgQ̂+HT , (6)

where Q̂ = [φ(L1) − φ(L2)]/
√
π is the edge charge con-

tained along the segment covered by the detector gate
(x ∈ (L1, L2)), and Vg is the gate voltage therein. Even
though Eq. (6) contains no explicit electrostatic charg-

ing energy, a term ∼ (~u/Ld)Q̂
2 emerges in the effective

action for (φ(L1) − φ(L2)) after integrating out gapless
modes, where Ld = L2 − L1. A simple calculation yields
Qrms ≃ [e2g2 ln(µLd/~u) − N2

g ]
1/2 ∼ O(e). Therefore,

the effective theories for a TI RC circuit with Hbs = 0
and a TI mesa are formally identical insofar as g is spa-
tially uniform.
In view of this similarity, and everything else being

equal, the TI mesa appears to be a more convenient plat-
form than a TI RC circuit for the time-resolved measure-
ment of fractional charges. Perhaps a practical advantage
of having a dot is that the fractional pulses spend longer
time (by a factor π) under the detector gate than they
would if the dot had been absent.

V. CHARGE FRACTIONALIZATION

The aim of this section is to determine how the charge
of the quantum dot (in case of Fig. 1) or the charge under
the detector gate (in case of Fig. 2) change when a weak
bias voltage VSD is applied between the injector and the

QSHI. To that end we compute δQ(t) =
∫ t

−∞
dt′Inet(t

′),

where Inet = I(L1, t) − I(L2, t), I(x, t) = 〈Î(x, t)〉 is the

current at point x along the edge, and Î = (evF /
√
π)∂xθ

is the current operator for the helical liquid. The out-
come of the calculation is identical for the two proposed
devices.
Conventional wisdom23 dictates

I(x, t) =
1

2

∑

η

〈TK Î(x, tη)e−
i

~

∫
K

dt′HT (t′)〉, (7)

where TK is the time-ordering operator in the Keldysh
contour K, and η = ± denotes the upper/lower branch
of K. The expectation value is taken with respect to the
ground state of H−HT , which importantly is quadratic

in bosonic fields and can be diagonalized exactly. Rec-
ognizing that Ec(x) ≃ 0 close to the injection site, the
influence of the charging energy in Fig. 1 can be neglected
for x /∈ (L1, L2).
When VSD = const, Eq. (7) results in uniform and

constant I(x, t).23 Therefore Inet = 0 and δQ = 0, i.e.
the dc bias considered in previous theoretical studies is
not suitable for measuring fractional charges. Herein we
consider a short bias pulse, VSD(t) = γδ(t − t0). A cal-
culation outlined in the Appendix yields

I(|x| & 0, t) = sgn(x)[(1 + g sgn(x))/2]I0(t− t0 − |x|/u),
(8)

where x > 0 (x < 0) denotes right (left) from x = 0,

I0(y) =
aν−1

2π2uν+1

e|t2|2
~2

sin
(eγ

~

)

Θ(y)Im

[

i/ν

(a/u− iy)ν

]

,

ν ≡ (g + g−1)/2, a/u ≃ 0+ and Θ is the step function.
I0(t− t0), which is narrowly peaked at t = t0, equals the
total injected current and thus Q0 =

∫

dtI0(t− t0) is the
total injected charge.
For completeness we evaluate the bias-induced spin-

density at a point x and time t (see Appendix):

S(|x| & 0, t) = ẑ sgn(x)
1 + g sgn(x)

4g

I0(t− t0 − |x|/u)
e u

(9)
The spin-densities of the counterpropagating eigen modes
are opposite in direction and unequal in magnitude

[ratio= (1 − g)/(1 + g)]. We verify that
∫ L

0 dxS(x, t) =
ẑQ0/2. This indicates that although spin-up and spin-
down single-particle states are not eigenstates of the he-
lical LL, the total spin is conserved in electron fraction-
alization. This is similar to the fact that although right-
and left-moving single particle states are not eigenstates
of a nonchiral LL, the total momentum is conserved in
electron fractionalization.
Eqs. (8) and (9) generalize the results of Ref. [14]

to a time-dependent pulse, and confirm that charge and
spin densities travel along the edge with velocity u and
without changing shape.
In the TI RC circuit, every injected charge packet flows

unobstructed through the QPC insofar as the constric-
tion at the QPC occurs smoothly over a lengthscale of
several ~vF /µ. This condition, and the suppression of
Hbs justified above, establish momentum conservation at
the QPC. Momentum conservation, in conjunction with
particle conservation, implies23 that every charge pulse
incident from the injector will be perfectly transmitted
into the dot because, as explained above, there is no mis-
match in g at the QPC.
Eq. (8), the pulse-like character of I0 and the perfect

charge transmission at the QPC result in Fig. 4. A frac-
tion (1 + g)/2 of Q0 propagates along the edge with ve-
locity u, enters the dot (or the detection region) at time
t = t0+L1/u, exits it at time t = t0+L1/u+δt and con-
tinues its counterclockwise trajectory around the device.
In a TI mesa , δt equals the dwell time tdw = Ld/u. In a
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FIG. 4: δQ(t) following a short pulse in the injector. δt =
min{Ld/u, ~/Ec0} in the device of Fig. (1), and δt = Ld/u in
the device of Fig. (2). Only one time-period is shown.

TI RC circuit, δt = min{tdw, tc}, where tc = ~/Ec0 is the
charging time. On the other hand, a fraction (1 − g)/2
of Q0 enters the dot at time t = t0 + (L − L2)/u and
exits it at time t = t0 + (L − L2)/u + δt, after which it
continues its clockwise trajectory around the device. At
t = t0 + L/u + δt − tdw the two pulses coincide at the
injection point and the cycle repeats. On each cycle the
counterpropagating pulses meet at x = 0 and x = L/2.
At x = L/2 the pulses cannot recombine because they
are orthogonal eigenstates of the helical liquid. At x = 0
they can in principle recombine (due to HT ) and tun-
nel back to the injector; nevertheless charge conservation
will then impose another pulse from the injector onto the
helical edge state. δQ is thus periodic in time, with two
unequal peaks within each period: δQ> = (1 + g)Q0/2
and δQ< = (1 − g)Q0/2. δQ</δQ> = (1 − g)/(1 + g)
gives the ratio of fractional charges, and the time period
L/u+ δt− tdw ≃ L/u determines their speed.
Thus far we have assumed unidirectional (or fully spin

polarized) injection of electrons, which can be realized by
momentum-resolved tunneling. However, the typical spin
polarization for all-electrical injection is modest (. 10%
with ballistic sources24). This can be accounted for by a
straightforward generalization of Eq. (8), resulting in

δQ</δQ> = (1− gP )/(1 + gP ), (10)

where P = (Q0↑−Q0↓)/Q0 is the spin polarization of the
injected pulse. For the setup of Fig. 1, P = λeE/(~vFn),
where E is the longitudinal electric field in the injector,
n is the carrier density in the doped 2D TI, and λ ∼ O(1)
is a dimensionless measure of the strength of spin-orbit
interactions. Since P and g can be measured indepen-
dently from one another (the latter through d.c. tunnel-
ing conductance measurements, the former by electrical15

or optical24 means), Eq. (10) provides a test for charge
fractionalization.
Even though Eq. (10) has been derived for a pulse

whose time width ∆tpulse is shorter than δt, it can
be shown that Eq. (10) is quantitatively applicable to
wavelets with ∆tpulse ≫ tdw as well, provided that
δQ> and δQ< are understood as time-averaged charges
over an interval & ∆tpulse. Defining ttr ≡ min{L −
2L2, 2L1}/u as the shortest time interval in which δQ =

0, ∆tpulse ≪ ttr ensures that the two counterpropagating
charge pulses will not overlap inside the dot.
In order to time-resolve the fractional charge pulses,

the rf-SET of Fig. 1 and the HEMT of Fig. 2 must
have frequency bandwidths ∆f > (2πttr)

−1, which sets
a lower bound on the size of the device. For an rf-
SET, an optimistic assessment is ∆f ≃ 0.1 − 1GHz.25

Then, in HgTe devices with u ≃ 106m/s, the required
total edge length for the TI RC circuit is L & 1mm.
For L & 1mm, L1 ≃ 500µm and Ld ≃ 5µm, it fol-
lows that tdw ≃ tc . 0.01ns and ttr . 1ns. Moreover,
when ∆t ≃ 0.1ns, a good signal-to-noise ratio requires
Q0 & 103e, so that the maxima of δQ(t) exceed Qrms. A
pulse that injects 1000 electrons is still a relatively small
perturbation compared to the typical number of electrons
contained in the edge states (∼ Lµ/π~vF & 5× 103).
Regarding the TI mesa of Fig. 2, typical HEMTs pos-

sess very high frequency bandwidths (∆f & 10GHz)
and are able to detect charge pulses at sub-nanosecond
timescales. Yet, this enhanced time resolution comes at a
cost of a much reduced charge sensitivity. For instance,
in Ref. [11] the charge resolution was ∼ 100 electrons.
In order to compensate for this a larger number of elec-
trons must be injected, which may then lead to undesired
inelastic and nonlinear effects.

VI. DISCUSSION

A. Inelastic charge backscattering

The experiments of Figs. 1 and 2 can be successfully
implemented only if the time tin for inelastic backscat-
tering (which is permitted by time-reversal symmetry) is
longer than L/u. While this condition appears achievable
at sufficiently low temperatures, current HgTe TI edges
are plagued with quasi-2D conducting puddles26 that ren-
der utin ≃ 10µm ≪ L. It is likely that, as experiments
improve, conducting droplets will become far less com-
mon. Alternatively, InAs/GaSb/AlSb quantum wells17

host 2D TIs with slow edge states (vF ≃ 3 × 104m/s).
Therefore, TI RC circuits fabricated with these mate-
rials could be small (L ≃ 10µm) and still satisfy both
utin > L and ∆f & (2πttr)

−1.

B. Influence of Rashba spin-orbit interaction

Throughout this paper we have assumed QSHI edges
whose spin quantization axes coincide with the growth di-
rection of the quantum well. This assumption no longer
holds in presence of structural inversion asymmetry and
its accompanying Rashba spin-orbit interaction (SOI),
which can be sizeable in HgTe quantum wells. In its sim-
plest realization,20 Rashba SOI rotates the spin quanti-
zation axis of a 2D TI edge. The rotation angle can be
tuned by a gate acting on the QSHI, and the rotation
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axis varies from one edge of the device to another. Con-
sequently, the spin density that tunnels from the injector
is no longer parallel or antiparallel to the spin quantiza-
tion axis at the QSHI edge.
Let us suppose that the quantization axis of the edge

states at the injection site is n̂ 6= ẑ. Then, Eq. (10)
remains valid if we redefine

P = (Q0,+ −Q0,−)/Q0, (11)

where Q0,± = Q0↑|〈↑ |n̂,±〉|2+Q0↓|〈↓ |n̂,±〉|2 and |n̂,±〉
are eigenstates of σ · n̂. Thus, even when the injected
pulse is fully spin polarized (Q0↑ = Q0), P < 1 due to
n̂ 6= ẑ. The fingerprints of Rashba SOI in charge fraction-
alization can be singled out by measuring the dependence
of P on the gate voltage applied to the QSHI.
Although Rashba SOI entails different spin quantiza-

tion axes along different TI edges, there is no any elastic
bacskcattering at the corners (assumed to be smooth on
lengthscales ∼ ~vF /µ). Instead, the edge states (which
are now eigenstates of the full Hamiltonian including
Rashba SOI) have spatially inhomogeneous spin textures.
The spin densities attached to the fractional charges pre-
cess as the pulses travel along the circuit (see Appendix).

VII. CONCLUSIONS

We have theoretically designed two topological insu-
lator circuits that may enable a hitherto elusive time-

resolved measurement of fractional charges in nonchiral
Luttinger liquids. The main advantage of these TI cir-
cuits in comparison with previous proposals (such as the
three terminal quantum wire geometries) is that they can
be made robust against elastic backscattering, and can be
integrated with noninvasive charge sensors. In a broader
context, our work illustrates a concrete example of how
TI devices may qualitatively outperform ordinary semi-
conductor devices.

Future research avenues include designing probes of
quantum entanglement and calculating higher moments
of charge (e.g. 〈QiQj〉− 〈Qi〉〈Qj〉) in TI RC circuits and
TI mesas containing multiple charge sensors.
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Appendix A: Charge and spin fractionalization for a short injection pulse

In this Appendix we provide calculational details leading to Eq. (2) of the main text. We also calculate the spin
polarization of the counterpropagating pulses, in order to justify the dotted and crossed circles ascribed to them in Fig.
1 of the main text. We apply the nonequilibrium Keldysh formalism as presented for instance by A. Crépieux et al.

and by K. Le Hur et al. (Refs. [3] and [23], respectively). However, details of our calculation are quite different from
those references because we take a time-dependent bias. Alternatively we could have employed ordinary linear and
quadratic response functions; however, the advantage of using the Keldysh method lies in its time-ordered correlation
functions, which lend themselves to convenient bosonization tricks. For simplicity we assume that the injected charge
is 100% spin-polarized along the z-axis, which is perpendicular to the page in Figs. 1 and 2. The generalization to
partial spin polarization is straightforward, and it produces Eq.(10) of the main text. In addition, we note that the
injected charge in the all-electrical devices of Figs. 1 and 2 has no net magnetization in the XY plane.

1. Total injected current

The current injected at x = 0 is given by

I0(t) =
1

2

∑

η

〈TK
ie

~
[HT (tη),Ψ

†
↑(tη)Ψ↑(tη)]e

− i

~

∫
K

dt′HT (t′)〉

≃ − ie|t2|
2

~2

∑

η

η

∫ ∞

−∞

dt′ sin

(
∫ t

t′
V (t̃)dt̃

)

Gη.−η(t− t′)Gη,−η
2 (t− t′), (A1)

where η = ± denotes the forward/backward branch of the Keldysh contour, V = (e/~)VSD is the external bias

(incorporated through a Peierls substitution), Gη,−η
2 (τ = t−t′) ≡ 〈TKΨ2↑(0, tη)Ψ

†
2↑(0, t

′
−η)〉 = (2πu)−1(a/u−iητ)−1 is
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a fermionic Green’s function for the injector at x = 0 and Gη,−η(τ) ≡ 〈TKΨ†
↑(0, tη)Ψ↑(0, t

′
−η)〉 = aν−1(2πuν)−1(a/u−

iητ)−ν is a fermionic Green’s function for the helical LL at x = 0. We have assumed without loss of generality that
the injector can be characterized as a free fermion 1D system. In order to derive the second line of Eq. (A1) we have
followed the same steps as in Ref. [23]. For V (t) = (e/~)γδ(t− t0), we obtain

I0(t) =
aν−1

4π2uν+1

2e|t2|2
~2

sin
( e

~
γ
)

Im

[

i/ν

[a/u− i(t− t0)]ν

]

, (A2)

in which derivation we have used sin
(

∫ t

t′
V dt̃

)

= sin(eγ/~)[Θ(t−t0)Θ(t0−t′)−Θ(t′−t0)Θ(t0−t)] and have performed

the integration over t′. Because a/u = 0+, I0(t) vanishes for all times except t→ t0.

2. Current along the helical LL

The current flowing at a point x of the helical liquid at time t is given by

I(x, t) =
1

2

∑

η

〈TK Î(x, tη)e−
i

~

∫
K

dt′HT (t′)〉 ≃ 1

4~2

∑

ηη1

〈TK
evF√
π
∂xθ(x, tη)

∫ ∞

−∞

dt′dt′′HT (t
′
η1
)HT (t

′′
−η1

)〉. (A3)

Following the same steps as in Ref. [23], we reach

I(x, t) =
evF |t2|2
2~2

∑

ηη1

∫ ∞

−∞

dt′
∫ ∞

−∞

dt′′ sin

(

∫ t′

t′′
V dt̃

)

Gη1,−η1(t′ − t′′)Gη1,−η1

2 (t′ − t′′)

×∂x[Gη,η1

θθ (x, t− t′) +Gη,η1

θφ (x, t− t′)−Gη,−η1

θθ (x, t − t′′)−Gη,−η1

θφ (x, t− t′′)], (A4)

where Gθθ and Gθφ are the Green’s functions of the bosonic fields (for a succint summary see e.g. A. Crépieux et al.).

For V (t) = (e/~)γδ(t − t0), sin
(

∫ t′′

t′
V dt̃

)

= sin(eγ/~)[Θ(t′ − t0)Θ(t0 − t′′) − Θ(t′′ − t0)Θ(t0 − t′)] and after a little

algebra we get

I(x, t) =
evF |t2|2
2~2

sin
( e

~
γ
)

∑

ηη1

×
[

∫ ∞

t0

dt′
∫ t0

−∞

dt′′
(

fη,η1(x, t − t′)gη1,−η1(t′ − t′′) + fη,−η1(x, t− t′)gη1,−η1(t′′ − t′)
)

−
∫ t0

−∞

dt′
∫ ∞

t0

dt′′
(

fη,η1(x, t− t′)gη1,−η1(t′ − t′′) + fη,−η1(x, t− t′)gη1,−η1(t′′ − t′)
)

]

, (A5)

where fη,η1(x, τ) ≡ ∂x[G
η,η1

θθ (x, τ) + Gη,η1

θφ (x, τ)] and gη,−η1(τ) ≡ Gη1,−η1(τ)Gη1,−η1

2 (τ). Doing the t′′ integral and
rearranging terms we arrive at

I(x, t) =
aν−1

4π2uν+1

evF |t2|2
~2

sin
( e

~
γ
)

∑

ηη1

∫ ∞

−∞

dt′fη,η1(x, t− t′)
i

ν
η1

1

[a/u− iη1(t′ − t0)]ν
. (A6)

Now we note

∑

ηη1

∫ ∞

−∞

dt′fη,η1η1
i/ν

[a/u− iη1(t′ − t0)]ν
=

∫ ∞

−∞

dt′
[

(f++ + f−+)
i/ν

[a/u− i(t′ − t0)]ν
− (f−− + f+−)

i/ν

[a/u+ i(t′ − t0)]ν

]

.

It will be clear below that the f -functions can be written as PV (1/x)− iπδ(x), where PV is the principal value, δ(x)
is the Dirac delta and x is a real number (or parameter). After verifying that the principal value contributions vanish
upon integrating over t′ from −∞ to +∞, and that I(x, t) is a real number (as it should), we write

I(x, t) = − aν−1

4π2uν+1

evF |t2|2
~2

sin
( e

~
γ
)

∫ ∞

−∞

dt′Im(f++ + f−+ − f−− − f+−)Im

[

i/ν

[a/u− i(t′ − t0)]ν

]

, (A7)
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where the argument of the f -functions is (x, t− t′). Borrowing the standard expressions for Gηη′

θθ and Gηη′

θφ , we obtain

f++(x, τ) + f−+(x, τ) − f−−(x, τ) − f+−(x, τ)

= Θ(τ)

[

1− g

2π

(

i

a+ ivF τ + igx
+

i

a− ivF τ − igx

)

− 1 + g

2π

(

i

a− ivF τ + igx
+

i

a+ ivF τ − igx

)]

, (A8)

where vF = ug and a can be regarded as 0+. The bosonic Green’s functions used for the derivation of Eq. (A8) are
Crépieux’s expressions multiplied by a factor of 2, because we are dealing with spinless fermions [Ψ ∼ exp(i

√
π(θ±φ)].

Besides, Eq. (A8) neglects the charging energy, and is therefore valid provided that x /∈ (L1, L2).
Hence,

Im(f++ + f−+ − f−− − f+−) = [(1− g)δ(vF τ + gx)− (1 + g)δ(vF τ − gx)] Θ(t− t′), (A9)

leading us to

I(x, t) = − aν−1

4π2uν+1

evF |t2|2
~2

sin
( e

~
γ
)

∫ t

−∞

dt′[(1− g)δ(vF (t− t′) + gx)− (1 + g)δ(vF (t− t′)− gx)]Im

[

i/ν

[a/u− i(t′ − t0)]ν

]

=
aν−1

4π2uν+1

e|t2|2
~2

sin
( e

~
γ
)

(1 + g)Im

[

i/ν

[a/u− i(t− t0 − x/u)]ν

]

Θ(x)

− aν−1

4π2uν+1

e|t2|2
~2

sin
( e

~
γ
)

(1− g)Im

[

i/ν

[a/u− i(t− t0 + x/u)]ν

]

Θ(−x)

=
1 + g

2
I0(t− t0 − x/u)Θ(x)− 1− g

2
I0(t− t0 + x/u)Θ(−x), (A10)

which is Eq. (2) of the main text and satisfies current conservation.

3. Spin polarization of the fractional charges

The bias-induced spin-density at a point x of the helical liquid at time t is given by

S(x, t) =
1

2

∑

η

〈TK Ŝ(x, tη)e
− i

~

∫
K

dt′HT (t′)〉, (A11)

where Ŝ = (1/2)
∑

αβ Ψ
†
ασαβΨβ (α, β ∈ {↑, ↓}). The bosonization of Sz immediately yields Sz(x, t) = I(x, t)/(2evF ).

Likewise, a quick inspection suffices to show that Sx(x, t) = Sy(x, t) = 0. In effect, a perturbative expansion of (say)
Sx in t2 produces expectation values of strings fermion creation and annihilation operators, in which the number of
right-movers (spin-down) and left-movers (spin-up) differs by one. It is easy to verify that those expectation values
vanish (see e.g. Appendix C of Giamarchi in Ref. [1]). In sum, the nonequilibrium spin polarization in the QSHI of
Fig. 1 is

S(x, t) = ẑ

[

1 + g

4g

I0(t− t0 − x/u)

e u
Θ(x)− 1− g

4g

I0(t− t0 + x/u)

e u
Θ(−x)

]

. (A12)

The spin-densities of the counterpropagating pulses are opposite in direction and unequal in magnitude [ratio=
(1− g)/(1 + g)].
It is worth noting that Sx and Sy would not have vanished if the injected spin polarization was not parallel to the

spin quantization axis ẑ of the edge states. Such is the case e.g. in presence of Rashba spin-orbit interactions. In this
situation, Sx and Sy show oscillatory behavior characteristic of spin precession; for example,

Sx(x > 0, t) ∝ cos(2kFx)δ(x − u(t− t0)) and Sy(x > 0, t) ∝ sin(2kFx)δ(x − u(t− t0)), (A13)

where we have used 〈ψ†
↑(x, t)ψ↓(x, t)〉 ∝ exp(2ikFx) and have assumed that the injected charge is partly spin polar-

izated along x̂. The precession rate is independent of the strength of electron-electron interactions.
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