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We emulate renormalization group models, such as the Spin-Boson Hamiltonian or the anisotropic
Kondo model, from a quantum optics perspective by considering a superconducting device. The
infra-red confinement involves photon excitations of two tunable transmission lines entangled to an
artificial spin-1/2 particle or double-island charge qubit. Focusing on the propagation of microwave
light, in the underdamped regime of the Spin-Boson model, we identify a many-body resonance
where a photon is absorbed at the renormalized qubit frequency and reemitted forward in an elastic
manner. We also show that asymptotic freedom of microwave light is reached by increasing the input
signal amplitude at low temperatures which allows the disappearance of the transmission peak.

PACS numbers: 03.65.Yz, 03.75.Lm, 42.50.-p, 85.25.-j

The asymptotic confinement phenomenon in the infra-
red limit is omnipresent in condensed-matter systems and
it plays a crucial role in quantum impurity systems, such
as the Kondo model describing a single spin-1/2 parti-
cle interacting with a bath of conduction electrons [1].
The Kondo effect can also be considered as an exam-
ple of asymptotic freedom, i.e., the coupling of electrons
and spin becomes weak at high temperatures or high
energies. This model introduced to describe resistance
anomalies in metals with magnetic impurities embodies
the “hydrogen atom” of many-body physics [2, 3]. Dis-
tinct aspects of this infra-red confinement phenomenon
can also be addressed through a one-dimensional boson
bath (transmission line) entangling a spin-1/2 particle or
two-level system resulting in the Spin-Boson model which
can be mapped onto the anisotropic Kondo model and
exhibits a plethora of interesting phenomena such as an
underdamped-overdamped crossover in the spin dynam-
ics and a quantum phase transition [4–6]. In this Letter,
we consider the superconducting Josephson circuit of Fig.
1, which allows to investigate the quantum entanglement
in the Spin-Boson model and therefore properties of the
anisotropic Kondo model through transport of photons.
In the underdamped limit, we prospect to reveal a many-
body Kondo resonance in the elastic power of a transmit-
ted microwave photon. This circuit offers the opportu-
nity to export many-body physics in quantum optics.

The superconducting system comprises an artifi-
cial spin or double-island charge qubit [7–9] interact-
ing with the zero-point fluctuations of two long one-
dimensional transmission lines envisioned from tunable
one-dimensional Josephson junction arrays [10–12]. In
order to maximize the elastic transmission of a microwave
photon, the spin-1/2 object is built from a superconduct-
ing double Cooper-pair box where spin up and spin down
states refer to the two degenerate charge states (0, 1)
and (1, 0), respectively corresponding to one additional
Cooper pair on either island [13]. Recently, geometries
involving artificial atoms and transmission lines or cavi-
ties have already been realized experimentally [14, 15].

FIG. 1: (Color online) Superconducting circuit envisioned
from a double-island charge qubit coupled to two one-
dimensional Josephson junction arrays allowing to produce
a Kondo resonance in the elastic power of microwave light.

Below, we will assume that the charging energy corre-
sponds to the most dominant term in the Hamiltonian.
In fact, close to a charge degeneracy line [7], we can apply
the pseudospin representation for the charge states (0, 1)
and (1, 0) reinterpreting them as spin-up and spin-down
eigenstates of the operator σz [13]. The effective detun-
ing ε = (E10 − E01) → 0, where E10 (E01) corresponds
to the energy of the spin-down (spin-up) eigenstate, can
be adjusted through the gate voltages Vga and Vgb.

Transfer of Cooper pairs between superconducting is-
lands and leads is described through the Josephson terms
EJL and EJR in Fig. 1. In the weak tunneling limit
(EJL, EJR) � min(E11 − E10, E00 − E10) one can per-
form a standard perturbation theory and cotunneling of
Cooper pairs then costs an effective energy [13]:

EJ =
EJLEJR

4

∑

j=0,1

[
1

Ejj − E01
+

1

Ejj − E10

]
, (1)

where E11 (E00) corresponds to the energy to add
(remove) one extra Cooper on the double-island.
The Josephson Hamiltonian then takes the form
−(EJ/2)σ+ exp[i(φl − φr)(x = 0)] + h.c. [16] where the
Josephson phases φl(x = 0) and φr(x = 0) of the left and
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right one-dimensional transmission lines read (j = l, r)

φj(x = 0) = i
∑

k>0

2e√
Lc

1√
~ωk

(bjk − b†jk). (2)

This Josephson term captures the transmission of a given
Cooper pair across the system in Fig. 1. The su-
perconducting reservoirs are explicitly modeled by one-
dimensional transmission lines revealing low-energy pho-
ton excitations. The left and right transmission lines are
described by two distinct sets of harmonic oscillator (pho-
ton) operators blk and brk. Below, we consider the limit
where (CL, CR) � Ct and (EJL, EJR) � ~2/LT in Fig.
1. The spatial solution of the modes can be expressed
in terms of the wavevectors k ≈ mπ/(2L), where m is
odd for symmetric modes and even for antisymmetric
modes, and a transmission line is diagonalized introduc-
ing bosonic creation and annihilation operators. Here, L
corresponds to the length of each transmission line and
c = Ct/a to the capacitance per unit length; a is the size
of a unit cell in each transmission line and we consider
the thermodynamic limit a/L → 0. The photon waves
propagate at the speed v = ωca where ωc = 1/

√
LtCt,

the inductances Lt are defined in Fig. 1, and ωk = v|k|.
To build an explicit analogy with the spin-boson

Hamiltonian, we rewrite the Josephson term as a trans-
verse field HJ = −(EJ/2)σx performing a unitary trans-
formation or spin rotation (see footnote in [29]). Such a
procedure, also referred to as a polaron transformation
[4, 5], has been applied in the case of a spin-1/2 interact-
ing with the sound modes of a Bose-Einstein condensate
[17]. Since the Hamiltonian of the transmission lines does
not commute with the spin rotation this produces an ef-
fective interaction between the two-level system and the
photon excitations. This term can be combined with the
capacitive couplings CL and CR of Fig. 1. More pre-
cisely, since the electrical potential (operator) at the end
of a transmission line, i.e., at x = 0, takes the form

Vj(x = 0) =
1√
cL
∑

k>0

√
~ωk(bjk + b†jk), (3)

this results in the Spin-Boson Hamiltonian:

H =
∑

j=l,r

∑

k>0

~v|k|
[
b†jkbjk +

1

2

]
− ε

2
σz −

EJ
2
σx (4)

+
∑

k>0

αk

(
−γl(blk + b†lk) + γr(brk + b†rk)

) σz
2
.

The charge operators on the two islands take the forms
Qb = 2e

2 (1 + σz) and Qa = 2e
2 (1 − σz). Hereafter the

detuning will be fixed to ε→ 0 and αk = (2e/
√
cL)
√
~ωk.

The couplings γr and γl are given by:

γr = −1 +
CR
2

(
CΣa

CΣaCΣb − C2
m

− Cm
CΣaCΣb − C2

m

)
(5)

γl = −1 +
CL
2

(
CΣb

CΣaCΣb − C2
m

− Cm
CΣaCΣb − C2

m

)
.

Following Ref. 7 and the notations of Fig. 1, we have de-
fined the total capacitances seen by each superconducting
island: CΣa = CL+Cga+Cm and CΣb

= CR+Cgb+Cm.
The analogy with the Spin-Boson model [4, 5] becomes

complete when rewriting the Hamiltonian in terms of the
symmetric and antisymmetric bosonic combinations:

bsk = cos θblk + sin θbrk (6)

bak = sin θblk − cos θbrk.

Choosing cos θ = γr/
√
γ2
l + γ2

r and sin θ = γl/
√
γ2
r + γ2

l ,
we note that the boson operator bak only couples to the
two-level system through the coupling λk = αk

√
γ2
l + γ2

r .
Each transmission line mimics a physical resistor then
producing dissipation in the system. In the present cir-
cuit, the spectral function of the environment is defined
as J(ω) = (π/~)

∑
k>0 λ

2
kδ(ω − ωk) = 2π~αωe−ω/ωc

where ωc � EJ/~ represents the high-frequency cutoff
of this Ohmic environment [30] and α is given by

α =
2R

RQ
(γ2
l + γ2

r ). (7)

Here, RQ = h/(2e)2 denotes the quantum of resistance

and R =
√
Lt/Ct is the resistance of each transmission

line. It is instructive to observe that in the limit of negli-
gible capacitances CL and CR the system naturally con-
verges towards the symmetric condition γl = γr = −1.

The Spin-Boson Hamiltonian with Ohmic dissipation is
intimately related to the Kondo model in the anisotropic
regime via bosonization [18]. Other Spin-Boson Hamilto-
nians such as the Jaynes-Cummings model, in contrast,
involve a two-level system interacting with a single mode
of a cavity [19]. Other impurity models with photons
have also been considered [20, 21]. We are interested in
the underdamped regime (0.1 � α � 0.2) of the Spin-
Boson model where the two-level system displays visible
Rabi oscillations but dissipation modifies the qubit fre-
quency which is related to the Kondo energy [4, 5]

ER(α) = ~ωR = EJ (EJ/~ωc)α/1−α . (8)

To understand the physical content of the energy ER,
it is relevant to apply the unitary transformation U =
exp(Al−Ar) where Aj =

∑
k>0

αkγj
~ωk

(b†jk− bjk)σz/2 such

that the Hamiltonian can be rewritten as (H̃ = U†HU):

H̃ = −EJ
2
σ+ei(Φl−Φr)+h.c.+

∑

j=l,r

∑

k>0

~v|k|
[
b†jkbjk +

1

2

]
,

(9)
where the phases Φl = −γlφl(x = 0) and Φr =
−γrφr(x = 0) contain Josephson physics as well as
(weak) charging effects. Then, we can define an effec-
tive transverse field acting on the dissipative two-level
system as ∆ = EJ〈cos(Φl − Φr)〉 such that the ar-
tificial atom is described by the effective Hamiltonian
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H̃eff = −(ε/2)σz − (∆/2)σx. Bethe ansatz calculations
[22, 23] and the adiabatic renormalization [4] in the un-
derdamped limit where 0.1 � α � 0.2 indeed confirm
that ∆ = ER. The bare qubit frequency EJ/~ of the
two-level system is modified due to the strong renormal-
ization effects associated with the photon bath. One way
to experimentally measure the Kondo energy ER would
be through charge measurements since the Fermi liquid
ground state imposes that 〈σz〉 ∝ ε/ER at small detun-
ing and low temperatures kBT � ER, and the prefactor
is accessible from Bethe Ansatz calculations [23].

Below, we show that in the underdamped regime and
for temperatures kBT � ER, the Kondo energy ER
can be directly measured based on the (elastic) resonant
propagation of a photon. When the system is driven by
an external coherent source, the drive, the circuit and the
outgoing waves can be treated through the input-output
theory [24]. Previous works have studied the limit α→ 0
where many-body effects can be fully ignored (the elas-
tic resonance is centered at the bare frequency of the
two-level system and converges to a δ-function) [14]. We
assume perfect transmission of the microwave signal in
the transmission lines such that the input signal reads

V inl (t) =
∑

k>0

αk
2e

(
e−iωk(t−t0)blk(t0) + eiωk(t−t0)b†lk(t0)

)
.

(10)
Here, t0 < t denotes a time in the distance past before
any wave packet has reached the two-level system. Simi-
larly, an output field in the left transmission line at time
t1 > t being a time in the distant future after the input
field has reached the double-island Cooper box system
reads

V outl (t) =
∑

k<0

αk
2e

(
e−iωk(t−t1)blk(t1) + eiωk(t−t1)b†lk(t1)

)
.

(11)
Through the Heisenberg relation ḃlk = (i/~)[H, blk] =
−iωkblk + (i/2~)γlαkσz we relate the properties of the
input signal to those of the two-level system.

Below, since we focus on the underdamped limit
of the Spin-Boson model which is characterized by a
(Rabi) resonance at ω = ωR, we establish 〈σz(ω)〉 ≈
γlχ(ω, Pin)〈V inl (ω, Pin)〉 for frequencies in the vicinity of
ωR where Pin = 〈(V inl )2〉/R is the average input power
[31]; see EPAPS [25]. Then, we can introduce the reflec-
tion coefficient r(ω, Pin) = 〈V outl (ω, Pin)〉/〈V inl (ω, Pin)〉.
Defining the output signal in the right transmission line
as

V outr =
∑

k>0

αk
2e

(
e−iωk(t−t1)brk(t1) + eiωk(t−t1)b†rk(t1)

)
.

(12)
the transmission coefficient is t(ω, Pin) =
〈V outr (ω, Pin)〉/〈V inl (ω, Pin)〉. Using the Heisenberg

relation of ḃlk with the definitions above we obtain (see

FIG. 2: (Color online) Normalized elastic transmitted power
tt∗(ω) as a function of frequency and driving power for γl =
γr. The parameters are chosen as α = 0.15, ωR = 1 = PR,
EJ ≈ 1.9, ωc = 50 and ~ = 1 (we set the ratio EJ/~ωc to
be moderate, but the “many-body” resonance frequency or
renormalized qubit frequency ωR is distinct from EJ/~).

EPAPS [25]):

r(ω, Pin) =

(
1 +

2iγ2
l

γ2
l + γ2

r

J(ω)χ(ω, Pin)

)
, (13)

t(ω, Pin) = − 2iγrγl
γ2
l + γ2

r

J(ω)χ(ω, Pin).

First, we consider the linear regime where the am-
plitude of the input signal is very small, Pin → 0 (see
footnote in [29]). For frequencies close to the confine-
ment frequency, again assuming the underdamped limit
(0.1 � α � 0.2), we derive an expression of the spin sus-
ceptibility which agrees with Numerical Renormalization
Group results [26]; see EPAPS [25]. This leads to

χ(ω) =
ωR/~

ω2
R − ω2 − iγ(ω)

, (14)

where the dissipation factor takes the form γ(ω) =
ωRJ(ω)/~ and is in agreement with the (many-body)
Fermi-liquid type ground state [5]. In the linear regime of
small input power, we check that the scattering matrix is
unitary, |r|2 + |t|2 = 1, since J(ωR)=mχ(ωR) = 1 show-
ing that the photon propagation is purely elastic close
to the resonance (see Fig. 2). We corroborate that the
normalized (elastic) power tt∗(ωR) flowing to the right
transmission line reaches unity since here γl ≈ γr.

In the underdamped regime, the photon propagation
across the system is characterized by a many-body res-
onance at the frequency ωR [4–6]: a photon is absorbed
at the frequency ωR and reemitted forward in a purely
elastic manner. In the underdamped regime of the cir-
cuit, the qubit is described by a resonance which turns
the “photon+Cooper pair” system into an ideal conduc-
tor. The phase associated with the reflection coefficient
satisfies the following properties. For small γl, the phase
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vanishes since V outl = V inl for an open termination and
for γr = 0 the phase is consistent with the Kondo-type
2× π/2 phase shift of a right-moving wave.

In fact, the appearance of resonances in such a circuit is
not so surprising. For example, let us ignore the Coulomb
blockade physics in the two islands completely and re-
place the Josephson junctions EJL and EJR by purely
linear inductances LL and LR. When CL = CR = C
and LL = LR = L, then we corroborate a resonance
with r = 0 at the frequency ω∗ = 1/

√
CL+ 2CmL; how-

ever, we emphasize that ω∗ is distinct from ωR which
has a many-body origin. In addition, nonlinear effects
unavoidably appear in the Josephson circuit of Fig. 1
when increasing the amplitude of the input signal. Un-
der a strong drive, this produces the accumulation of
a macroscopic number of photons in the left transmis-
sion line which will cause the saturation of the two-level
system excitation and the destruction of the resonance
peak. More precisely, evaluating the Franck-Condon fac-
tor 〈cos(Φl−Φr)〉 = exp−[〈(Φl−Φr)

2〉/2] when increas-
ing the input signal amplitude, we observe that 〈Φ2

l 〉
yields an extra contribution (note, Pin = 〈Vl(x = 0)2〉/R)

1

(~ωR)2

∑

q∈′

α2
qγ

2
l 〈b†lqblq〉 =

PinR(2e)2γ2
l

(~ωR)2
, (15)

and the symbol ′ refers to momenta such that ωq ∼ ωR
in the case of a monochromatic signal with a frequency
close to ωR. The Josephson process in Eq. (9) becomes
exponentially diminished and this results in an exponen-
tial suppression of =mχ(ω = ωR) (see EPAPS [25])

=mχ(ωR, Pin)J(ωR) = exp−
(
Pin
PR

R

RQ
πγ2

l

)
, (16)

where PR = ~ω2
R. The nonlinearity of the two-level sys-

tem produces an exponential decrease of the spin sus-
ceptibility at ω = ωR. Then, this causes the disappear-
ance of the Rayleigh transmission resonance; see Fig. 2.
When Pin � PR one reaches the asymptotic freedom
of microwave light where r(ωR) ∼ 1; see Eqs. (13) and
(16). These nonlinear effects are driven by the Josephson-
type Hamiltonian in Eq. (9). Increasing the driving
power Pin, the scattering matrix becomes non-unitary
since J(ωR)=mχ(ωR, Pin) < 1 (which hides the presence
of additional inelastic Raman corrections [14]). An open
question concerns the inelastic Raman spectrum, which
should become prominent in the overdamped limit of the
Spin-Boson model. The asymptotic freedom of light, re-
sulting in r(ωR) ∼ 1 can also be reached when increasing
the temperature producing a prominent decoherence of
the two-level system and a strong decrease of 〈σx〉 and of
the Josephson coupling in Eq. (9); see EPAPS [25].

To summarize, in the underdamped regime of the Spin-
Boson model, sending a microwave photon produces a
many-body Kondo resonance. For moderate and acces-
sible values of the dissipation strength 0.1 � α � 0.2,

the confinement frequency ωR is clearly distinguishable
from the bare Josephson frequency EJ/~ of the two-level
atom as a result of the continuum of photon modes in
the (very long) transmission lines. The width of the res-
onance peak reflects the Fermi-liquid type ground state.
We assumed that the detuning ε and thermal effects
through kBT are smaller than the Kondo energy ER, and
in the underdamped regime, ER is not too small com-
pared to the Josephson energy EJ . For Josephson junc-
tion arrays with large resistances, this circuit would offer
the opportunity to study overdamped spin dynamics and
quantum phase transitions using nonlinear optics. Note
that the development of techniques such as the numerical
renormalization group [27] or a stochastic-type approach
[28] would be necessary to combine the traditional input-
output theory with many-body physics of quantum impu-
rity models. Finally, such superconducting quantum de-
vices can be used for controllable (single-)photon sources
in which a plethora of novel effects related to many-body
physics and nonlinear quantum optics can be realized.

This work was supported by DOE, under the grant DE-
FG02-08ER46541. We thank M. Devoret for discussions.
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We introduce the input-output theory and we derive an analytical expression of the dynamical
spin susceptibility in the weak-coupling limit in the presence of an incoming signal which illustrates
the concepts of the Renormalization Group and agrees with the Numerical Renormalization Group.
We also investigate nonlinear effects close to the Kondo (resonance) frequency or renormalized qubit
frequency ωR when increasing the amplitude of the input signal.

PACS numbers: 03.65.Yz, 03.75.Lm, 42.50.-p, 85.25.-j

INPUT-OUTPUT ANALYSIS

First, we apply the concepts issued from input-output theory for the left transmission line and we derive Eqs. (13)
in the main text. Let us start with the Heisenberg equations of motion:

ḃlk =
i

~
[H, blk] (1)

= −iωkblk +
i

2~
γlαkσz(t).

Note that the original Hamiltonian and H defined in the main text are related through a unitary transformation
analogous to U . Now, ḃlk + ḃ†lk = (i/~)[UHU−1, blk + b†lk] = (i/~)[H, blk + b†lk] with ḃlk = dblk/dt where U has been

defined in the main text. Therefore, ḃlk = (i/~)[H, blk].
By integrating the Heisenberg equations of motion, this results in:

blk(t) = exp[−iωk(t− t0)]blk(t0) +
i

2~
γlαk

∫ t

t0→−∞
dτe−iωk(t−τ)σz(τ) (2)

b†lk(t) = exp[iωk(t− t0)]b†lk(t0)− i

2~
γlαk

∫ t

t0

dτeiωk(t−τ)σz(τ).

ωk is the bare frequency of the transmission line (when setting γl = 0), and therefore we identify t0 < t as a time in
the distance past before any wave packet has reached the qubit (two-level system). Assuming perfect transmission of
the signal in the left transmission line then we identify:

V inl (t) = Vl(x = 0, t) =
∑

k

αk
2e

(
exp[−iωk(t− t0)]blk(t0) + exp[iωk(t− t0)]b†lk(t0)

)
. (3)

Now, let us consider an output field in the left transmission line at time t1 > t being a time in the distant future
after the input field has reached the qubit. In this case:

blk(t) = exp−iωk(t− t1)blk(t1)−
∫ t1→+∞

t

dτ
i

2~
γlαke

−iωk(t−τ)σz(τ) (4)

b†lk(t) = exp iωk(t− t1)b†lk(t1) +

∫ t1→+∞

t

dτ
i

2~
γlαke

iωk(t−τ)σz(τ).

Then, identifying:

V outl (t) = Vr(x = 0, t) =
∑

k

αk
2e

(
exp[−iωk(t− t1)]blk(t1) + exp[iωk(t− t1)]b†lk(t1)

)
, (5)

after Fourier transformation and comparing Eqs. (2) and (4), we get:

V outl (ω) = V inl (ω) + i
γl

γ2l + γ2r
J(ω)σz(ω)− i γl

γ2l + γ2r
J(ω)σ∗z(ω) (6)

(V outl )∗(ω) = (V inl )∗(ω)− i γl
γ2l + γ2r

J(ω)σ∗z(ω) + i
γl

γ2l + γ2r
J(ω)σz(ω).



(We check that the results are unchanged restricting the sum in the expression of V inl to
∑
q>0 and the sum in the

expression of V outl to
∑
q<0. We can always change q → −q > 0 in the sum for V outl .)

Defining 〈σz(ω)〉 = χ(ω, Pin)γl〈V inl (ω, Pin)〉 and combining the two lines then we find

〈V outl (ω, Pin)〉 = 〈V inl (ω, Pin)〉
(

1 + 2i
γ2l

γ2l + γ2r
J(ω)χ(ω, Pin)

)
. (7)

The reflection coefficient in the main text then is defined as:

r(ω, Pin) =
〈V outl 〉
〈V inl 〉

= 1 + 2i
γ2l

γ2l + γ2r
J(ω)χ(ω, Pin). (8)

Note also that σ∗z(τ) = σz(τ) implies χ∗(ω) = χ(−ω).
Proceeding in the same way with ḃrk then we obtain:

t(ω, Pin) = − 2iγrγl
γ2l + γ2r

J(ω)χ(ω, Pin). (9)

DYNAMICAL SUSCEPTIBILITY IN UNDERDAMPED AND LINEAR REGIME

Here, we derive an expression of the dynamical spin susceptibility χ(ω) for frequencies ω close to the confinement
frequency ωR based on a weak-coupling expansion assuming a negligible input power. We apply a procedure analogous
to the Non-Interacting Blip Approximation which has been shown to be valid in the limit 0.1 � α � 0.2 [1–3].

Let us start with the Heisenberg equation of motion where the Hamiltonian H is given in Eq. (4) of the main text
and evaluate 〈σz(ω)〉 (H and the original Hamiltonian are related through unitary transformation which commutes
with the operator σz):

σ̇z =
i

~
[H,σz] = −EJ

~
σy. (10)

Then, we obtain:

σ̇y =
EJ
~
σz −

(
γl
~
∑

k>0

αk(blk + b†lk)− γr
~
∑

k>0

αk(brk + b†rk)

)
σx. (11)

For simplicity, here we assume that ε = 0 strictly. From these two equations, we obtain:

σ̈z = −EJ
~
σ̇y = −EJ

~

(
EJ
~
σz −

(
γl
~
∑

k>0

αk(blk + b†lk)− γr
~
∑

k>0

αk(brk + b†rk)

)
σx

)
. (12)

As a result:

σ̈z +

(
EJ
~

)2

σz = +
EJ
~

(
γl
~
∑

k>0

αk(blk + b†lk)− γr
~
∑

k>0

αk(brk + b†rk)

)
σx. (13)

On the other hand, we get:

σ̇x = +

(
γl
~
∑

k>0

αk(blk + b†lk)− γr
~
∑

k>0

αk(brk + b†rk)

)
σy. (14)

This is equivalent to:

σx(t) = σx(ti)−
~
EJ

∫ t

ti

dt′
(
γl
~
∑

k>0

αk(blk + b†lk)(t′)− γr
~
∑

k>0

αk(brk + b†rk)(t′)

)
σ̇z(t

′). (15)
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During the integration procedure, ti < t represents an initial time which is set arbitrarily (but at t = ti we must
satisfy that the incoming signal has already reached the two-level system since we want to study the spin response to
an incoming microwave signal). This results in:

σ̈z(t) +

(
EJ
~

)2

σz(t) =
EJ
~

(
γl
~
∑

k>0

αk(blk + b†lk)(t)− γr
~
∑

k>0

αk(brk + b†rk)(t)

)
σx(ti) (16)

−
(
γl
~
∑

k>0

αk(blk + b†lk)(t)− γr
~
∑

k>0

αk(brk + b†rk)(t)

)

×
∫ t

ti

dt′
(
γl
~
∑

q>0

αq(blq + b†lq)(t
′)− γr

~
∑

q>0

αq(brq + b†rq)(t
′)

)
σ̇z(t

′).

If V inl → 0, at the time ti, we can assume that the spin-boson model is in its ground state and therefore from Bethe
Ansatz we rigorously identify [4] 〈σx(ti)〉 = 〈σx〉 → ER/EJ (again, assuming that we are in the weak-coupling regime
with 0 ≤ α� 1/3; for another derivation, see below). More precisely, we obtain the exact equation (for all α) [4, 5]:

〈σx〉 =
1

2α− 1

EJ
~ωc

+ C(α)
ER
EJ

, (17)

where

C(α) =
e−b/(2−2α)Γ[1− 1/(2− 2α)]√
π(1− α)Γ[1− α/(2− 2α)]

, (18)

Γ is the incomplete gamma function and b = α lnα+ (1− α) ln(1− α). Then, we apply the mean-field decoupling:

EJ
~

〈(
γl
~
∑

k>0

αk(blk + b†lk)(t)− γr
~
∑

k>0

αk(brk + b†rk)(t)

)
σx(ti)

〉
≈ ER

~
γl
~
V inl (t). (19)

The mean-field decoupling (averaging) is usually valid in the underdamped limit of the spin-boson model [3], and then
the input signal V inl (t) = V0 cos(ωt) then (simply) mimics a time-dependent detuning ε(t) acting on the two-level
system. This approximation is well justified for time scales smaller than the time ∼ 1/ωR which corresponds to the
crossover scale toward the strong-coupling regime. Here, we extend this approximation for frequencies slightly below
the confinement frequency. This will result in σz(ω) ≈ γlχ(ω)V inl (ω) in the vicinity of the confinement frequency.

Now, let us focus on the (real part of the) last term in Eq. (16). Assuming ti − t→ −∞, this gives:

− γ2l + γ2r
~2

∫ t

−∞
dt′
∑

k>0

(
α2
k〈blkb†lk〉e−iωk(t−t

′) + α2
k〈b†lkblk〉eiωk(t−t

′)
)
〈σ̇z(t′)〉 (20)

→ −γ
2
l + γ2r
~2

∫ t

−∞
dt′
∑

k>0

α2
k coth

(
β~ωk

2

)
cos(ωk(t− t′))〈σ̇z(t′)〉,

where β = 1/kBT . When Pin = 〈(V inl )2〉/R = V 2
0 /2R→ 0, the boson modes are taken to be in thermal equilibrium.

After Fourier transformation (assuming t ∼ 0), then to compute the real part one needs to evaluate:

− 1

~π
ω2P

(∫ ωc→+∞

0

dω′
1

ω′2 − ω2
J(ω′) coth

(
β~ω′

2

))
〈σz(ω)〉, (21)

and P denotes the principal part of the integral.
In particular, for frequencies ω ∼ EJ/~ which corresponds to the resonance (Rabi) frequency of the non-dissipative

spin and for T → 0, this renormalizes the term (EJ/~)2〈σz(ω)〉 in ω2
R〈σz(ω)〉 where ωR = ER/~ formally obeys:

ω2
R =

E2
R

~2
=

(
EJ
~

)2

− 2α

(
EJ
~

)2

ln

(
~ωc
EJ

)
. (22)

The present approach assumes a weak-coupling α for which ωR can be identified to the Kondo frequency:

ωR ≈
EJ
~

(
EJ
~ωc

) α
1−α

. (23)
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This formula is formally valid for kBT � EJ since the dominant contribution stems from frequencies higher than
EJ/~. The renormalization procedure in the Spin-Boson model, consisting to integrate out high-frequency photon
modes, results in an effective Josephson energy ER < EJ [1].

To compute the imaginary part leading to dissipation (damping), first let us consider that kBT > ER, such that
the weak-coupling decoupling in Eq. (19) becomes rigorous. For frequencies ω ∼ ωR, then we find a damping term

−iγ(ω, T )〈σz(ω)〉, (24)

where

γ(ω, T ) =
kBT

~2
J(ω). (25)

We check that γ is odd in frequency which guarantees that χ∗(ω) = χ(−ω). Now, let us decrease progressively the
temperature such that kBT ∼ ER. Then, the damping term takes the quantum form:

γ =
ωR
~
J(ω). (26)

The last form is the correct form of the dissipation term in the quantum limit (kBT ≤ ER): This is reminiscent of
the Korringa-Shiba relation at low frequency reflecting the Fermi-liquid Kondo ground state [6, 7]:

=mχ(ω) = J(ω)<eχ(ω = 0). (27)

More precisely, for frequencies ω in the vicinity of ωR, we find the following dynamical response:

〈σz(ω)〉
(
−ω2 + ω2

R − iγ(ω)
)
≈ ωR

γlV
in
l (ω)

~
. (28)

The spin dynamical susceptibility for ω close to ωR then takes the underdamped form (see Eq. (14) in the main text):

χ(ω) ≈ (ωR/~)

ω2
R − ω2 − iγ(ω)

. (29)

This form of χ(ω) is in fact in good agreement with Numerical Renormalization Group results for 0.1 � α � 0.2 [7]
and therefore in the main text we will assume this form of the spin susceptibility for 0.1 � α � 0.2. Note that this
results in the equalities:

=mχ(ωR)J(ωR) = 1 (30)

<eχ(ωR) = 0.

Combining these equations with Eqs. (13) in the main text, this shows that the scattering matrix is unitary when
Pin → 0 for ω ∼ ωR. Most of the spectrum is elastic close to the resonance.

Eq. (29) is the susceptibility used in the main text, for the underdamped regime (0.1 � α � 0.2) and not too low

frequencies. Note that in the low-frequency limit ω � ωR, replacing
∑
k>0−αkγl(blk+b†lk)σz/2 by −V inl γlσz/2 would

become less accurate.

NONLINEAR EFFECTS WHEN INCREASING THE INPUT POWER

From Eq. (19), Eq. (29) must be in fact understood as:

χ(ω) ≈ EJ〈σx(ti)〉/~2
ω2
R − ω2 − iγ(ω)

, (31)

To investigate the effect of the input signal amplitude (power), we notice that the result 〈σx(ti)〉 → ER/EJ can be
easily understood in terms of the polaron transformation resulting in the transformed Hamiltonian H̃ in the main text.
The effect of the bath is included only through the modification σ+ → σ+ exp i(Φl−Φr) and σ− → σ− exp−i(Φl−Φr).
Therefore, at sufficiently weak couplings (α� 1/2) [4] and T = 0, this results in 〈σx〉 = 〈σx〉α=0 × 〈cos(Φl − Φr)〉 =
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〈cos(Φl − Φr)〉. Again, we have assumed ε → 0. This is the exponential dressing Franck-Condon factor [1]. This
implies that Eq. (31) is formally equivalent to:

χ(ω) =
EJ
~2
〈cos(Φl − Φr)(ti)〉
ω2
R − ω2 − iγ(ω)

. (32)

We identify 〈cos(Φl − Φr)〉 = exp−[〈(Φl − Φr)
2〉/2]. Now, let us analyze the terms in 〈(Φl − Φr)

2〉. One finds:

〈Φ2
l 〉 = −

∑

k>0

γ2l
α2
k

(~ωk)2
〈(blk − b†lk)(blk − b†lk)〉. (33)

When Pin → 0 and T → 0, we get 〈blkb†lk〉 = 1 for all k and similarly for 〈brkb†rk〉 (this is still true for finite α since
〈σz〉 = 0), and using the adiabatic renormalization [1]:

〈Φ2
l + Φ2

r〉 =
∑

k>0

λ2k
(~ωk)2

=
~
π

∫ ωc

∼EJ/~

J(ω)

~2ω2
dω = 2α ln

(
~ωc
EJ

)
. (34)

Assuming a weak coupling α, this allows to recover the result from Bethe Ansatz [4]

〈cos(Φl − Φr)〉 → ER/EJ . (35)

It is relevant to observe that when Pin → 0 and α� 1/2, one can formally replace 〈cos(Φl−Φr)〉 by 1−〈Φ2
l + Φ2

r〉/2.
Now, let us slightly increase the input signal amplitude; recall, V inl (t) = V0 cos(ωt) and we are interested in the

elastic propagation of a photon with frequency ω ∼ ωR. The (time-averaged or mean) input power then takes the form
Pin = V 2

0 /2R = Ṅ~ωR, where Ṅ = dN/dt and N represents the number of photons at x = 0 in the left transmission
line (with an energy ∼ ~ωR). Note that following the notations of the main text, one can also identify:

Pin =
〈Vl(x = 0)2〉

R
=
∑

q>0

α2
q

(2e)2R
〈b†lqblq〉 =

∑

q>0

~ωq(v/L)〈b†lqblq〉. (36)

Using the fact that for a monochromatic source

V inl =
V0
2

(exp(iωt) + exp(−iωt)) (37)

=
∑

q>0

αq
2e

(blq(t) + b†lq(t)),

and that for the incoming modes blq(t) = blq(0) exp(−iωqt) then, in the sum above, this selects momenta q such
that ωq ∼ ω ∼ ωR. Therefore, there is a novel contribution to 〈Φ2

l 〉 stemming from ωq ∼ ωR in addition to the
high-frequency contribution in Eq. (34). Since the initial time ti is set arbitrarily (but, at this time the incoming
signal has reached the two-level system), when performing different measurements one must also average over ti and
therefore 〈Φ2

l 〉 yields an extra contribution equal to

1

(~ωR)2

∑

q∈′
α2
qγ

2
l 〈b†lqblq〉 =

PinR(2e)2γ2l
(~ωR)2

, (38)

and the symbol ′ refers to momenta such that ωq ∼ ω ∼ ωR in the case of a monochromatic signal. This results in an
exponential suppression of =mχ(ω = ωR); see Eqs. (15) and (16) in the main text. Again, this expression assumes
that frequencies of interest lie in the range of ωR. We have also assumed that photons with a (much) larger frequency
are still in a thermal equilibrium.

In the underdamped limit, one photon is perfectly transmitted in the time scale 1/ωR as shown in the main text.
We thus define the associated power PR = ωR(~ωR). The magnetic susceptibility in the frequency domain ω ∼ ωR
then reads (assuming that Pin ≤ E2

J/~; see below)

χ(ω ∼ ωR, Pin) ≈ (ωR/~) exp−A
ω2
R − ω2 − iγ(ω)

, (39)

where

A =
Pin
PR

R

RQ
πγ2l . (40)

When increasing the input signal amplitude this will produce a macroscopic number of photons with an energy ~ωR:
the saturation of the artificial atom excitation manifests itself in a substantial decrease of the photon transmission.
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ASYMPTOTIC FREEDOM OF MICROWAVE LIGHT

In Eqs. (21) and (34), when Pin > E2
J/~, note that formally the low-frequency cutoff of the integrals must be

changed into Pin/EJ (~Pin/EJ becomes a large energy scale controlling the departure from 〈blkb†lk〉 = 1, i.e., from
the ground state) and the characteristic frequency in Eq. (39) becomes

ωR(Pin)

~
=
EJ
~

(1− α ln(EJωc/Pin)) . (41)

Finally, we discuss thermal effects. At finite temperatures, performing a thermal average, one finds that 〈σx〉 substan-
tially decreases for kBT ∼ ER [8], since the artificial atom lies in a highly mixed state, producing a strong suppression
of the spin susceptibility (this reflects that the reflection coefficient of the microwave light is strongly enhanced).
Further, for (β~EJ)� 1, from Eq. (21) we also predict that the characteristic energy of the artificial atom takes the
form ER(T )/EJ = 1 − α ln(β~ωc/2π) and ωR in the expression (31) then becomes replaced by ER(T )/~. For very
high energy scales, we check that ER(T ) would converge to the bare value EJ in the Hamiltonian H̃.

These two facts exemplify the asymptotic freedom where microwave light and two-level system almost disentangle.
Note the parallel between temperature and driving effects in the spin susceptibility close to the confinement frequency.
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