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Breaking time-reversal symmetry is a prerequisite for accessing certain interesting many-body states such as
fractional quantum Hall states. For polaritons, charge neutrality prevents magnetic fields from providing a di-
rect symmetry breaking mechanism and similar to the situation in ultracold atomic gases, an effective magnetic
field has to be synthesized. We show that in the circuit QED architecture, this can be achieved by inserting
simple superconducting circuits into the resonator junctions. In the presence of such coupling elements, con-
stant parallel magnetic and electric fields suffice to break time-reversal symmetry. We support these theoretical
predictions with numerical simulations for realistic sample parameters, specify general conditions under which
time-reversal is broken, and discuss the application to chiral Fock state transfer, an on-chip circulator, and
tunable band structure for the Kagome lattice.

PACS numbers: 42.50.Dv, 42.50.Ct, 71.36.+c

I. INTRODUCTION

Since the first pioneering papers in 2006 [1–3], theoretical
interest in the many body-physics of interacting photons or
polaritons in lattices has flourished. Such photon lattices, see
Fig. 1 for an example, are perceived as an interesting venue for
quantum simulation [4] and for studying strongly correlated
systems composed of polaritons [5–7]. Hopes are that, once
realized in experiments, such systems could complement the
achievements in research with ultracold atomic gases [8, 9],
which are currently leading the charge.

Much recent work has focused on the quantum phase transi-
tion between polaritonic Mott-insulating and superfluid states
using various approaches [1–3, 10–17], and at this point there
seems little doubt that the quantum phase transition is in the
same universality class as its counterpart in the Bose-Hubbard
model [18–20]. It is thus natural to ask, what physics beyond
Bose-Hubbard might photon lattices have to offer?

Recent work by several groups has highlighted the interest-
ing implications of dissipation and external driving, and thus
promoted the quantum phase transition to a nonequilibrium
phase transition between different possible steady states[21–
24]. A second route to physics beyond Bose-Hubbard, is to
explore phases with broken time-reversal symmetry, of which
fractional Quantum Hall phases are the most celebrated exam-
ple [25, 26].

To access such phases, a technique for breaking time-
reversal symmetry is required. In contrast to electron gases,
but similar to ultracold atomic gases [27–30], polariton sys-
tems face a challenge when trying to break time-reversal sym-
metry: due to the charge neutrality of polaritons, an exter-
nal magnetic field cannot readily be used to achieve break-
ing of time-reversal, and instead an effective magnetic field
has to be synthesized. A first proposal for cavity arrays with
trapped three-level atoms and involving ac driving with spe-
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FIG. 1: (Color online) The Jaynes-Cummings lattice as an exam-
ple of a photon lattice. Its circuit QED realization would consist
of superconducting resonators (e.g., coplanar waveguides, schemati-
cally shown as rectangular boxes), each of which would be coupled
to a superconducting qubit (symbolized as dots centered in the res-
onators). Microwave photons would hop between nearest-neighbor
resonators, with the coupling strengthκ set by the mutual capaci-
tance between resonator ends. Interaction between the photons and
the superconducting qubits with strengthg would induce an effective
photon-photon interaction.

cific phases has been published by Cho et al. [31]. In addition,
photonic edge states and analogs of the quantum Hall effect in
photonic crystals have recently been investigated by Haldane
and Raghu [32, 33] and also probed experimentally [34].

In the present paper, we demonstrate that in the circuit QED
architecture [35–37] breaking of time-reversal symmetry can
be achieved by inserting simple superconducting circuits into
resonator junctions and applying purely dc electric and mag-
netic fields. In our scheme, photons are transferred from res-
onator to resonator via virtual intermediate excitations of cou-
pler circuits. We expect that the use of passive coupling ele-
ments and the absence of any ac fields pumping internal lev-
els may avoid some of the challenges posed by dissipation.
Our analysis shows that for broken particle-hole symmetry
(caused by a dc electric field), polaritons can acquire an ef-
fective gauge charge and hence become susceptible to an ex-
ternal magnetic field so that time-reversal symmetry is bro-
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FIG. 2: Basic scheme of a three-port coupling element, connected
capacitively to three transmission-line resonators with annihilation
operatorsaj for photons in the relevant mode of the resonators enu-
merated byj = 1, 2, 3.

ken. We emphasize that such passive coupling elements cor-
respond to an important step towards substituting commercial
microwave circulators with on-chip circulators much smaller
in size. This could pave the way for integrating circulators
into larger arrays of resonators and could open interestingand
new perspectives for correlated polariton systems.

The remainder of the paper is organized as follows. In Sec-
tion II we explain the generic consequences of integrating pas-
sive coupling elements into a resonator array and using them
to break time-reversal symmetry. The passivity condition al-
lows us to adiabatically eliminate the coupling elements and to
obtain an effective photonic tight-binding model with broken
time-reversal symmetry. We emphasize the gauge-invariant
phase sum (mimicking the contour integral of the magnetic
vector potential in the continuous case) as a useful concept
for determining whether time-reversal invariance holds. Ap-
plications of such coupling elements, including the prospect
of an on-chip circulator conclude the section.

Section III then details our proposal for a physical realiza-
tion of passive coupling elements in the circuit QED architec-
ture. Specifically, we consider a system consisting of coplanar
waveguide resonators which capacitively couple to small su-
perconducting rings interrupted by three Josephson junctions
(“Josephson rings”), which are inserted into the junctionsbe-
tween resonators. Using circuit quantization, we derive the
Hamiltonian of this system and discuss the diagonalizationof
the Josephson rings.

In Section IV, we finally show how the adiabatic elimina-
tion of the ring degrees of freedom yields an effective photon
Hamiltonian of the desired type. We discuss the general re-
quirements for achieving time-reversal symmetry breakingin
this scheme, and present results from numerical simulations
which underline the proposal’s feasibility with realisticdevice
parameters.

We end with conclusions and an outlook in Section V.
Some additional details of calculations and a self-contained
summary of time-reversal symmetry in quantum mechanics
are provided in several appendices.

II. PASSIVE COUPLING ELEMENTS FOR BREAKING
TIME-REVERSAL SYMMETRY

For the general discussion of breaking time-reversal sym-
metry by utilizing virtual excitations of a coupler circuit, we
consider a junction composed of three resonators [76] coupled
to a central “circulator” system, see Fig. 2, and described by a
generic Hamiltonian of the form

H =

3∑

j=1

ωra
†
jaj + λ

3∑

j=1

(aj + a†j)Bj +HB. (1)

Here,aj anda†j (j = 1, 2, 3) are annihilation and creation op-
erators for photons in the relevant mode of resonatorj, with
corresponding (angular) frequencyωr. (Note that throughout
the paper we use units with~ = 1.) The capacitive coupling
between resonators and the degrees of freedomBj of the cou-
pling element is described by the second term in Eq. (1).

We shall assume that the coupling element remainspas-
sive, i.e. the coupler only transfers photons via intermediate
virtual excitations and otherwise remains in its ground state at
all times. Consequently, the coupler degrees of freedom can
be integrated out (or, in other words, eliminated by a canon-
ical transformation of Schrieffer-Wolff type [38, 39]) so that
one obtains an effective photon HamiltonianHeff(aj , a

†
j). The

details of the effective HamiltonianHeff generally depend on
the specific realization of the passive coupling element, and
we will go through the explicit derivation ofHeff for the cir-
cuit QED realization we propose in Section III. Here, we first
explore thegeneric properties of the effective photon Hamil-
tonian.

We are interested in a passive coupling element that does
not destroy the three-fold symmetry of the system. As a re-
sult, there is a gauge in whichHeff is invariant with respect
to cyclic permutations of the indicesj = 1, 2, 3. Further, we
assume thatHeff allows for hopping of photons between res-
onators, but does not induce photon-photon interaction. (This
assumption is realistic, as we show in Section III.) As a result,
Heff is anticipated to be a quadratic form of the annihilation
and creation operatorsaj , a

†
j . Explicitly, the Hamiltonian will

take the form

Heff =

[

t(a1a
†
3 + a3a

†
2 + a2a

†
1) + H.c.

]

+

3∑

j=1

ω′
ra

†
jaj , (2)

whereω′
r denotes the resonator frequency (possibly includ-

ing a renormalization), andt = κ eiϕ (κ = |t| ≥ 0) is the
complex-valued hopping matrix element for photons [77].

When does the effective Hamiltonian (2) describe the situa-
tion of broken time-reversal symmetry and when does time-
reversal symmetry remain intact? Formally, time-reversal
symmetry holds whenever the time-reversal operatorΘ leaves
the Hamiltonian invariant, i.e.ΘHΘ−1 = H [78]. As de-
tailed in Appendix A, for the present case this is true if there
is a gauge transformation of the form

aj → e−iϕjaj , (3)



3

which makes the Hamiltonian real-valued when represented
in the photon number basis. For the three-resonator junction,
the existence of such a gauge transformation is checked as
follows. According to Eqs. (2) and (3), an attempt to find
a gauge transformation to make the Hamiltonian real-valued
leads to the three equations

ϕ+ ϕ1 − ϕ3 = z1π,

ϕ+ ϕ2 − ϕ1 = z2π, (4)

ϕ+ ϕ3 − ϕ2 = z3π.

wherez1, z2, z3 ∈ Z are arbitrary integers. These equations
for the gauge phasesϕ1, ϕ2 andϕ3, can only be solved (and
hence time-reversal symmetry is intact) if the condition

3ϕ = zπ (z ∈ Z), (5)

obtained by summing the three equations (4), holds. Thus, for
the present case of a three-resonator junction we find: time-
reversal symmetry is intact if and only ifϕ ∈ π

3Z.
To extend this statement to general photon lattices with

more resonators,

Heff =
∑

i6=j

tijaia
†
j +

∑

j

ωra
†
jaj (tji = t∗ij) (6)

it is important to identify the phase in Eq. (5) as a gauge-
invariant quantity, which for discrete lattices plays a role anal-
ogous to the contour integral

∮
ds·A of the vector potentialA

in the continuous case. [For simpler notation the prime inω′
r

has been dropped.] We write the gauge-invariant phase sum
in the form

	
∑

C[ij]
ϕij = arg

∏

C[ij]
tij , (7)

whereC specifies a closed path in the discrete lattice; see Fig.
3 for an illustration. In these terms, the statement of Eq. (5)
can be extended to larger systems where time-reversal sym-
metry can be shown to be intact if and only if the gauge-
invariant phase sum is an integer multiple ofπ,

	
∑

C[ij]

ϕij ∈ πZ (8)

for any closed lattice pathC.
To illustrate the implications of broken time-reversal sym-

metry, we discuss three examples: the clockwise or coun-
terclockwise state transfer of a single photon Fock state be-
tween resonators, circulator behavior for signals propagat-
ing in semi-infinite transmission lines, and tunability of the
Kagome tight-binding band structure. These examples are re-
alizations of the simplest setting possible: resonators coupled
via coupling elements and without any photon-photon interac-
tion. The fascinating scenario of systems ofinteracting pho-
tons with broken time-reversal symmetry is beyond the scope
of this article and will be addressed in a future paper.
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FIG. 3: (Color online) Illustration of the gauge-invariantphase sum
around a loop,	

∑

C[ij] ϕij = ϕ12 + ϕ23 + ϕ34 + ϕ41, here for a
particular plaquetteC in a two-dimensional quadratic lattice.

A. Chiral transfer of photon Fock states

We consider the 3-resonator junction depicted in Fig. 2 and
described by the effective HamiltonianHeff, Eq. (2).Heff can
be understood as a miniature tight-binding model with peri-
odic boundary conditions. The eigenstates ofHeff are gener-
ated by the creation operators

A†
k =

1√
3

3∑

j=1

e2πikj/3a†j (9)

and have corresponding eigenenergies

Ωk = ωr + 2κ cos(2πk/3 + ϕ). (10)

Here,2πk/3 (k = −1, 0, 1) are the allowed wave numbers
in the first Brillouin zone. Recalling from Eq. (5) that time-
reversal symmetry only holds as long asϕ ∈ π

3Z, it is not
surprising that the simplest case of broken time-reversal sym-
metry (where the energy spectrum set byΩk becomes equidis-
tant) is realized whenϕ = ±π/6, i.e. halfway in between the
time-reversal symmetric pointsϕ = 0 and±π/3.

To understand the effect of broken time-reversal symme-
try, let us consider the dynamics of the system inside the one-
photon subspace. We initialize the system in a Fock state with
a single photon inside one resonator, say resonatorj = 1,
and follow its subsequent evolution in time. The evolution is
obtained by solving the time-dependent Schrödinger equation
with initial condition |ψ(t = 0) 〉 = a†j=1 | 0 〉. By using the
inverse of the discrete Fourier transform in Eq. (9), the evolu-
tion forϕ = ±π/6 is readily found to be

|ψ(t) 〉 = 1√
3
eiωrt

1∑

k=−1

eik
√
3κt−2πik/3 |ψk 〉 , (11)

where|ψk 〉 ≡ A†
k | 0 〉 denotes the single-photon eigenstates

ofHeff. The dynamics may be visualized by plotting the prob-
abilities

Pj(t) = |〈 0 | aj=1 |ψ(t) 〉|2 (12)

for finding the photon in resonatorj, see Fig. 4. As ex-
pected from Eq. (11), the dynamics is periodic with period
τ = 2π/

√
3κ. More importantly however, the breaking

of time-reversal symmetry results in chirality: the photonis
transferred from resonator to resonator either clockwise or
counter-clockwise depending on the sign ofϕ = ±π/6.
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FIG. 4: (Color online) Time evolution of a single-photon Fock state
in the presence of a coupler with phaseϕ = π/6. The quantum state
at the initial timet = 0 is a Fock state with one photon in resonator
j = 1, and both resonators 2 and 3 in the vacuum state. The photon
occupation probabilitiesPj are plotted as a function of time and show
how the photon is transferred around the loop in a direction specified
by the sign inϕ = ±π/6. The evolution is periodic with period
τ = 2π/

√
3κ and the initial state is transferred into Fock state of

resonators 2 and 3 at timest = τ/3 andt = 2τ/3, respectively.

B. On-chip Circulator

Circulators are lossless microwave elements with three (or
more) ports, and have the crucial property that a signal en-
tering portj is fully transferred clockwise to portj + 1 (or,
alternatively counter-clockwise to portj−1) [40]. This behav-
ior must involve breaking of time-reversal symmetry, whichis
typically accomplished by embedding magnetic material, e.g.
ferrite, in the device. Commercial ferrite circulators aretyp-
ically large (& 1 cm) and their size would make it rather dif-
ficult to include large numbers in a photon lattice. It is thus
interesting to explore the design of anon-chip circulator, suf-
ficiently small in size and easy to fabricate, such that it could
be included in large numbers. In addition to being essential
for breaking time-reversal symmetry in polariton lattices, such
devices would find great practical application in the circuit
QED architecture for quantum information processing.

Let us demonstrate that circulator behavior in the sense
of microwave engineering can indeed be achieved with the
model HamiltonianHeff, Eq. (2). The actual physical realiza-
tion within the circuit QED architecture will be discussed in
Section III. For simplicity, we consider a setting where mi-
crowave radiation is fed into the system by capacitively cou-
pling semi-infinite transmission lines to the three resonators
shown in Fig. 2. The full system is then captured by the

Hamiltonian

H =ωr

3∑

j=1

a†jaj +

[

κeiϕ(a1a
†
2 + a2a

†
3 + a3a

†
1) + H.c.

]

+

3∑

j=1

∑

q

ωqb
†
jqbjq − i

3∑

j=1

∑

q

[

fqbjqa
†
j − H.c.

]

,

(13)

wherebjq are the annihilation operators for the three transmis-
sion linesj = 1, 2, 3, andq is the mode index.

We divide the full HamiltonianH = Heff + Htl + Hin

into the effective photon Hamiltonian previously discussed,
the contribution from the semi-infinite transmission lines, and
the interaction between them. Next, we employ the diagonal-
ization ofHeff, see Eqs. (9) and (10), and rewrite the coupling
HamiltonianHint in terms of the eigenmodesAk,

Hint = −i 1√
3

∑

q

3∑

j=1

1∑

k=−1

[

fqe
−2πijk/3bjqA

†
k − H.c.

]

.

(14)
To calculate ingoing and outgoing fields, we use input-output
theory [41, 42]. As usual, formal integration of the Heisenberg
equation of motion forbjq,

ḃjq =− iωqbjq +
1√
3
f∗
q

1∑

k=−1

e2πijk/3Ak, (15)

yields solutions which can refer to either an initial state at time
ti = t0 in the distant past, or to a final state at timeti = t1 in
the distant future:

bjq(t) =e
−iωq(t−ti)bjq(ti)

+
1√
3

∫ t

ti

dτ e−iωq(t−τ)f∗
q

1∑

k=−1

e2πijk/3Ak(τ).

(16)

Proceeding with standard input-output theory, we approxi-
mate the coupling matrix elementsfq as constants within the
relevant frequency range nearΩk, and employ the Markov ap-
proximation [41]. We then plug Eq. (16) into the equation of
motion forAk,

Ȧk =− iΩkAk −
1√
3

∑

q

3∑

j=1

fqe
−2πijk/3bjq (17)

and identify the input and output modes as

bin,out
j (t) =

1√
2πρ

∑

q

e−iωq(t−t0,1)bjq(t0,1).

Here,ρ is the transmission line density of states, andκ′ =

2π |f |2 ρ defines the effective photon decay rate. Applying
the Markov approximation to the remaining time integral [42],
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FIG. 5: Circulator behavior. The plot shows the normalized outgo-
ing power

∣

∣bout
j /bin

1

∣

∣

2
for the three portsj = 1, 2, 3 under coherent

driving of port 1 with frequencyωd when the phaseϕ of the coupler
element is adjusted toπ/6. For drive frequencies close to the res-
onator frequency, the signal is transferred from port 1 to port 2. The
bandwidth of this circulator behavior is set by the photon hopping
rates (κ = κ′/2 = 0.1ωr).

one obtains

Ȧk =− iΩkAk −
√

κ′/3
3∑

j=1

e−2πijk/3bin
j

− κ′

6

1∑

k′=−1

3∑

j=1

e−2πij(k−k′)/3Ak′ . (18)

Analogous expressions foṙAk (but with a crucial sign change
in the last term) can be obtained when substituting the outgo-
ing fields. By subtracting from Eq. (18) the equations obtained
when using the outgoing field in either port 1, 2, or 3, one can
derive the following relation between ingoing and outgoing
modes:

bout
j = bin

j +
√

κ/3

1∑

k=−1

e2πijk/3Ak. (19)

Finally, we eliminate the dependence on the circulator modes
by substituting the solutions to Eq. (18), which in frequency
space can be expressed as

Ak[ω] =

√

κ′/3

i(ω − Ωk)− κ′/2

3∑

j=1

e−2πijk/3bin
j [ω], (20)

In total, one thus obtains the relation

bout
j [ω] = bin

j [ω] (21)

+
κ′

3

1∑

k=−1

3∑

j′=1

e2πi(j−j′)k/3

i(ω − Ωk)− κ′/2
bin
j′ [ω]

between the ingoing and outgoing fields. For coherent driving
with frequencyωd, the ingoing and outgoing fields are charac-
terized by c-numbers〈bin,out

j [ωd]〉 and the normalized outgoing

FIG. 6: (a) Using three-resonator junctions one obtains a photon lat-
tice with uniform hopping, and the resonators (depicted as rectan-
gles) form a regular honeycomb pattern. (b) The corresponding pho-
ton lattice is the Kagome lattice, a hexagonal Bravais lattice (primi-
tive vectors∆∆∆1, ∆∆∆2) with three atomsA, B, andC in the primitive
unit cell (parallelogram shaded in gray). Adding coupler circuits in
the junctions breaks time-reversal symmetry and introduces a phase
factore±iϕ in the photon hopping elements, where the sign depends
on whether photons are transferred with or against the senseof rota-
tion (circular arrows).

power can be calculated from Eq. (21). Assuming a drive at
only one of the input ports, say port 1, the normalized outgo-
ing power on portj is

∣
∣〈bout

j [ωd]〉/〈bin
1 [ωd]〉

∣
∣
2
. Note that results

for driving on any other port can be obtained by cyclic permu-
tation of the port indices)

As shown in Fig. 5, the device shows clear circulator be-
havior when choosingϕ = π/6 for the photon hopping phase.
The circulator behavior is strongest when the drive frequency
ωd is close to the frequency of the resonatorsωr. The band-
width of circulator behavior is set byκ in the configuration
considered here. The conditionκ = κ′/2 is required to
achieve 100% transmission, and zero reflection at the input
port.

C. Tunable band structure

Incorporating coupler circuits into larger arrays of res-
onators is useful for several reasons. As mentioned before,it
may provide access to strongly correlated states of interacting
photons with broken time-reversal symmetry. However, the
usefulness of coupler circuits, is not limited to the interacting
case. When leaving time-reversal symmetry intact, coupler
circuits enables one to vary the (real-valued) photon hopping
strength in situ and thus to systematically explore the quan-
tum phase transition between a photonic superfluid and Mott
insulator [1–3, 10–17]. Finally, when breaking time-reversal
symmetry both magnitudes and phases of the photon hopping
elements become tunable, which can make the photonic band
structuretunable as we will show now.

We consider a two-dimensional resonator array with uni-
form photon hopping strength. With the circuit QED real-
ization in mind (see Section III for details), resonators may
be imagined as coplanar waveguides and uniform coupling is
readily achieved by using junctions composed of three res-
onators at 120◦ angles. In this case, the coplanar waveguide
resonators form a regular honeycomb pattern as shown in Fig.
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6(a). Each resonator, depicted as a rectangle, represents asin-
gle lattice site. Thus, marking the center of each resonatoras
a lattice site and connecting nearest neighbor sites, one finds
that the photon lattice is a Kagome lattice [43], see Fig. 6(b).

We briefly note that, due to its novel properties and physical
realizations, the Kagome lattice has played an important role
in various contexts of strongly correlated systems and frus-
trated spin systems. Ferromagnetic and anti-ferromagnetic
Ising [44–46] and Heisenberg [47–49] models have been stud-
ied on the Kagome lattice. For the Hubbard model, the
Kagome lattice is known to lead to flat-band magnetism [50–
52]. The possibility to create optical Kagome lattices has
also created interest in exploring this physics with ultracold
atoms [53, 54]. Even more recently, the (fermionic) Hubbard
model on the Kagome lattice has been revisited and shown to
give rise to interaction-induced topological phases [55, 56].

Here, we show that even in the absence of interactions, the
Kagome lattice displays an interesting tunable band structure
when time-reversal symmetry is broken. The lattice particles
(for us, photons) can assume eigenstates localized on only a
few sites, giving rise to flat bands. Tuning the phase of the
photon hopping makes it possible to modify the Kagome band
structure and to switch the flat band to the top, middle or bot-
tom band at will.

To demonstrate this, we consider the tight-binding model
of the Kagome lattice with nearest-neighbor coupling. The
Kagome lattice is generated by a hexagonal Bravais lattice
with primitive vectors∆∆∆1 = a(1, 0) and∆∆∆2 = a

2 (1,
√
3).

The primitive cell contains three sites located atr0 = 0 (A),
r1 = ∆∆∆1/2 (B), andr2 = ∆∆∆2/2 (C), where positions are
expressed relative to the origin of the primitive cell. The cor-
responding tight-binding Hamiltonian is

H =ω
∑

n,m

[

A†
nmAnm +B†

nmBnm + C†
nmCnm

]

(22)

+ t
∑

m,n

[

C†
nmAnm +B†

nmCnm +A†
nmBnm + C†

n,m−1Anm +B†
n−1,m+1Cnm +A†

n+1,mBnm

]

+ H.c.,

where we have already accounted for the fact that coupler circuits may introduce photon hopping with a complex phase factor,
t = |t| eiϕ. Working in reciprocal space, we find that the dispersionǫs(k) of the three bandss = 1, 2, 3 is obtained from
diagonalization of the following3× 3-matrix:

H =
∑

k

(

A†
k
B†

k
C†

k

)





ω 2t∗ cos(k ·∆∆∆1/2) 2t cos(k ·∆∆∆2/2)
2t cos(k ·∆∆∆1/2) ω 2t∗ cos[k · (∆∆∆2 −∆∆∆1)/2]
2t∗ cos(k ·∆∆∆2/2) 2t cos[k · (∆∆∆1 −∆∆∆2)/2] ω









Ak

Bk

Ck



 . (23)

Compact analytical expressions for the band structure can be obtained for the special valuesϕ = 0, ϕ = π/6 andϕ = π/3:

ϕ = 0 : ǫ1(k) = ω − 2t, ǫ2,3(k) = ω + t± |t|
√

1 + 8 cos[ 12k ·∆∆∆1] cos[
1
2k ·∆∆∆2] cos[

1
2k · (∆∆∆1 −∆∆∆2)], (24)

ϕ = π/6 : ǫ2(k) = ω, ǫ1,3(k) = ω ± 2 |t|
√

1 + 2 cos[ 12k ·∆∆∆1] cos[
1
2k ·∆∆∆2] cos[

1
2k · (∆∆∆1 −∆∆∆2)]. (25)

The caseϕ = π/3 can be show to be equivalent toϕ = π and
is obtained from Eq. (24) by switching the sign oft. The band
structure forϕ ∈ π

3Z is thus familiar from previous work, see
e.g. Ref. [57]. Some of the results on the tight-banding band
structure with broken time-reversal symmetry and an evalu-
ation of the bands’ Chern numbers have also recently been
published in [58].

The Kagome band structure for zero and nonzeroϕ is de-
picted in Fig. 7. [For a beautiful discussion of the Dirac
points in the band structure, visible in Fig. 7(c), and the lifting
of the degeneracy by breaking time-reversal symmetry, see
Ref. [32].] The characteristic flat bands occur exactly when
ϕ ∈ π

6Z and depending on the specific phase, the flat band
takes the role of the bottom or top band (ϕ = 0 andϕ = π/3),
or that of the middle band (ϕ = π/6 andϕ = π/2). We note
that phase valuesϕ /∈ [0, 2π/3) can always be mapped back

into this interval via gauge transformations.
Band flatness and the corresponding zero group velocity are

directly related to the existence of localized states [52, 57].
First, consider the phase valuesϕ = π/6, π/2 where the mid-
dle band is flat. For periodic boundary conditions with a total
of N primitive cells, the flat band corresponds toN energy-
degenerate states. This degenerate subspace is spanned by the
localized hexagon states|ψn 〉, where|ψn 〉 is defined as the
eigenstate localized on then-th hexagon in the Kagome lattice
with wavefunction amplitudes

〈 jn |ψn 〉 = (−1)jeijπ/3 (26)

on the six consecutive sitesj = 0, 1, . . . , 5 of the hexagon.
(Note that the|ψn 〉 states are linearly independent but non-
orthogonal.)

When the flat band is the top (or bottom) band, the situation
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FIG. 7: Band structure of the Kagome lattice with complex hopping elementst = |t| eiϕ for (a)ϕ = π/6, (b) ϕ = π/4, and (c)ϕ = π/3.
In the top panels, the dispersion(ǫs − ω) of the three bandss = 1, 2, 3 is plotted in units of|t|. The first Brillouin zone corresponds to the
hexagon centered atk = 0. The bottom panels show cuts of the dispersion along axes of high symmetry (see inset). For phasesϕ ∈ π

6
Z, the

band structure exhibits flat bands. The position of the flat band can be switched from (a) middle to (c) top to bottom [forϕ = 0, obtained from
(c) by reflecting all bands at(ǫ− ω) = 0] by varying the phaseϕ.

is slightly more complicated since the flat band touches the
middle band at thek = 0 point and the degenerate subspace
is (N + 1)-dimensional. The localized hexagon states with
amplitudes〈 jn |ψn 〉 = (−1)j are eigenstates, but are not lin-
early independent since theirk = 0 superposition

∑

n |ψn 〉
is identically zero. The localized states can be shown to span
an(N − 1)-dimensional subspace, and the missing twok = 0
states are obtained as

|k = 0; 1 〉 = 1√
2N

∑

mn

(A†
mn −B†

mn) | 0 〉 , (27)

|k = 0; 2 〉 = 1√
2N

∑

mn

(A†
mn − C†

mn) | 0 〉 . (28)

The existence of localized photon states and the tunabilityof
its band structure make the Kagome lattice with variable phase
factors an interesting system for future experiments. Fur-
ther theoretical studies will address the interesting question
of strongly correlated states induced by photon interactions,
which are expected to be non-perturbative in the presence of
the flat band degeneracies of the Kagome lattice.

III. PHYSICAL REALIZATION IN THE CIRCUIT-QED
ARCHITECTURE

Following the general discussion of broken time-reversal
symmetry in photon lattices, we now turn to a concrete pro-
posal on how to realize this physics in the circuit-QED archi-
tecture. The essential idea is to insert superconducting cir-
cuits into the junctions between resonators. These circuits
then serve as coupling elements that transfer photons from one
resonator to another and may break time-reversal symmetry.

Our analysis will be organized into three subsections. In the
first one, Section III A, we present the appropriate tools for

index meaning

i ∈ {1, . . . , N} index decomposing resonator into LC elements

j ∈ Z Josephson ring index

k ∈ N excitation index for Josephson ring

λ ∈ Z resonator index

µ, µλj ∈ {1, 2, 3} component of ringj coupling to resonatorλ

ν ∈ N resonator mode index

TABLE I: Summary of conventions for indices and their meanings,
as used throughout Sections III and IV.

modeling a transmission-line resonator capacitively coupled
to arbitrary circuits at its two ends. We show how to system-
atically obtain the exact eigenmodes of the resonator when it
is coupled to arbitrary circuits at its two ends. These exact
eigenmodes are then utilized in Subsection III B to obtain the
full Hamiltonian of a resonator array including coupling cir-
cuits. Circuit quantization [59] allows one to switch to the
quantum mechanical description of the full system.

Notation in this section is heavy due to different types of
objects (resonators, Josephson rings, etc.) that need to beenu-
merated, and we have made every effort to be consistent in
our naming of indices. For reference, the different labels are
summarized in Table I.

A. Exact resonator eigenmodes in the presence of coupling

We consider a system consisting of a transmission line cou-
pled capacitively at its two ends to circuits described by La-
grangiansL′

L,R. The general configuration is depicted in Fig.
8. The Lagrangian of the full system can be cast into the form
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L = L′
L + L′

R +
1

2
CL(φ̇1 − φ̇L)

2 +
1

2
CR(φ̇N − φ̇R)

2 +
1

2

N∑

i=1

c dz φ̇2i −
1

2ℓdz

N∑

i=2

(φi − φi−1)
2 (29)

=
∑

α=L,R

(L′
α + 1

2Cαφ̇
2
α)

︸ ︷︷ ︸

LL+LR

−CLφ̇1φ̇L − CRφ̇N φ̇R
︸ ︷︷ ︸

Lint

+ 1
2CLφ̇

2
1 +

1
2CRφ̇

2
N +

1

2

N∑

i=1

c dz φ̇2i −
1

2ℓdz

N∑

i=2

(φi − φi−1)
2

︸ ︷︷ ︸

Ltl

,

where the contributionsLL,R describe the circuits to the left
and right (now including an additional capacitive contribution
∼ CL,R due to the coupling), andLtl the transmission-line
resonator, modeled by an array of LC oscillators with capac-
itancesc dz and inductancesℓ dz, wherec, ℓ denote the ca-
pacitance and inductance per unit length. The capacitive in-
teraction between resonator and attached circuits is denoted
Lint.

It is useful to rewrite the transmission-line Lagrangian in
compact matrix notation,

Ltl =
1

2
φ̇̇φ̇φ⊤Tφ̇̇φ̇φ− 1

2
φφφ⊤Vφφφ, (30)

with φφφ⊤ = (φ1, . . . , φN ),

(T)ii′ = δii′ (c dz + CLδi1 + CRδiN ) , (31)

and

V =
1

ℓ dz













1 −1

−1 2 −1

−1 2 −1
. . .

−1 2 −1

−1 1













. (32)

Generally, the eigenmodesφφφ = ζνaνe
−iωνt of the trans-

mission line resonator are found by solving the generalized
eigenproblemVaν = ω2

νTaν with normalization condition
a⊤ν Taµ = δµν [60]. In the new coordinatesφφφ =

∑

i φiei =∑

ν ζνaν the resonator Lagrangian takes the simple form

Ltl =
1

2

∑

ν

(ζ̇2ν − ω2
νζ

2
ν ), (33)

whereν = 0, 1, 2, . . . enumerates the resonator modes.
In our case, the kinetic matrixT is readily invertible. This

allows us to further simplify the problem: instead of a general-
ized eigenproblem, we only need to solve the ordinary eigen-
value problem

T
−1

Vaν = ω2
νaν , (34)

N

C K

1 2 3 4 N-1

x

y

L R

rl

a

b
...

d e
f

FIG. 8: (a) Transmission-line resonator attached through capacitors
CL andCR at the left and right ends to arbitrary circuits. Panel
(b) shows the dissection of the transmission line (capacitance and
inductance per unit length denoted byc and ℓ) into a series of LC
circuits. The generalized flux variables adjacent to the resonator are
given byφL andφR.

with eigenvector normalization again given bya⊤ν Taµ = δµν .
Explicitly, the matrix on the left-hand side of Eq. (34) reads

T
−1

V (35)

=
1

ℓc(dz)2











c dz
CL+c dz − c dz

CL+c dz

−1 2 −1
. . .

−1 2 −1

− c dz
CR+c dz

c dz
CR+c dz











.

In the continuum limit, where the number of LC elementsN
is sent to infinity and the length of the resonatorL = N dz is
kept constant, the discrete mode vectoraν turns into the con-
tinuous mode functionϕν(z). From the rowsi = 2, . . . , (N−
1) of the matrix equation (34), one extracts the second-order
differential equation

d2ϕν

dz2
= −(ων

√
ℓc)2ϕν(z). (36)

The rowsi = 1 andi = N yield the homogeneous boundary
conditions

−dϕν

dz

∣
∣
∣
∣
z=0

= ℓCLω
2
ν ϕν

∣
∣
∣
∣
z=0

, (37)

dϕν

dz

∣
∣
∣
∣
z=L

= ℓCRω
2
ν ϕν

∣
∣
∣
∣
z=L

. (38)
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Finally, the orthonormalization condition turns into

CLϕνϕµ

∣
∣
∣
∣
z=0

+ CRϕνϕµ

∣
∣
∣
∣
z=L

+ c

∫ L

0

dz ϕν(z)ϕµ(z)

= δµν . (39)

Together, Equations (36)–(39) form a Sturm-Liouville prob-
lem [79] which determines the sinusoidal mode functions

ϕν(z) = A cos(ων

√
ℓc z) +B cos(ων

√
ℓc z) (40)

and the corresponding mode frequenciesων . The frequencies
are obtained as solutions of the transcendental equation

tan ω̄ = − (χL + χR)ω̄

1− χLχRω̄2
, (41)

where ω̄ = ω
√
ℓcL andχα = Cα/(cL). We emphasize

that the treatment presented in this section has been exact and
no assumptions have been made regarding the strength of the
coupling between the resonator and the left and right circuits.
In total, the exact Lagrangian (29) can be written in terms of
transmission-line eigenmodes as

L =
∑

α=L,R

Lα+
1

2

∑

ν

(ζ̇2ν−ω2
νζ

2
ν )−

∑

α

Cαφ̇α
∑

ν

ζ̇νϕν(zα).

(42)

B. Model for array of resonators and coupling elements

For the derivation of the Hamiltonian describing an array
of resonators coupled by identical superconducting circuits at
resonator junctions (see Fig. 9), we consider the regime of
weak coupling, as realized in the majority of circuit QED ex-
periments. Specifically, we will assume that the coupling ca-
pacitorsCc (here,Cc = CL = CR), connecting transmission-
line resonators and coupling circuits, are small compared to
the total capacitance of the resonator, i.e.Cc ≪ cL. In this
weak-coupling regime, the Hamiltonian takes a particularly
simple and intuitive form as we shall demonstrate in the fol-
lowing.

Quite generally, the Lagrangian of the array can be written
as

L =
∑

λ

Ltl,λ +
∑

j

Lri,j +
∑

λ,j

Lint,λ,j , (43)

where the terms describe the transmission-line resonators
(“tl”), the ring circuits embedded in the resonator junc-
tions (“ri”), and the interaction between them (“int”), respec-
tively. As shown in the previous subsection, the resonator La-
grangian can be written in terms of eigenmodesν = 0, 1, . . .
as

Ltl,λ =
1

2

∑

ν

(ζ̇2λν − ω2
νζ

2
λν). (44)

We note that for small ratiosCc/(cL) the transcendental equa-
tion (41) can be solved approximately, and the lowest modes

FIG. 9: (Color online) (a) Array consisting of transmission-line res-
onators and coupling circuits in the junctions between resonators.
The coupling circuits, attached to the resonators by capacitorsCc,
are Josephson rings, see panel (b). They consist of a superconducting
ring interrupted by three identical Josephson junctions with Joseph-
son energyEJ and junction capacitanceCJ . By applying an external
magnetic field perpendicular to the plane, the loops may additionally
be threaded by a magnetic fluxΦ.

are given byων ≈ νωo. Here, the fundamental frequency
corresponds to theλ/2 resonance and is given byωo/2π =

(2
√
ℓcL)−1.

The coupling elements, which will be realized as small su-
perconducting circuits [Fig. 9(b)] and discussed in more detail
below, have the generic Lagrangian

Lri,j =
1

2
φ̇̇φ̇φ⊤j Cφ̇φφj − V (φφφj ,Φ), (45)

whereC is the circuit’s capacitance matrix andV collects all
inductive contributions of the circuit, including the effect of a
magnetic fluxΦ applied to the rings. Finally, the capacitive
interaction between coupling circuits and resonators is given
by

Lint,λ,j = −mλjCc(e
⊤
µλj
φ̇φφj)

∑

ν

ζ̇λνϕν(zλj). (46)

Here,mλj plays the role of an adjacency matrix which con-
tains all information about which resonators are coupled to
which rings. It is hence defined as

mλj =

{

1 if resonatorλ couples to ringj,

0 otherwise.
(47)

Since each ring consists of three superconducting islands,we
further define a component functionµλj ∈ {1, 2, 3} which
selects the individual degree of freedom involved in the cou-
pling between ringj and resonatorλ; eµλj

is the correspond-
ing three-component unit vector. The coupling capacitors
(assumed identical across the array) are denoted byCc, and
zλj = 0, L gives thez variable entering the resonator mode
functionϕν [as defined in the previous subsection, Eqs. (36)–
(39)].
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To put the circuit and resonator variables on equal foot-
ing, it is convenient to temporarily rescale the circuit variables
φ̇φφj → C

−1/2
o Ḟα so thatζ̇λν andḞj have identical dimensions.

Co has dimensions of a capacitance, and its magnitude is cho-
sen such that the nonzero entries in the rescaled capacitance
matrixKα = C−1

o Cα are of order unity.
With these preparations it is possible to obtain an approxi-

mate expression for the Hamiltonian describing the resonator
array coupled via Josephson rings. First, the conjugate mo-
menta are obtained as

qλν =
∂L
∂ζ̇λν

= ζ̇λν −
∑

j

mλj
Cc√
Co

(e⊤µλj
Ḟj)ϕν(zλj),

Q̄j =
∂L
∂Ḟj

= KḞj −
∑

λ,ν

mλj
Cc√
Co

eµλj
ζ̇λνϕν(zλj). (48)

The coupling terms on the right-hand side of the last two equa-
tions are small in the weak-coupling limit,Cc/

√
Co cL ≪ 1

valid whenevercL ≫ Cc, Co [80]. The inverse of Eqs. (48),
required for the Legendre transform, can then be approxi-
mated by

ζ̇λν ≈ qλν +
∑

j

mλj
Cc√
Co

(e⊤µλj
K
−1Q̄j)ϕν(zλj),

Ḟj ≈ K
−1Q̄j −

∑

λ,ν

mλj
Cc√
Co

(K−1eµλj
)ζ̇λνϕν(zλj). (49)

In these last equations, we have retained the leading order,and
corrections are of the order ofO(C2

c /[Co cL]). As a result, the
weak-coupling Hamiltonian can be written in the form

H =
∑

λ

Htl,λ +
∑

j

Hri,j +
∑

λ,j

Hint,λ,j , (50)

with

Htl,λ =
1

2

∑

ν

(q2λν + ω2
νζ

2
λν) =

∑

ν

ων(a
†
λνaλν +

1

2
) (51)

and

Hri,j =
1

2
Q⊤

j C
−1Qj + V (φφφj ,Φ). (52)

(Note that we have reverted back from our temporary rescal-
ing and thatQj = C

−1/2
o Q̄j has proper dimensions of electric

charge.) Finally, the coupling Hamiltonian is given by

Hint,λ,j = mλjCc(e
⊤
µλj

C
−1Qj)

∑

ν

qλνϕν(zλj), (53)

The form of the coupling Hamiltonian obtained with Eq. (53)
has a simple interpretation: the voltageVjµ = e⊤µλj

C
−1Qj

of coupling elementj (componentµ) is coupled by the ca-
pacitorCc to the voltage

∑

ν qλνϕν(zλj) at the correspond-
ing end of resonatorλ. It is important to note that in the
Hamiltonian formalism, this intuitive form of the couplingis
valid only in the weak-coupling limit. As soon as higher-
order termsO(C2

c /[Co cL]) are included, the coupling be-
comes more complicated.

C. Josephson ring couplers

The coupling elements [see Fig. 9(b)] are located in the res-
onator junctions and are composed of superconducting loops,
each interrupted by three identical Josephson junctions. By
applying an external magnetic fieldB, each loop may be
threaded by a magnetic fluxΦ. For reasons to be detailed
below, we additionally consider the possibility of tuning the
electric potential of the three superconducting islands bycou-
pling them capacitively (Cg) to gate voltage sources. The
Hamiltonian for one such coupling circuit is then given by

Hri,j =
1

2
(Qj − qj)

⊤
C
−1(Qj − qj) + V (φφφj ,Φ), (54)

where the charge vectorQ⊤
j = (Qj,1, Qj,2, Qj,3) collects the

charges on nodesµ = 1, 2, and3 of Josephson ring numberj.
Similarly, qj = Cgvj is composed of the corresponding off-
set charges. The first term thus represents the ring’s charging
energy and involves the inverse of the capacitance matrix

C =






CΣ −CJ −CJ

−CJ CΣ −CJ

−CJ −CJ CΣ




 , (55)

built from the junction capacitancesCJ and the sum capaci-
tancesCΣ = 2CJ +Cc +Cg. The inductive energy contribu-
tions are given by

V (φφφj ,Φ) = −EJ

3∑

µ=1

cos

[
2π

Φ0
(φj,µ+1−φj,µ−Φ/3)

]

, (56)

where theµ indices, enumerating the superconducting islands
within one ringj, are understood modulo 3, i.e.µ+1 = 4 and
µ = 1 are to be identified. For the following discussion, it is
convenient to drop the ring index “j” and to switch to dimen-
sionless charge and flux variables defined bynµ = Qµ/(2e),
ϕµ = 2πφµ/Φ0, andϕ = 2πΦ/Φ0.

It is intuitively clear that the total chargeN = n1+n2+n3

on each ring is a conserved quantity. Formally, this can
be confirmed by demonstrating that the total charge opera-
tor and the ring Hamiltonian commute, i.e., using the canoni-
cal commutators[nµ, e

±iϕµ′ ] = ∓δµµ′e±iϕµ one verifies that
[N,Hri ] = 0 holds. The eigenstates of the Josephson ring
Hamiltonian can consequently be written in the form|N, k 〉,
wherek = 0, 1, . . . enumerates the eigenstates in the subspace
of total chargeN .

We assume that a residual coupling of the circuit to its en-
vironment allows it to relax into its ground state|ψ0 〉 =
|N0, 0 〉. Noting that the interaction HamiltonianHint also
commutes withN , we will assume that, for the duration of
an experiment, the circuit remains in this ground state. The
virtual intermediate states involved in the transfer of photons
correspondingly belong to the same total charge subspace and
hence can be written as|N0, k 〉.

Since, in the general case, the ring Hamiltonian is not
amenable to an analytical solution, we obtain its spectrum and
the charge matrix elements (required in the subsequent sub-
section) by numerically exact diagonalization. Our strategy
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FIG. 10: (Color online) Dependence of the ground state charge num-
berN0 on external magnetic fluxΦ and offset charges, here for the
uniform caseng1 = ng2 = ng3 ≡ ng . As expected,N0 takes
on only integer values corresponding to the total number of extra
Cooper pairs located on the Josephson ring. The integer-step bound-
aries between regions of differentN0 in general acquire a small fi-
nite width due to the residual coupling to the environment that allows
charge relaxation. Parameters chosen for this plot:EJ/h = 10GHz,
CJ = 0.7 fF, andCc = 5 fF, yieldingEJ/EΣ ∼ 2.

is as follows: in the first step, we employ diagonalization in
the charge basis to obtain the ground state|ψ0 〉 and use it to
extract the total charge,

N0 = 〈ψ0 |N |ψ0 〉. (57)

Numerical results for this ground state charge in a Josephson
ring with realistic parameters are presented in Fig. 10. As
can be inferred from the figure,N0 is generally an integer-
valued function of both offset charges and external magnetic
flux. In the regime of strong charging effects, the dependence
on flux weakens, and explicit expressions can be obtained for
the boundaries betweenN0 regions in offset-charge space [see
Appendix C].

In the second step, we may then restrict ourselves to one
particular subspace of total chargeN0. To do so, we perform
a canonical transformation

ϕ1 = ϕ′
1 + ϕ′

3, ϕ2 = ϕ′
3 − ϕ′

2, ϕ3 = ϕ′
3 (58)

n1 = n′
1, n2 = −n′

2, n3 = −n′
1 + n′

2 + n′
3, (59)

after which the variableϕ′
3 is cyclic and the corresponding

canonical momentumn′
3 = n1+n2+n3 = N is the conserved

total charge. With this, the restriction of the Hamiltonianto
theN0 subspace can be brought into the form

H
(N0)
ri =4EΣ

(

n′
1 −

1

2
[ng1 − ng3 +N0]

)2

+ 4EΣ

(

n′
2 +

1

2
[ng2 − ng3 +N0]

)2

− 4EΣn
′
1n

′
2 (60)

− EJ cos

(

ϕ′
1 −

ϕ

3

)

− EJ cos

(

ϕ′
2 −

ϕ

3

)

− EJ cos

(

ϕ′
1 + ϕ′

2 +
ϕ

3

)

.

Here, the charging energyEΣ has been defined such that
4EΣ = (2e)2(γ1 − γ2), andγ1,2 are reciprocal capacitances
obtained in the inversion of the capacitance matrixC, see Ap-
pendix B. The HamiltonianH(N0)

ri has one degree of freedom
less than the original ring HamiltonianHri , and is thus more
convenient for the numerical calculation of eigenenergiesand
charge matrix elements.

In preparation for the next subsection where the Josephson
rings will be integrated out (relying on the dispersive limit),
we finally rewrite the interaction Hamiltonian in the subspace
N0. For the example of a single Josephson ring coupled to
three resonators, the component functionµ in the coupling
Hamiltonian (53) takes the simple formµλj = j δλ,j . Con-
sidering only one of the low-lying modes of the resonators, we
will drop the mode index “ν” from here on, and writeωr for
the (angular) resonance frequency. For the coupling Hamilto-
nian we then obtain

Hint = CcVrms(a+ a†)⊤C−1Q, (61)

where the vectora collects the annihilators for the three res-
onatorsλ = 1, 2, 3, which are obtained by rewritingqλ =

√

ωr/2(aλ + a†λ). Vrms =
√

ωr/2ϕ(0) ≈
√

ωr/cL is the
root-mean-square voltage in the resonators at the relevantres-
onator end [81]. Once the Hamiltonian (61) is restricted to the
subspace of total chargeN0, one can show that it assumes the
form

H
(N0)
int =2eβVrmsn

′
1(a1 − a3 + H.c.)

+2eβVrmsn
′
2(a3 − a2 + H.c.) (62)

with capacitance ratioβ = Cc(γ1 − γ2). Note that here we
have discarded terms of the formα(aλ + a†λ) with α repre-
senting a c-number. Such terms merely displace the resonator
mode, and can ultimately be absorbed into a redefinition of
the offset charges.

IV. EFFECTIVE PHOTON LATTICE HAMILTONIAN

We now turn to the crucial step of integrating out the
Josephson ring elements and specifying the conditions under
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which the resulting photon lattice Hamiltonian breaks timere-
versal symmetry. The adiabatic elimination of the degrees of
freedom of the coupling circuits is based on being in the dis-
persive regime of large energy mismatch between photonic
excitations of the resonators, and excitations of the coupling
circuits. Specifically, the dispersive regime is defined by the
inequalityg ≪ ∆, where∆ represents the detuning between
photonic and circuit excitations andg is the effective strength
of their mutual coupling. For a general and systematic exposi-
tion of the adiabatic elimination technique we refer the reader
to Ref. [39].

Working within the rotating-wave approximation (RWA),
the total number of (dressed) photons is conserved. For a
given total photon number, we defineP0 as the projector
(P 2

0 = 11) onto the subspace with that photon number and
with all Josephson rings occupying their ground states. The
effective photon lattice HamiltonianHph can be obtained by a
canonical transformation,

Hph = P0e
iSHe−iSP0 (63)

=
∑

λ

Htl,λ +
1

2
P0[iS,Hint]P0 +O(H3

int),

where the generatorS of the transformation is chosen such
that the linear coupling between rings and resonators is elimi-
nated. To leading order in the interaction, it is given by

iS =
∑

α,α′

〈α′ |Hint |α 〉
Eα − Eα′

P0 |α′ 〉 〈α |P1 − H.c. (64)

whereα, α′ are indices for the eigenstates ofHtl +Hri in the
P0 subspace, andP1 = 11 − P0 projects onto the comple-
mentary subspace. The main task hence consists of evaluating
the contribution12P0[iS,Hint]P0 to the effective Hamiltonian.
Following the arguments about charge relaxation in the pre-
vious subsection, we carry out this evaluation in the subspace
with chargeN0, which contains the ground state of the cou-
pling elements.

To illustrate our procedure, we consider the simple case of
three resonators attached to a single coupling element. [The
generalization to a full array can be achieved by starting from
Eq. (53) and projecting it onto theN0 charge subspace of all
rings.] In RWA, the interaction Hamiltonian (62) reads

Hint
RWA
= 2eβVrms

∑

k>0

[

n1,k |N0, k 〉 〈N0, 0 | (a1 − a3)

+ n2,k |N0, k 〉 〈N0, 0 | (a3 − a2)

]

+ H.c., (65)

wherenµ,k = 〈N0, k |n′
µ |N0, 0 〉 denotes the relevant charge

matrix element. It is crucial to note that the origin of photon
hopping with complex-valued hopping elements is directly
based on the fact that these charge matrix elements may be
non-real, as we will see momentarily. A tedious but elemen-
tary calculation shows that the effective photon Hamiltonian
is given by

Hph =

3∑

λ=1

(ωr + ǫλ)a
†
λaλ +

3∑

λ=1

[

tλa
†
λaλ+1 + H.c.

]

, (66)

where the indexλ in the second term is to be understood as
λ mod 3, and where the energy shifts and photon hopping ma-
trix elements are found to be

ǫ1 = 2(βeVrms)
2
∑

k>0

|n1,k|2
ωr − Ek

, (67)

ǫ2 = 2(βeVrms)
2
∑

k>0

|n2,k|2
ωr − Ek

, (68)

ǫ3 = 2(βeVrms)
2
∑

k>0

|n1,k − n2,k|2
ωr − Ek

, (69)

t1 = 2(βeVrms)
2
∑

k>0

−(n1,k)
∗n2,k

ωr − Ek
, (70)

t2 = 2(βeVrms)
2
∑

k>0

(n1,k)
∗n2,k − |n2,k|2
ωr − Ek

, (71)

t3 = 2(βeVrms)
2
∑

k>0

(n1,k)
∗n2,k − |n1,k|2
ωr − Ek

. (72)

Ek denotes the energy of thek-th circuit excitation (measured
relative to the ground state energyE0). Eqs. (70)–(72) for
the hopping matrix elements confirm our previous statement
that the emergence of complex phase factors in the hopping is
directly linked to the possibility of non-real charge matrix ele-
ments. Before investigating the conditions under which these
charge matrix elements are non-real and result in breaking of
time-reversal symmetry, it is useful to note that, in general the
above equations will also lead to breaking of the three-foldro-
tation symmetry due to the energy shiftsǫλ. The origin of this
is, of course, the possible presence ofdifferent offset charges
on each of the three superconducting islands.

For the present discussion, we restrict our discussion to
the case where no such breaking of the three-fold symme-
try occurs, and we will hence choose identical offset charges
ng1 = ng2 = ng3 ≡ ng. In the ideal case, individual super-
conducting islands would not need to be connected to separate
gate voltage sources; instead, a global electric field perpendic-
ular to the chip plane (e.g., by a back gate) could be applied to
achieve a uniform and tunable offset charge. (This, of course,
neglects the presence of random offset charges and1/f charge
noise which we address in Section IV C.) With the threefold
symmetry intact, one concludes that

ǫ1 = ǫ2 = ǫ3 (73)

must be satisfied. In other words, application of a global elec-
tric field does not lead to energy detuning between resonators.

We need to be cautious though not to throw out the baby
with the bath water. Clearly, fixing all offset charges to be
identical is a strong restriction of parameter space and it is by
no means obvious that this leaves any freedom for complex-
valued matrix elements and hence time-reversal symmetry
breaking on the level of the effective photon Hamiltonian. Let
us thus verify that Eq. (73) when combined with Eqs. (67)–
(72) is in general compatible with complex-valued hopping el-
ementstλ. Given thatǫλ must take the form of Eqs. (67)–(69),
a sufficient condition for satisfyingǫ1 = ǫ2 = ǫ3 is obtained
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by requiring that, for each excitation levelk, the charge ma-
trix elementsnµ,k have equal modulus,|n1,k| = |n2,k|, and
obey |n1,k|2 = |n1,k − n2,k|2. Evaluating these conditions,
we find that the charge matrix elements obey

nµ,k = rke
ifµ,k (74)

with modulusrk ≥ 0 independent of the charge indexµ =
1, 2, and phases

f1,k − f2,k = (±)k
π

3
+ 2πzk. (75)

The latter equation must hold for all levelsk = 1, 2, . . ., but
both the sign and the integerzk ∈ Z may differ among lev-
els. The freedom in the phase sign turns out to becrucial
for breaking time-reversal symmetry. Without the sign free-
dom or when truncating the system to a two-level system,
the (gauge-invariant) phase sum over the three-resonator loop
would always be an integer multiple ofπ. Hence, as discussed
in Section II, time-reversal symmetry would be intact on the
level of the effective photon Hamiltonian. However, due to
sign flips for higher levelsk and together with the different
prefactors in the terms of the sum [Eqs. (70)–(72)], arbitrary
gauge-invariant phases

	

3∑

λ=1

ϕλ,λ+1 = arg

3∏

λ=1

tλ (76)

can in principle be generated and time-reversal symmetry thus
be broken.

A. Numerical results for intermediate EJ/EΣ

Equations (70)–(72) allow for a direct evaluation of the
essential parameters of the effective photon Hamiltonian.
The most important quantity for determining whether time-
reversal symmetry breaking succeeds is the gauge-invariant
phase sum	

∑

C ϕ, Eq. (76). Whenever this sum corresponds to
an integer multiple ofπ, time-reversal symmetry is intact; for
all other values it is broken. In these terms, our prime concern
is to demonstrate that

	
∑

C
ϕ /∈ πZ (77)

can be achieved for realistic device parameters and reason-
able magnitude of the photon hopping element (clearly, for
hopping matrix elements with|t| = 0 the complex phase be-
comes arbitrary and completely meaningless).

Results from numerical diagonalization for a selected set of
parameters, chosen with current fabrication capabilitiesand
general parameter requirements in mind, are presented in Fig.
11. We find that breaking time-reversal symmetry is feasible
under realistic conditions, and that the external dc electric and
magnetic fields can be utilized to switch time-reversal invari-
ance on and off (with the electric field) and to smoothly tune
the value of the gauge-invariant phase sum (with the magnetic
field).

Several comments are in order to provide an intuitive under-
standing of the numerical results shown in Fig. 11. We note
that the excitation energies of the Josephson ring and the re-
sulting photon hopping amplitudes and phases exhibit a step-
like dependence on the global offset charge. This is easily un-
derstood from the Josephson ring Hamiltonian, Eq. (60): The
values of the offset charges fix the total chargeN0. Further,
in the case of identical offset chargesng1 = ng2 = ng3, this
is theonly way the offset charges enter the Hamiltonian. By
consequence, the fact thatN0 is an integer-valued function
of ngµ explains the step-wise dependence on offset charges.
Only at special points where an increase in the common offset
charge causes a level crossing of the two lowest states in sub-
spaces with different total charge, the parameterN0 changes
discontinuously from one integer to another and thus leads to
the observed steps.

The fact that time-reversal symmetry is broken forN0 =
1, 2 (and, by means of charge periodicity, for allN0 mod 3 =
±1) and that the gauge-invariant phase sums are of opposite
sign for these two cases can easily be motivated by consider-
ing the case of large charging energy. ForN0 = 1 there are
three nearly degenerate states with one additional Cooper pair
(the “particle”) located on one of the three islands. WhenEJ

is finite, the extra Cooper pair can start to move, becomes sus-
ceptible to the vector potential and produces an effective phase
in the photon hopping. Conversely, forN0 = −1 (equivalent
to N0 = 2) there are three nearly degenerate states with a
Cooper pair missing (i.e., a “hole”) on one of the three is-
lands. This results in the opposite signs of the gauge-invariant
phase sums since hopping of particles involves the phaseϕ,
whereas hopping of holes is associated with phase−ϕ. The
caseN0 mod 3 = 0 corresponds to the particle-hole sym-
metric case, where the photons acquire zero synthetic gauge
charge and time-reversal symmetry holds.

As we will prove below, the regime of very largeEJ/EΣ

ratios (where Josephson tunneling completely overwhelms
charging effects) is inadequate for breaking time-reversal
symmetry. As a result, charge noise must be expected to im-
pose limitations on the proposed device, which we briefly ad-
dress in Section IV C. Future work must establish the optimal
working point where	

∑

C ϕ comfortably reaches the crucial
value of3 × π/6 = π/2 while keeping sensitivity to offset-
charge fluctuations at a minimum.

B. Conditions for time-reversal symmetry breaking

First, let us establish that in the regime where Josephson
tunneling dominates over charging effects, i.e.,EJ/EΣ ≫ 1,
the Josephson ringfails to break time-reversal symmetry. To
see this, consider the ring Hamiltonian (60) in phase basis
wheren′

µ = id/dϕ′
µ (we will drop primes in the following).

ForEJ ≫ EΣ, the Hamiltonian describes the situation of a
fictitious particle with large mass in a two-dimensional poten-
tial. (Strictly speaking, the space described by the coordinates
ϕ1,2 is a torus, since the periodic boundary conditions require
thatϕµ andϕµ + 2π be identified as the same coordinate.)
Due to the large mass, the low-energy part of the spectrum can
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FIG. 11: (Color online) Numerical results for a junction of three resonators attached to a central Josephson ring coupler. The device is tunable
by varying the magnetic fluxΦ, see color/gray scale, and by changing the global offset charge ng as set by a constant electric field, see
x axes. Panel (a) shows the lowest transition frequencyω01/2π of the Josephson ring device in comparison with the resonator frequency
ωr/2π = 7GHz. As one can check, the dispersive limit is maintained forthe selected values of magnetic fluxΦ. Panel (b) displays the
resulting magnitude of photon hopping strengths|t|. The non-monotonic behavior is explained by the crossing oftheω01 transition and the
resonator frequency aroundΦ/Φ0 ∼ 0.3. Panel (c) presents the corresponding results for the gauge-invariant phase sum	

∑

ϕ and proves the
breaking of time-reversal symmetry. As expected from general considerations, time-reversal invariance remains intact at zero offset charge,
and at zero magnetic flux. (Parameters as in Fig. 10, in addition: Cc = 5 fF, ωr/2π = 7GHz and

√

ℓ/c = 50Ω.)

be described by a local approximation of the two-dimensional
potential at its minimum [82],

V (ϕϕϕ) ≃ 1

2
(ϕϕϕ−ϕϕϕmin)

⊤
M(ϕϕϕ−ϕϕϕmin). (78)

Here,M is positive definite, and we have used the vector no-
tationϕϕϕ = (ϕ1, ϕ2). (Note that both the curvature matrix
M and the position of the minimumϕϕϕmin still depend on the
magnetic flux, which we suppress in our notation.) Once
the approximation (78) is employed, the periodic boundary
conditions are changed into the regular boundary condition
∫

R2 dϕ1dϕ2 |ψ(ϕ1, ϕ2)|2 = 1. This opens the way for a
gauge transformation

ψ(ϕ1, ϕ2) = exp(iα1ϕ1 + iα2ϕ2)ψ̄(ϕ1, ϕ2), (79)

which leaves the new boundary condition unchanged. Choos-
ing

αm = (−1)m(N0 + 3ngm −∑3
µ=1 ngµ)/3, (80)

this transformation can be used to eliminate all offset-charge
related first derivatives from the Schrödinger equation for ψ̄.
In other words, in this gauge the fictitious particle does not
“see” a vector potential and its̄ψ wavefunction can be cho-
sen entirely real-valued. This in turn reveals that all charge
matrix elements can be chosen purely imaginary, and conse-
quently all hopping elements for photons purely real-valued,
tµ ∈ R [83]. While time-reversal symmetry is thus not broken
in this regime, we emphasize that Josephson rings in the large
EJ/EΣ regime are still very useful: they make the photon
hopping strengthtµ tunable with an external magnetic field
and remain insensitive to the effects of random offset charges
and1/f charge noise just like the transmon qubit [61, 62].

Closely related to the no-go statement for time-reversal
symmetry breaking with largeEJ/EΣ ratios, one can specify

two general conditions required for breaking of time-reversal
symmetry. First, we note that breaking particle-hole symme-
try, or equivalently, the presence of nonzero offset charges, is
required. The argument for this directly follows from our pre-
vious discussion: without offset charges, all eigenfunctions
of the Josephson ring Hamiltonian in phase basis can be cho-
sen real-valued outright [i.e., without the substep of approxi-
mating the potential in Eq. (78)]. The repetition of our argu-
ments following Eq. (80) then again leads to the conclusion
of no time-reversal symmetry breaking. For the case of iden-
tical offset charges, we can narrow down the necessary con-
dition further: since the Hamiltonian (60) remains invariant
(up to an irrelevant overall constant) under the transformation
N0 → N0 ± 3, we find thatN0 mod 3 = ±1 is required to
break time-reversal symmetry.

Second, we note that the presence of Josephson junctions
is crucial in our scheme. Without them, the inductive energy
would generically take the form of Eq. (78), and all subse-
quent arguments leading to the conclusion of no time-reversal
symmetry breaking hold.

C. Consequences of random offset charges and 1/f charge
noise

It is known from experiments with superconducting charge
qubits [63–66] that the coupling of a superconducting circuit
to its environment generally results in random offset charges
on superconducting islands, and that these offset charges typ-
ically fluctuate as a function of time with a characteristic1/f
noise spectrum [66–68]. This behavior will likely affect the
performance of the Josephson coupler circuits proposed here,
and we comment on consequences and potential solutions to
this issue.

For superconducting charge qubits, the negative effects of
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FIG. 12: (Color online) (a) Josephson ring with attached voltage
bias lines for cancelling random offset charges. (b) Effective pho-
ton hopping strengths and gauge-invariant phase sums for random
offset charges, withngµ ∈ [0, 1] with uniform probability distribu-
tion. Data points are placed such that theirx positions correspond
to the gauge-invariant phase sums	

∑

ϕ (modulo 2π), and theiry
positions display the arithmetic mean of the three photon hopping
strengths|tµ|. For each data point, an “error” bar shows the spread
from the minimum|tµ| to the maximum. (Device parameters used
are the same as in Fig. 11.)

charge noise can be cured by working with transmon qubits in
the regime where Josephson tunneling dominates over charg-
ing effects [61, 62]. This venue, however, is not available for
the Josephson ring circuit when aiming at time-reversal sym-
metry breaking, as follows from our discussion in the previous
section. While devices with largeEJ/EΣ will be insensitive
to charge noise and very useful for making photon hopping
strengths tunable, the gauge-invariant phase sum around the
loop will be exponentially suppressed.

For devices with one or maximally a few Josephson coupler
circuits, it is conceivable to work with intermediateEJ/EΣ

ratios and to couple the individual superconducting islands
capacitively to voltage bias lines, see Fig. 12(a). This way,
random offset charges can be cancelled and the device sta-
bilized. For larger arrays, attaching individual bias lines be-
comes cumbersome. Random offset charges then lead to dis-
order in the photon hopping elements as well as in the gauge-
invariant phase sums, see Fig. 12(b). While presence of such
disorder poses interesting questions itself (compare, there-
cent interest in potential disorder in ultracold atom systems,
see e.g. [69], and localization in random magnetic fields, e.g.
[70, 71]), future studies will also aim at identifying alterna-
tive superconducting circuits for charge-noise insensitive and
time-reversal symmetry breaking coupling elements.

V. CONCLUSIONS AND OUTLOOK

In summary, we have shown that superconducting circuits
based on Josephson junctions can be used to break time-
reversal symmetry in arrays of on-chip microwave resonators.
In the first part of our paper, we have explored how to use pas-
sive coupling elements to generate gauge-invariant phasesin

the lattice hopping elements, and how these phases are related
to time-reversal symmetry breaking. Much of this discussion
is general and can readily be transferred to lattices other than
photon lattices. Our subsequent discussion has highlighted
consequences and applications of breaking time-reversal sym-
metry in non-interacting lattices of photons, including the re-
alization of an on-chip circulator and the achievement of a
highly tunable band structure for the concrete case of a pho-
tonic Kagome lattice. We note that the existence of localized
photon states on hexagons in the Kagome lattice may be of
interest for photon storage in the future. These localized pho-
ton states do not necessitate the presence of a large lattice, but
can rather be accessed in a single Kagome star consisting of
only twelve resonators – a setting that is well within reach of
current experimental capabilities.

The second part of our paper has addressed a concrete pro-
posal for the realization of such passive coupling elements
in the circuit QED architecture. Our presentation aimed to
be pedagogical and to collect the necessary circuit quantiza-
tion tools to handle an array of transmission line resonators
coupled to small superconducting circuits playing the roleof
coupling elements. We have stated the general conditions for
breaking time-reversal symmetry with a passive coupling ele-
ment, including the necessity of non-linear elements (Joseph-
son junctions), the presence of a magnetic field, and break-
ing of particle-hole symmetry. We have shown that an ex-
tremely simple circuit, a superconducting ring interrupted by
three Josephson junctions, can be used to satisfy all the nec-
essary requirements. For realistic device parameters, we have
calculated the resulting photon hopping strengths and gauge-
invariant phases as a function of external magnetic flux and
global offset charge. Finally, we have identified random off-
set charges and charge noise as likely challenges when target-
ing a lattice without disorder in hopping strengths and phases.
Future works will explore alternative circuits for tackling this
issue, and will address the interesting question of strongly-
correlated photon states with broken time-reversal symmetry,
which are expected for large effective photon-photon interac-
tion such as in the Jaynes-Cummings lattice.
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Appendix A: Time-reversal symmetry

Generally, the dynamics of a system is said to be time-
reversal symmetric if for a given solution to the equations
of motion, the corresponding motion-reversed evolution isa
valid solution as well. In the following, we briefly compile
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the most important facts about time-reversal in quantum me-
chanics.

In quantum mechanics, symmetries manifest as mapsS of
Hilbert space, which leave all observable probabilities invari-
ant, i.e.|〈Sφ |Sψ 〉|2 = |〈φ |ψ 〉|2 for all states|φ 〉 , |ψ 〉
[72, 73]. This is fulfilled if and only ifS is either a unitary
operator, or an operator which is anti-linear and anti-unitary
[73, 74]. While the former choice applies to discrete and con-
tinuous symmetries including rotations and parity, the latter
option must be selected for time reversal, in order to avoid en-
ergy spectra not bounded from below [see, e.g., Ref. 72 for the
proof of this statement]. The time-reversal operationΘ must
thus be anti-linear and anti-unitary, i.e.

Θ(α |φ 〉+ β |ψ 〉) = α∗Θ |φ 〉+ β∗Θ |ψ 〉 , (A1)

〈Θφ |Θψ 〉 = 〈ψ |φ 〉 . (A2)

Once time reversalΘ has been properly defined for a specific
system with HamiltonianH , symmetry of that system under
time reversal is signalled by the fact thatΘHΘ−1 = H holds.
(For simplicity, we are excluding the case of degenerate eigen-
states ofH , for whichΘ may additionally induce a rotation
within the degenerate subspace.)

To defineΘ explicitly, we assume that the system provides
us with an observable (with non-degenerate spectrum), sayx,
which is expected to be time-reversal invariant for physical
reasons. For example, this operator may be the position op-
erator for the location of a particle in real space; for a circuit
network, it may be the operator for charge on a certain net-
work node, which also must remain invariant under time re-
versal. Under these assumptions, time-reversal is expected to
leave the eigenstates ofx invariant, possibly up to a phase,

Θ |x 〉 = eiϑ(x) |x 〉 , (A3)

from whichΘxΘ−1 = x immediately follows. Time-reversal
symmetry thus holds if and only if there exists a phaseϑ(x)
such thatΘHΘ−1 = H is satisfied. We will see momentarily
that the phaseϑ is intimately related to phases arising from
gauge transformations.

Eq. (A3) has several important consequences, which we
briefly gather in the following. (i) Onceϑ(x) is fixed, the
action ofΘ on the entire Hilbert space is uniquely defined by
Eq. (A3). To see this, decompose any state|ψ 〉 in the position
basis and invoke anti-linearity to obtain

Θ |ψ 〉 =
∫

ddxΘ

[

ψ(x) |x 〉
]

=

∫

ddx eiϑ(x)ψ∗(x) |x 〉 . (A4)

(ii) The anti-unitarity condition, Eq. (A2), is automatically
satisfied by this definition ofΘ. (iii) The canonical momen-
tump transforms under time-reversal as

ΘpΘ−1 = −p+∇ϑ(x), (A5)

which can be derived using Eq. (A3) and the canonical com-
mutator[x,p] = i.

To demonstrate how the phaseϑ is determined by our gauge
choice, consider the example of a particle with massm in an
external potential with HamiltonianH = p2/2m + V (x).
Choosingϑ(x) = 0, one can verify thatΘpΘ−1 = −p,
and henceΘHΘ−1 = H . As expected, the problem is time-
reversal symmetric. The same system can, of course, be de-
scribed in a different basis, related to the original position ba-
sis by a local gauge transformation,|x 〉 7→ eiχ(x) |x 〉. In the
transformed basis, the Hamiltonian takes the modified form

H =
1

2m

[

p+∇χ(x)
]2

+ V (x). (A6)

Performing a gauge transformation cannot affect time-reversal
invariance, and soΘHΘ−1 = H should hold for an appropri-
ate choice ofϑ. Indeed, using Eq. (A5), we can constructϑ
by requiring

H = ΘHΘ−1 =
1

2m

[

− p+∇ϑ(x) +∇χ(x)
]2

+ V (x),

(A7)
which yields∇ϑ(x) + 2∇χ(x) = 0. As a result, the phase
of the time-reversal operator is fixed by the gauge,ϑ(x) =
−2χ(x) up to an irrelevant constant. If we interpretA = ∇χ
as a vector potential (here with zero curl), we can write

ϑ(x) = −2

∫ x

x0

ds ·A. (A8)

As an immediate corollary we note that the presence of a
magnetic field would manifest in a vector potentialA with
nonzero curl. In that case, the resulting equation∇ϑ(x) +
2A = 0 has no solutions, and hence time-reversal symmetry
is broken.

In summary, one can thus show that the following equiv-
alences hold for the case of position and momentum oper-
ator having continuous spectra: Time-reversal symmetry is
intact. ⇔ There exists a phase choice forϑ(x) such that
ΘHΘ−1 = H holds. ⇔ There exists a local gauge trans-
formation that makes the Hamiltonian real-valued.⇔ The
vector potential satisfies

∮

C ds ·A = 0 for any closed contour
C. (Note that non-singularity of the phase functions is implied
everywhere.)

Finally, let us switch to the case of a discrete position oper-
ator, such as for a lattice Hamiltonian

H = |t|
∑

j 6=k

eiϕjka†kaj +
∑

j

ωa†jaj (ϕkj = −ϕjk),

(A9)
describing a system of particles which can hop between lattice
sites, say fromj to k, and doing so pick up a phase factor
ϕjk. As the analog of the continuous position basis, we use
the particle number states|n1, n2, . . . 〉, and hence define the
time-reversal operation via

Θ |n1, n2, . . . 〉 = eiϑ(n1,n2,...) |n1, n2, . . . 〉 . (A10)

For our purposes it is sufficient to consider linear functions of
the formϑ(n1, n2, . . .) =

∑

j ϑjnj . Invariance under time
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continuous discrete

|x 〉 |n1, n2, . . . 〉
ϑ(x) {ϑj}
A(x) ϕkj

∇ϑ+ 2A = 0 ϑk − ϑj + 2ϕkj ∈ 2πZ
∫

ds ·A = 0 	
∑

C[jk] ϕjk ∈ πZ

TABLE II: Correspondences for time-reversal symmetry in continu-
ous and discrete systems. The statements in the last two rowsonly
hold if the system is time-reversal invariant.

reversal is then equivalent (by definition) to the existenceof
phasesϑj such thatΘHΘ−1 = H holds.

From Eq. (A10) with linearϑ, one obtains the transforma-
tion law for annihilation operators, which reads

Θa†jΘ
−1 = eiϑja†j . (A11)

Applying the time-reversal operation to the Hamiltonian (A9),
we thus find that invariance under time-reversal implies the
existence of a set of phases{ϑj} such that

ϑk − ϑj + 2ϕkj ∈ 2πZ (A12)

holds for all lattice indicesj, k. (Note: once such phases
ϑj have been found, the gauge transformation with phases
{ϑj/2} makes the number-basis Hamiltonian real-valued.)
The last condition (A12) can finally be shown to be equiva-
lent to the requirement that

	
∑

C[jk]
ϕjk ∈ πZ (A13)

for all closed loopsC. The correspondences between the con-
tinuous and the discrete case are summarized in Table II.

Appendix B: Inverse of the capacitance matrix

For completeness, we provide explicit expressions for the
inverse of the capacitance matrixC:

C
−1 =






CΣ −CJ −CJ

−CJ CΣ −CJ

−CJ −CJ CΣ






−1

=






γ1 γ2 γ2
γ2 γ1 γ2
γ2 γ2 γ1




 .

(B1)
The reciprocal capacitancesγ1,2 > 0 are defined as

γ1 =
CΣ − CJ

(CΣ − 2CJ )(CΣ + CJ )
, (B2)

γ2 =
CJ

(CΣ − 2CJ )(CΣ + CJ )
. (B3)

Appendix C: Total charge number of the Josephson ring ground
state

In Section III C, we noted that the eigenstates of the Joseph-
son ring Hamiltonian (54) can naturally be chosen as simulta-
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FIG. 13: (Color online) Regions of fixed total chargeN = 0,±1 in
the charge regime, as a function of the three offset chargesng1, ng2

andng3. The shape of the region boundaries depends on the charging
energy ratioEC/E

′
C , chosen as (a)5/4, (b) 5/2, and (c)20. Note

that the coordinate axes are oriented differently in panel (c) to reveal
the flatness of the boundaries for largeEC/E

′
C .

neous eigenstates of the total ring chargeN = n1 + n2 + n3,
here measured in units of the Cooper pair charge(2e). For
the subsequent discussion in that section, it was important
to extract the total charge number of the ground stateN0 =
〈ψ0 |N |ψ0 〉 for given offset chargesng = (ng1, ng2, ng3)
and model parameters. While numerical diagonalization of
the Hamiltonian (54) allows the direct calculation ofN0, it is
useful to first understand the general structure ofN0.

Our starting point is the ring Hamiltonian, written in terms
of dimensionless charge numbersn = (n1, n2, n3) and phase
differenceϕj ,

Hri =4EC(n− ng)
⊤
M(n− ng) (C1)

− EJ

3∑

j=1

cos(ϕj − ϕj−1 − ϕ/3) = HC +HJ ,

where4EC = 1
2 (2e)

2γ1 is the charging energy associated
with the reciprocal capacitanceγ1 [see Eq. (B2)].M is a di-
mensionless matrix obtained from the inverse capacitance ma-
trix C

−1 by rescaling and is defined as(M)ij = (1−γ)δij+γ,
with γ = γ2/γ1 = E′

C/EC .
SinceN has a discrete spectrum (comprised of all inte-

gersZ), it is clear that the offset-charge space spanned by
(ng1, ng2, ng3) is divided into regions of constant ground state
charge numberN0. At the boundaries of these regions,N0

must jump discontinuously. To understand the boundaries be-
tween such regions, we make an important observation which
is not limited to the charging regime, but holds forarbi-
trary EJ/EC ratio, and is also independent of all remaining
model parameters: Any shift of the offset charges by integer
amounts,

ng → ng + (z1, z2, z3) (zi ∈ Z) (C2)

leaves the spectrum ofH invariant and shiftsN0 according to

N0 → N0 +
∑

i

zi. (C3)

Further, at zero offset chargeng = 0, particle-hole symmetry
is intact and dictatesN0 = 0. From Eq. (C3) one thus imme-
diately knows that the ground state charge number obeys

N0(z1, z2, z3) = z1 + z2 + z3 (zi ∈ Z). (C4)
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Equation (C2), in fact, allows one to restrict the entire dis-
cussion to the domainngj ∈ [−1/2, 1/2). Symmetry also
dictates that, assuming the simplest case of a direct transi-
tion fromN0 = 0 at ng = 0 to N0 = ±1 at ng = ±ej ,
the transition must occur at the midpoints. In other words,
the points±(1/2, 0, 0), ±(0, 1/2, 0) and±(0, 0, 1/2) must
lie on the boundaries separatingN0 = 0 from N0 = ±1.
Analogous arguments apply for the transition toN0 = ±1 at
ng = ±e1+e2−e3 etc. along six out of the eight space diago-
nals, which puts the corresponding six corners of the unit cube
on the boundaries. This sets the overall structure ofN0. The
detailed form of the full boundary, however, depends on de-
tails such as theEJ/EC ratio. In the charge limit (EJ . EC ),
N0 can be constructed analytically and it is instructive to do
so and to discuss howN0 is modified for increased Josephson
tunneling.

In the charging regime, it is primarily the charging contri-
butionHC which determines the boundaries betweenN0 re-
gions. To leading order, we hence neglect Josephson tunnel-
ing (HJ ) completely, and the problem becomes similar to the
question of charge stability in a triple quantum dot [75]. The
eigenstates ofHC are charge eigenstates|n 〉 with n ∈ Z

3

and corresponding eigenenergiesEn(ng). The boundary be-

tween theN0 = 0 region centered atng = 0 and the adjacent
N0 = ±1 regions reached via the planar diagonals are ob-
tained by requiring that the respective energies match,

E0(ng) = E±ej
(ng). (C5)

This yields six equations of the form

0 = 1∓ 2(1− γ)ngj ± 2γ
∑

k

ngk (j = 1, 2, 3), (C6)

which define planes in the offset charge space. Consistent
truncation of the planes to the region whereN0 = 0 → ±1
can occur, yields the full charge boundaries, see Fig. 13. Note
that in the charge regime, theN0 boundaries do not depend on
the magnetic flux.

The presence of Josephson tunneling will generally mod-
ify the shape of these boundaries, but leave the properties
derived from general symmetry arguments intact. We expect
HJ to introduce flux-dependence and to smoothen the sharp-
edge boundaries [see, e.g., Fig. 13(a) and (b)], as it hybridizes
the states| ej 〉 for j = 1, 2, 3 and thus turns crossings into
avoided crossings.
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