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Breaking time-reversal symmetry is a prerequisite for asitg certain interesting many-body states such as
fractional quantum Hall states. For polaritons, chargenaéity prevents magnetic fields from providing a di-
rect symmetry breaking mechanism and similar to the siindti ultracold atomic gases, an effective magnetic
field has to be synthesized. We show that in the circuit QEDitecture, this can be achieved by inserting
simple superconducting circuits into the resonator jumsi In the presence of such coupling elements, con-
stant parallel magnetic and electric fields suffice to br@aktreversal symmetry. We support these theoretical
predictions with numerical simulations for realistic sdenparameters, specify general conditions under which
time-reversal is broken, and discuss the application teatlfock state transfer, an on-chip circulator, and
tunable band structure for the Kagome lattice.

PACS numbers: 42.50.Dv, 42.50.Ct, 71.36.+C

I. INTRODUCTION .
s T
Since the first pioneering papers in 2006 |1-3], theoretica , N l\ - k\ ,\ —
interest in the many body-physics of interacting photons ol \/ ‘ L} \
polaritons in lattices has flourished. Such photon latfises i I - 8 B

' { L y 3 eyl
Fig.[ for an example, are perceived as an interesting vemue f _ +? “\l S \ﬂ i \)
Y\ microwave

quantum simulation [4] and for studying strongly corretate :
systems composed of polaritons[[5—7]. Hopes are that, onc K f resonator’_,
realized in experiments, such systems could complement tt g~ - '
achievements in research with ultracold atomic gaded [8, 9
which are currently leading the charge.

Much recent work has focused on the quantum phase transi- ) ) )
tion between polaritonic Mott-insulating and superfluiates /G- 1: (Color online) The Jaynes-Cummings lattice as anmexa
using various approaché} Ei E—17]. and at this poinéthe ple of a photon lattice. Its circuit QED realization wouldnsst

. T of superconducting resonators (e.g., coplanar wavegusgbsmati-
seems little doubt that the quantum phase transition isén thcally shown as rectangular boxes), each of which would beleou

same universality class as its counterpartin the Bose-Blubb 1, 5 syperconducting qubit (symbolized as dots centerebieimes-
model [18520]. Itis thus natural to ask, what physics beyontnators). Microwave photons would hop between nearegfiber
Bose-Hubbard might photon lattices have to offer? resonators, with the coupling strengthset by the mutual capaci-
Recent work by several groups has highlighted the interestance between resonator ends. Interaction between thernshahd
ing implications of dissipation and external driving, ahdg  the superconducting qubits with strengtivould induce an effective
promoted the quantum phase transition to a nonequilibriunRhoton-photon interaction.
hase transition between different possible steady
@]. A second route to physics beyond Bose-Hubbard, is to ) N
explore phases with broken time-reversal symmetry, of vhic Cific phases has been published by Cho etal. [31]. In addition
fractional Quantum Hall phases are the most celebrated-exarRhotonic edge states and analogs of the quantum Hall effect i
ple [25)26]. photonic crystals have recently been mvespgated by Hhelda
To access such phases, a technique for breaking timé@nd Ragh 2,33] and also probed expenment@kl_ [34].
reversal symmetry is required. In contrast to electrongase !N the presentpaper, we demonstrate thatin the circuit QED
but similar to ultracold atomic gases [27+-30], polaritos-sy architecture([35-37] breaking of time-reversal symmetry ¢
tems face a challenge when trying to break time-reversat syn€ achieved by inserting simple superconducting circoits i
metry: due to the charge neutrality of polaritons, an exterf@Sonator junctions and applying purely dc electric and-mag
nal magnetic field cannot readily be used to achieve break?€tic fields. In our scheme, photons are transferred from res
ing of time-reversal, and instead an effective magnetid fiel onator to resonator via virtual intermediate excitatiohsomu-

has to be synthesized. A first proposal for cavity arrays withPl€r circuits. We expect that the use of passive coupling ele

trapped three-level atoms and involving ac driving with-spe Ments and the absence of any ac fields pumping internal lev-
els may avoid some of the challenges posed by dissipation.

Our analysis shows that for broken particle-hole symmetry
(caused by a dc electric field), polaritons can acquire an ef-

*Permanent address:Department of Physics and Astronomyhwastern  f€ctive gauge pha}rge and hen(.:e become susceptible t.O an ex-
University, Evanston, lllinois 60208, USA ternal magnetic field so that time-reversal symmetry is bro-

“A‘\/

-
sc qubit

L


http://arxiv.org/abs/1006.0762v2

I1. PASSIVE COUPLING ELEMENTSFOR BREAKING
TIME-REVERSAL SYMMETRY

a3
@ For the general discussion of breaking time-reversal sym-
+* metry by utilizing virtual excitations of a coupler circuive
consider a junction composed of three resonaltofs [76] ealpl
e to a central “circulator” system, see Fig. 2, and described b
generic Hamiltonian of the form
&
3 3
FIG. 2: Basic scheme of a three-port coupling element, octede H= Zwﬂl}ai + )‘Z(aj + a;)Bj + Hp. 1)
capacitively to three transmission-line resonators withilailation J=1 J=1
operatorsy; for photons in the relevant mode of the resonators enu-
merated byj = 1,2, 3. Here,a; anda} (j = 1,2, 3) are annihilation and creation op-

erators for photons in the relevant mode of resongtavith
corresponding (angular) frequenegy. (Note that throughout
the paper we use units with= 1.) The capacitive coupling

ken. We emphasize that such passive coupling elements Cobr_etween resonators and the degrees of freelpof the cou-

respond to an important step towards substituting commalerci pling element is described by the SE:‘CO”O' term in Eq. (.1)'

. . . o We shall assume that the coupling element rempass
microwave circulators with on-chip circulators much sreall . """ o .
S ) : . . sive, i.e. the coupler only transfers photons via intermediate
in size. This could pave the way for integrating circulators

. . . virtual excitations and otherwise remains in its grountesta
into larger arrays of resonators and could open interestiayg .

. : all times. Consequently, the coupler degrees of freedom can
new perspectives for correlated polariton systems.

be integrated out (or, in other words, eliminated by a canon-
The remainder of the paper is organized as follows. In Secical transformation of Schrieffer-Wolff type [38.139]) sbat
tion[lwe explain the generic consequences of integratasyp One obtains an effective photon Hamiltonidg(a;, a;)- The
sive coupling elements into a resonator array and using themietails of the effective Hamiltoniafe generally depend on
to break time-reversal symmetry. The passivity conditibn a the specific realization of the passive coupling elemend, an
lows us to adiabatically eliminate the coupling elementstan ~ We will go through the explicit derivation ol for the cir-
obtain an effective photonic tight-binding model with bepk ~ cuit QED realization we propose in Sectlod Ill. Here, we first
time-reversal symmetry. We emphasize the gauge-invariag@xplore thegeneric properties of the effective photon Hamil-
phase sum (mimicking the contour integral of the magnetigonian.
vector potential in the continuous case) as a useful concept We are interested in a passive coupling element that does
for determining whether time-reversal invariance holdg- A not destroy the three-fold symmetry of the system. As a re-
plications of such coupling elements, including the praspe Sult, there is a gauge in whicHe is invariant with respect
of an on-chip circulator conclude the section. to cyclic permutations of the indicgs= 1, 2, 3. Further, we
assume that/q¢ allows for hopping of photons between res-
Sectior{ll then details our proposal for a physical realiza onators, but does not induce photon-photon interactiohis(T
tion of passive coupling elements in the circuit QED arahite assumption is realistic, as we show in Secfiah I1l.) As altesu
ture. Specifically, we consider a system consisting of augla ¢ is anticipated to be a quadratic form of the annihilation
waveguide resonators which capacitively couple to small suand creation operatots, a . Explicitly, the Hamiltonian will
perconducting rings interrupted by three Josephson jomsti  tgke the form o
(“Josephson rings”), which are inserted into the junctibes
tween resonators. Using circuit quantization, we derive th ; ; ; 3 Lt
Hamiltonian of this system and discuss the diagonalizatfon ~ Heft = t(arag + azay + azay) + H-C-] + Zwr%%‘a (2)
the Josephson rings. J=1
In Sectior(I¥, we finally show how the adiabatic elimina- Wherew;. denotes the resonator frequency (possibly includ-
tion of the ring degrees of freedom yields an effective photo ing a renormalization), ant = x e’ (k = [t| > 0) is the
Hamiltonian of the desired type. We discuss the general recomplex-valued hopping matrix element for photons [77].
quirements for achieving time-reversal symmetry breaking ~ When does the effective Hamiltonidd (2) describe the situa-
this scheme, and present results from numerical simukatiortion of broken time-reversal symmetry and when does time-
which underline the proposal’s feasibility with realistievice ~ reversal symmetry remain intact? Formally, time-reversal
parameters. symmetry holds whenever the time-reversal oper@tt@aves
the Hamiltonian invariant, .e0 HO~! = H [78]. As de-
We end with conclusions and an outlook in Sectioh V.tailed in AppendiXZ, for the present case this is true if ther
Some additional details of calculations and a self-coetin s a gauge transformation of the form
summary of time-reversal symmetry in quantum mechanics
are provided in several appendices. a; — e “iay, 3)



which makes the Hamiltonian real-valued when represented * * * *
in the photon number basis. For the three-resonator jumctio N
the existence of such a gauge transformation is checked as . ‘ ’ .
follows. According to Egs.[{2) and](3), an attempt to find of ¢ m
a gauge transformation to make the Hamiltonian real-valued R R
leads to the three equations v

L] L] L] L]

Y+ Y1 — 3= 2T,

®+ Y2 — Y1 = 2o, 4) FIG. 3: (Color online) lllustration of the gauge-invarigstiase sum
Y+ 3 — P2 = 23T. around a l0opy_ ¢, i; = P12 + pas + @34 + a1, here for a
particular plaguett€ in a two-dimensional quadratic lattice.

wherezy, 2o, 23 € Z are arbitrary integers. These equations

for the gauge phases, 2 andgg,_ can o_nly be solv_e_d (and A. Chiral transfer of photon Fock states
hence time-reversal symmetry is intact) if the condition

We consider the 3-resonator junction depicted in[Big. 2 and
described by the effective Hamiltonidis, Eq. [2). Hesr can

. . , be understood as a miniature tight-binding model with peri-
obtained by summing the three equatidds (4), holds. Thus, foodic boundary conditions. The eigenstateghf; are gener-
the present case of a three-resonator junction we find: timeg;.q4 by the creation operators

reversal symmetry is intact if and onlygf € Z7Z.

3p =zm (z €2), (5)

. . . 3
m;—roe fé(;?)?wgtg:fss statement to general photon lattices with 4l = 1 262”“/3& ©
) \/g : J
Jj=1
Het = tiaal +Y weala;  (t; =t;) (6) and have corresponding eigenenergies

i g Q. = wr + 26 cos(2mk /3 + ). (10)
it is important to identify the phase in EQ.](5) as a gaugeHere, 27k/3 (k = —1,0,1) are the allowed wave numbers
invariant quantity, which for discrete lattices plays @rahal-  in the first Brillouin zone. Recalling from Ed.](5) that time-

ogous to the contour integrdilds- A of the vector potentiah  reversal symmetry only holds as long @se ZZ, it is not
in the continuous case. [For simpler notation the primejin  surprising that the simplest case of broken time-revessat s
has been dropped.] We write the gauge-invariant phase sufetry (where the energy spectrum sefhybecomes equidis-

in the form tant) is realized whep = +7/6, i.e. halfway in between the
time-reversal symmetric poings= 0 and+n/3.
Q pij = arg H tij, @) To understand the effect of broken time-reversal symme-
Clig] Clig] try, let us consider the dynamics of the system inside the one

photon subspace. We initialize the system in a Fock state wit
whereC specifies a closed path in the discrete lattice; see Figa single photon inside one resonator, say resonater 1,
[3 for an illustration. In these terms, the statement of E}jj. (5and follow its subsequent evolution in time. The evolutisn i
can be extended to larger systems where time-reversal symbtained by solving the time-dependent Schrodinger éguat
metry can be shown to be intact if and only if the gauge-with initial condition | (t = 0)) = aT:1 |0). By using the
invariant phase sum is an integer multiplerof inverse of the discrete Fourier transform in Hg. (9), theevo
tion for o = 4+7/6 is readily found to be
E Pij € w7 (8)

1
Clij) |¢(t)> _ _ezw,\t E ezk\/gmt—%rzk/3 |wk > , (11)
k=—1

V3
for any closed lattice patf.

To illustrate the implications of broken time-reversal sym Where| ¢, ) = Al |0) denotes the single-photon eigenstates
metry, we discuss three examples: the clockwise or counPf Hesr. The dynamics may be visualized by plotting the prob-
terclockwise state transfer of a single photon Fock state beabilities
tween resonators, circulator behavior for signals propaga . _ 2
ing in semi-infinite transmission lines, and tunability okt P;(t) = [(0] aj=1 [9(1))] (12)
Kagome tight-binding band structure. These examples are réor finding the photon in resonatgr, see Fig[¥h. As ex-
alizations of the simplest setting possible: resonatoupleal  pected from Eq.[(J1), the dynamics is periodic with period
via coupling elements and without any photon-photonitera © = 27/v/3x. More importantly however, the breaking
tion. The fascinating scenario of systemdmgracting pho-  of time-reversal symmetry results in chirality: the photsn
tons with broken time-reversal symmetry is beyond the scop&ansferred from resonator to resonator either clockwise o
of this article and will be addressed in a future paper. counter-clockwise depending on the signof £7/6.



Hamiltonian

3
H =w, Z a;aj + {fiew(alag + agag + aga];) + H.C.}
j=1

3 3
+ 30D wablybia =i >0 [fabiaal ~Hel
Jj=1 q j=1 q
(13)

whereb;, are the annihilation operators for the three transmis-
sion linesj = 1,2, 3, andq is the mode index.

We divide the full HamiltonianH = Hex + Hy + Hin
into the effective photon Hamiltonian previously discusse
the contribution from the semi-infinite transmission linasd
x1 the interaction between them. Next, we employ the diagonal-

ization of He, see Egs[{9) and(1LO), and rewrite the coupling

FIG. 4: (Color online) Time evolution of a single-photon kastate HamiltonianH; in terms of the eigenmodes,
in the presence of a coupler with phase= /6. The quantum state '

at the initial timet = 0 is a Fock state with one photon in resonator ) 3 1

j = 1, and both resonators 2 and 3 in the vacuum state. The photon ,, _ . —2mijk/31 gt

occupation probabilitie®; are plotted as a function of time and show Hin = _Zﬁ Z Z Z {fqe PhjAl —He.

how the photon is transferred around the loop in a directpatisied (14)

by the sign inp = +7/6. The evolution is periodic with period . . . . .

T = 27r/\/§n and the initial state is transferred into Fock state of To calculate ingoing and outgmr.lg flelds_, Wwe use Inpgt-o'utpu

resonators 2 and 3 at times= /3 andt = 27 /3, respectively. theoryEilZlZ]- As usual, formal integration of the Heiserth
equation of motion fob;,,

q j=1k=—1

1
: 1 y
big = —iwgbig + —= e2miik/3 4, 15
Jq 9739 \/gfq k;1 ( )
B.  On-chip Circulator yields solutions which can refer to either an initial statérae

t; = to in the distant past, or to a final state at time= t; in
the distant future:

Circulators are lossless microwave elements with three (or bia(t) —p—iwq(t—ti)p (t:)
more) ports, and have the crucial property that a signal en- ¢ T .
tering portj is fully transferred clockwise to poyt+ 1 (or, I oy (t—1) p omijh/3
alternatively counter-clockwise to pgrt-1) [4d]. This behav- + NI dr =W RS BTN Ay (7).
ior must involve breaking of time-reversal symmetry, whigh ' k=—1 16
typically accomplished by embedding magnetic materigl, e. (16)
ferrite, in the device. Commercial ferrite circulators &rp-
ically large & 1cm) and their size would make it rather dif-
ficult to include large numbers in a photon lattice. It is thus
interesting to explore the design of an-chip circulator, suf- o . .
ficiently small in size and easy to fabricate, such that itdou Fr:g;i(:)mn?gfz [41]. We then plug EG.{L6) into the equation of
be included in large numbers. In addition to being essential oo
for breaking time-reversal symmetry in polariton latticesch ) 3
devices would find great practical application in the citcui Ar = — i Ay — — o 2mijk/3p 17
QED architecture for quantum information processing. g RT3 2.2 s M ()

Proceeding with standard input-output theory, we approxi-
mate the coupling matrix elemenfs as constants within the
relevant frequency range ne@x, and employ the Markov ap-

q j=1

Let us demonstrate that circulator behavior in the sensgnd identify the input and output modes as

of microwave engineering can indeed be achieved with the _ 1 _
model HamiltonianHg, Eq. [2). The actual physical realiza- bION(t) = 5 Z e wat=to.)p. (10 4).
tion within the circuit QED architecture will be discussed i VETP =

Sectiordll. For simplicity, we consider a setting where mi-
crowave radiation is fed into the system by capacitively-cou Here, p is the transmission line density of states, aid=
pling semi-infinite transmission lines to the three resorat 27 |f|2 p defines the effective photon decay rate. Applying
shown in Fig[®2. The full system is then captured by thethe Markov approximation to the remaining time intedﬁaﬁ[ﬂ



FIG. 6: (a) Using three-resonator junctions one obtainsaiqrhlat-
tice with uniform hopping, and the resonators (depictedeasan-
gles) form a regular honeycomb pattern. (b) The corresmgnplno-
ton lattice is the Kagome lattice, a hexagonal Bravaisdatfprimi-
tive vectorsA, A») with three atomsA, B, andC' in the primitive
unit cell (parallelogram shaded in gray). Adding couplecuits in

) ) ) the junctions breaks time-reversal symmetry and introslacghase
FIG. 5: C|rCu|ath 2behaVI0r. The plot ShOWS the norma“ze@o- factoreiiv in the photon hopp|ng e|ement5, Where the sign depends
ing power [b5*/bT|” for the three portg = 1,2,3 under coherent on whether photons are transferred with or against the sgs¢a-
driving of port 1 with frequencyv, when the phase of the coupler  tion (circular arrows).

element is adjusted to/6. For drive frequencies close to the res-

onator frequency, the signal is transferred from port 1 td poThe

bandwidth (/Jf this circulator behavior is set by the photopping power can be calculated from EG121). Assuming a drive at
rates f = x'/2 = 0.1wr). only one of the input ports, say port 1, the normalized outgo-

ing power on pory is | (b%*[wal) / (b} [wa]) \2. Note that results

0.6 0.8 1.0 1.2 14

one obtains for driving on any other port can be obtained by cyclic permu-
5 tation of the port indices)
Ar = — i A — /173 —2mijk/3pjin A_s shown in FigDS, the device shows clear ci.rculator be-
g Rk W/ ; ‘ J havior when choosing = 7 /6 for the photon hopping phase.

L5 The circulator behavior is strongest when the drive fregyien
_ n_’ —2mij(h—k')/3 4 18 wq is close to the frequency of the resonators The band-

6 Z Z ¢ ke (18)  width of circulator behavior is set by in the configuration
k=-15=1 considered here. The condition = «//2 is required to
Analogous expressions fat;, (but with a crucial sign change achieve 100% transmission, and zero reflection at the input

in the last term) can be obtained when substituting the eutgd®°'t:

ing fields. By subtracting from Ed._(lL8) the equations oleédin
when using the outgoing field in either port 1, 2, or 3, one can

derive the following relation between ingoing and outgoing C. Tunableband structure
modes:
1 Incorporating coupler circuits into larger arrays of res-
b = bijr‘ +/k/3 Z e2miak/3 A, (19) onators is useful for several reasons. As mentioned beifore,
' h——1 may provide access to strongly correlated states of iniegac

photons with broken time-reversal symmetry. However, the
usefulness of coupler circuits, is not limited to the intireg
case. When leaving time-reversal symmetry intact, coupler
circuits enables one to vary the (real-valued) photon happi

Finally, we eliminate the dependence on the circulator mode
by substituting the solutions to E{.{18), which in frequenc
space can be expressed as

73 3 _ strength in situ and thus to systematically explore the quan
Aplw] = - - Z 6*2“’1’“/31)';‘ [w], (20) tum phase transition between a photonic superfluid and Mott
i(w =) = w'/2 e~ ' insulator [158[ 10=17]. Finally, when breaking time-resagr

symmetry both magnitudes and phases of the photon hopping

In total, one thus obtains the relation elements become tunable, which can make the photonic band

bgut[w] = b;f‘ [w] (21) structuretun_ableas we WI|| shoyv now. _ _
T3 il VR We consider a two-dimensional resonator array with uni-

n m_’ Z Z e2mili=i"k/ pin W] form photon hopping strength. With the circuit QED real-

3 i(w— Q) —r/277 ization in mind (see Sectidnlll for details), resonatorsyma

k=—1j'=1 . . - . L
be imagined as coplanar waveguides and uniform coupling is

between the ingoing and outgoing fields. For coherent dyivin readily achieved by using junctions composed of three res-
with frequencyw,, the ingoing and outgoing fields are charac- onators at 120angles. In this case, the coplanar waveguide

terized by c-number 'J”'°“t[wd]> and the normalized outgoing resonators form a regular honeycomb pattern as shown in Fig.
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[Bl(a). Each resonator, depicted as a rectangle, repressints a Here, we show that even in the absence of interactions, the
gle lattice site. Thus, marking the center of each resorzor Kagome lattice displays an interesting tunable band stract
a lattice site and connecting nearest neighbor sites, ods fin when time-reversal symmetry is broken. The lattice pasicl
that the photon lattice is a Kagome latticel[43], see[Hig).6(b (for us, photons) can assume eigenstates localized on only a
We briefly note that, due to its novel properties and physicafew sites, giving rise to flat bands. Tuning the phase of the
realizations, the Kagome lattice has played an importdat ro photon hopping makes it possible to modify the Kagome band
in various contexts of strongly correlated systems and- frusstructure and to switch the flat band to the top, middle or bot-
trated spin systems. Ferromagnetic and anti-ferromagnetiom band at will.
Ising [44--46] and Heisenberg [47+49] models have been stud- To demonstrate this, we consider the tight-binding model
ied on the Kagome lattice. For the Hubbard model, theof the Kagome lattice with nearest-neighbor coupling. The
Kagome lattice is known to lead to flat-band magnetist [50-Kagome lattice is generated by a hexagonal Bravais lattice
[52]. The possibility to create optical Kagome lattices haswith primitive vectorsA; = a(1,0) andA,; = £(1, V3).
also created interest in exploring this physics with ulttdc ~ The primitive cell contains three sites located-@t= 0 (A),
atoms [5B[ 54]. Even more recently, the (fermionic) Hubbardr, = A;/2 (B), andr, = A,/2 (C), where positions are
model on the Kagome lattice has been revisited and shown texpressed relative to the origin of the primitive cell. Thoe-c
give rise to interaction-induced topological phases [3, 5 responding tight-binding Hamiltonian is

H=wY [A;mAnm + Bl Bum +Cl Com (22)
+ty {c;mAnm + B Crum + Al B + C 3 Apn + B 1 Coim + Al B | + H.C,

where we have already accounted for the fact that couplenitsrmay introduce photon hopping with a complex phasefact
t = |t|e"?. Working in reciprocal space, we find that the dispersigfk) of the three bands = 1,2,3 is obtained from
diagonalization of the following x 3-matrix:

w 2t* cos(k - A1/2) 2t cos(k - Ay /2) Ay
H=Y (Al Bf ¢[)| 2tcos(k-A/2) w 2t* cos[k - (A — A1)/2] Be |.  (23)
k 2t* cos(k - Ag/2) 2tcosk - (A — Ag)/2] w Cx

Compact analytical expressions for the band structure eabtained for the special valugs= 0, ¢ = 7/6 andy = 7/3:

p=0: e1(k) = w — 2t, eas(k) =w+t =Lt \/1 + 8cos[3k - Ai]cos[ik - Ao]cos[tk - (A1 — Ag)],  (24)

p=m7/6: ea(k) = w, e13(k) =wE2t \/1+2005[%k-A1]cos[%k-Ag] cos[sk - (A1 — Az)]. (25)

The casep = 7/3 can be show to be equivalentgo= 7 and into this interval via gauge transformations.

is obtained from Eq[{24) by switching the signtofThe band Band flatness and the corresponding zero group velocity are
structure forp € $Z is thus familiar from previous work, see directly related to the existence of localized sta 53, 5
e.g. Ref.[[57]. Some of the results on the tight-banding bandFirst, consider the phase valugs= /6,7 /2 where the mid-
structure with broken time-reversal symmetry and an evaludle band is flat. For periodic boundary conditions with altota
ation of the bands’ Chern numbers have also recently beeof N primitive cells, the flat band correspondsitoenergy-
published in[[58]. degenerate states. This degenerate subspace is spanhed by t
localized hexagon statés,, ), where| «,, ) is defined as the
eigenstate localized on theth hexagon in the Kagome lattice
with wavefunction amplitudes

The Kagome band structure for zero and nonzeiie de-
picted in Fig.[Y. [For a beautiful discussion of the Dirac
points in the band structure, visible in Hig. 7(c), and tfialy

of the degeneracy by bre_al_<ing time-reversal symmetry, see (jn| ) = (=1)Teim/3 (26)
Ref. [32].] The characteristic flat bands occur exactly when
¢ € §Z and depending on the specific phase, the flat bandn the six consecutive sitgs= 0, 1,...,5 of the hexagon.

takes the role of the bottom or top band+ 0 andy = 7/3), (Note that the v, ) states are linearly independent but non-
or that of the middle bands= = /6 andy = 7/2). We note  orthogonal.)
that phase valueg ¢ [0,27/3) can always be mapped back  When the flat band is the top (or bottom) band, the situation
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FIG. 7: Band structure of the Kagome lattice with complexpiog elements = |t| e’ for (@) ¢ = 7/6, (b) ¢ = 7/4, and (C)p = /3.

In the top panels, the dispersi¢a. — w) of the three bands = 1, 2, 3 is plotted in units ofi¢|. The first Brillouin zone corresponds to the
hexagon centered & = 0. The bottom panels show cuts of the dispersion along axegbfdsymmetry (see inset). For phases ¢Z, the
band structure exhibits flat bands. The position of the flatlhman be switched from (a) middle to (c) top to bottom [for= 0, obtained from
(c) by reflecting all bands gt — w) = 0] by varying the phase.

is slightly more complicated since the flat band touches thgngex meaning
middle band at thé& = 0 point and the degenerate subspace’; - 1,....N}
is (N + 1)-dimensional. The localized hexagon states with . _ =’

index decomposing resonator into LC elements

. . . . Z J h ing ind
amplitudes jn | ¥, ) = (—1)? are eigenstates, but are not lin- 26 N osipt,sor,' :;ng 'fn (3)( h ,
early independent since théir= 0 superpositior_ |, ) € excitation index for Josephson ring
is identically zero. The localized states can be shown ta spa* € Z resonator '“de)f _
an(N — 1)-dimensional subspace, and the missing kwve 0 1, kx; € {1,2,3} component of ringi coupling to resonatok
states are obtained as veN resonator mode index
1
|lk=0;1)= — Z(Ajnn — Bl )|0), (27)  TABLE I: Summary of conventions for indices and their megsin
V2N . as used throughout Sectidnd Il V.
1
k=0:2)=—) (Al —CI ]0). 28
| ) M;UW L) 10). (29)

modeling a transmission-line resonator capacitively ¢edip
The existence of localized photon states and the tunalbility to arbitrary circuits at its two ends. We show how to system-
its band structure make the Kagome lattice with variablespha atically obtain the exact eigenmodes of the resonator when i
factors an interesting system for future experiments. Furis coupled to arbitrary circuits at its two ends. These exact
ther theoretical studies will address the interesting tijoes eigenmodes are then utilized in Subsecfion]lI B to obtaén th
of strongly correlated states induced by photon interastio full Hamiltonian of a resonator array including coupling-ci
which are expected to be non-perturbative in the presence eliits. Circuit quantization [59] allows one to switch to the
the flat band degeneracies of the Kagome lattice. guantum mechanical description of the full system.

Notation in this section is heavy due to different types of
objects (resonators, Josephson rings, etc.) that neecstobe
merated, and we have made every effort to be consistent in
our naming of indices. For reference, the different labeds a

_ _ _ _ summarized in Tablg 1.
Following the general discussion of broken time-reversal

symmetry in photon lattices, we now turn to a concrete pro-

posal on how to realize this physics in the circuit-QED archi ) ) )

tecture. The essential idea is to insert superconducting ci A- EXact resonator eigenmodes in the presence of coupling

cuits into the junctions between resonators. These circuit

then serve as coupling elements that transfer photons fremo  We consider a system consisting of a transmission line cou-

resonator to another and may break time-reversal symmetrypled capacitively at its two ends to circuits described by La
Our analysis will be organized into three subsections. én th grangiansC’, . The general configuration is depicted in Fig.

first one, Sectiofi IITA, we present the appropriate tools fofd. The Lagrangian of the full system can be cast into the form

I11. PHYSICAL REALIZATION IN THE CIRCUIT-QED
ARCHITECTURE



N N

_ 1 ; I ; P2, L 19 1 2
L=L+ L+ §CL(¢1 —or) + §CR(¢N — ¢r)" + 3 ;Cd«z ¢ — 50ds ;(@ — ¢i-1) (29)
. L . . . 1 . 1 &
= ZLR(E/Q +2C.¢2) —Cro1¢L — CroNOR + 2CLT + LCORON + 5 266&* P — 50 Z(¢i — $i—1)?,
- Lint = =
Lr+Lr Ly

where the contributiong ;, » describe the circuits to the left
and right (now including an additional capacitive conttiba 3 : !
~ Cp,r due to the coupling), andy the transmission-line L _H_é) >_H__ q
resonator, modeled by an array of LC oscillators with capac- 1 1
itancescdz and inductanceédz, wherec, ¢ denote the ca-

pacitance and inductance per unit length. The capacitive in
teraction between resonator and attached circuits is ddnot

Lint. (b I 1 2 3 4 N-1 N 3
It is useful to rewrite the transmission-line Lagrangian in '_”“T”;"I"“I"’I |_F
compact matrix notation, ,,,l,,J c I I yI I I I o
l.v s 1 ¢
Ly = §¢ Té — §¢ Vo, (30) FIG. 8: (a) Transmission-line resonator attached throwgacitors
Cr and Cr at the left and right ends to arbitrary circuits. Panel
. T (b) shows the dissection of the transmission line (capac&aand
with ¢ " = (¢1,...,¢n), inductance per unit length denoted bynd /) into a series of LC
circuits. The generalized flux variables adjacent to therratr are
(TMiir = 6iir (cdz + CLéin + Crdin) (31)  givenby¢r andgr.
and

with eigenvector normalization again given&y Ta,, = d,,,.
Explicitly, the matrix on the left-hand side of Eq.(34) read

1 -1 )
o9 T-lv (35)
_ _ cdz cdz
V = L 1 2 1 ) (32) Cr+cdz ~ Cr+cdz

(dz - 1 -1 2 ~1

-1 2 -1 = W .
-1 1 ~1 2 —1
cdz cdz

i —iwy,t T Cr+cdz Cprtcdz
Generally, the eigenmodes = (,a,e "+ of the trans-

mission line resonator are found by solving the generalizedn the continuum limit, where the number of LC elements

eigenproblenVa, = w2Ta, with normalization condition S Sentto infinity and the length of the resonator N dz is

a Ta, =4, [60]. In the new coordinates — S pie; = kept constant, the discrete mode veetprturns into the con-
1% 7 . 1,

5" (,a, the resonator Lagrangian takes the simple form  tinuous mode functiop, (). From the rows = 2,..., (N —
1) of the matrix equatior{34), one extracts the second-order

differential equation

1 .
Lo=5> (¢ —wicd), (33) )
25 TE (VT () (36)
dZQ v v .
wherer = 0, 1,2, ... enumerates the resonator modes. The rowsi = 1 and: = N yield the homogeneous boundary
In our case, the kinetic matriX is readily invertible. This conditions
allows us to further simplify the problem: instead of a gaer de,,
ized eigenproblem, we only need to solve the ordinary eigen- T = (CLw oy ) (37)
value problem p z=0 z=0
Lol —iopwl e, (38)
T 'Va, = w?a,, (34) dz | —p z=L




Finally, the orthonormalization condition turns into

+ Crovpu
z=0

CL (pl/@,u

L
rL+cA dz 9u(2)pu(2)

(39)

= Opw-

Together, Equation$ (B6)=(39) form a Sturm-Liouville prob
lem [79] which determines the sinusoidal mode functions

0, (z) = Acos(w,Vlcz) + B cos(w,Vicz) (40)

and the corresponding mode frequencigs The frequencies
are obtained as solutions of the transcendental equation

(xL + xr)w

tanw = — 5
1= XrLxrw

(41)

wherew = wvV/lcL andy, = C,/(cL). We emphasize
that the treatment presented in this section has been exhct

no assumptions have been made regarding the strength of t

a

FIG. 9: (Color online) (a) Array consisting of transmissilame res-
onators and coupling circuits in the junctions between matws.
The coupling circuits, attached to the resonators by cémadl.,
ﬁre Josephson rings, see panel (b). They consist of a supeicting
ﬁg interrupted by three identical Josephson junctiorth dbseph-

coupling between the resonator and the left a_nd right dascui gon energye,; and junction capacitandg;. By applying an external
In total, the exact Lagrangiah {29) can be written in terms ofnagnetic field perpendicular to the plane, the loops maytiaddily

transmission-line eigenmodes as

L= Z La"‘%Z(Cg_wgCg)_Z Cagi)azc'u‘pl/(za)'
a=L,R v a v
(42)

B. Model for array of resonators and coupling elements

For the derivation of the Hamiltonian describing an array

of resonators coupled by identical superconducting disati

resonator junctions (see Figl 9), we consider the regime of

be threaded by a magnetic fldx

are given byw, ~ vw,. Here, the fundamental frequency
corresponds to th&/2 resonance and is given hy, /27 =
(2v/€cL)~ 1.

The coupling elements, which will be realized as small su-
perconducting circuits [Fifl]9(b)] and discussed in mottaitie
below, have the generic Lagrangian

Lo = 5] Cby— V85, 9) (45)

weak coupling, as realized in the majority of circuit QED ex-whereC is the circuit's capacitance matrix adcollects all
periments. Specifically, we will assume that the coupling cajnductive contributions of the circuit, including the effef a

pacitorsC, (here,C. = Cp = CRg), connecting transmission-

magnetic flux® applied to the rings. Finally, the capacitive

line resonators and coupling circuits, are small compaved tinteraction between coupling circuits and resonatorsvsrmi

the total capacitance of the resonator, {e. < cL. In this
weak-coupling regime, the Hamiltonian takes a particylarl

simple and intuitive form as we shall demonstrate in the fol-

lowing.

by

Linaj = —mrCeley, 60> Owpul(zry).  (46)

Quite generally, the Lagrangian of the array can be written

as

(43)

L= Z £t|7)\ + Z £ri7_j + Z Eint,)\,ja
A J g

where the terms describe the transmission-line resonators
(“tI"), the ring circuits embedded in the resonator junc-

tions (“ri”), and the interaction between them (“int”), pesc-
tively. As shown in the previous subsection, the resonaser L
grangian can be written in terms of eigenmodes 0, 1, ...
as
1 .
£t|a>\ = 5 Z(<§V - w12/<§1/) (44)

v

We note that for small ratiaS.. /(cL) the transcendental equa-

Here,m,; plays the role of an adjacency matrix which con-
tains all information about which resonators are coupled to
which rings. Itis hence defined as

1 if resonator\ couples to ringj,
my; = .
0 otherwise.

Since each ring consists of three superconducting islangls,
further define a component functiqn,; € {1,2,3} which
selects the individual degree of freedom involved in the-cou
pling between ring and resonatok; €u, is the correspond-
ing three-component unit vector. The coupling capacitors
(assumed identical across the array) are denoted bhynd

znj = 0, L gives thez variable entering the resonator mode
functiony, [as defined in the previous subsection, EQsl (36)—

(47)

tion (41) can be solved approximately, and the lowest mode{89)].
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To put the circuit and resonator variables on equal foot- C. Josephson ring couplers
|ng it is convenient to temporarily rescale the circuitightes

¢, — Co '/’ sothat,, andF; have identical dimensions.  The coupling elements [see Fig. 9(b)] are located in the res-
C has dimensions of a capacnance and its magnitude is ch@nator junctions and are composed of superconducting Joops
sen such that the nonzero entries in the rescaled capagitaneach interrupted by three identical Josephson junctions. B
matrix K, = C, 1C, are of order unity. applying an external magnetic fielB, each loop may be
With these preparations it is possible to obtain an approxithreaded by a magnetic fluk. For reasons to be detailed
mate expression for the Hamiltonian describing the reswnat below, we additionally consider the possibility of tunirget
array coupled via Josephson rings. First, the conjugate maelectric potential of the three superconducting islandsday

menta are obtained as pling them capacitively ;) to gate voltage sources. The
or . C ) Hamiltonian for one such coupling circuit is then given by
Do == Qw — ZmAj\/—é_(eLij)%(zM), 1
Av ] ° Hrl J = §(Q q]) Cil(Qj - q]) + V(¢j7(1))a (54)
oL
Q; = 3—F3 = Z ROV \/—em] <>\VSOV(ZAJ) (48) where the charge vectQT (Qg 1,Qi2, Q. 3) collects the

chargeson nodgs= 1,2, and3 of Josephson ring numbegr
The coupling terms on the right-hand side of the last two equaSimilarly, q; = Cyv; is composed of the corresponding off-
tions are small in the weak-coupling |Imlﬂc/\/C—c < 1  setcharges. The first term thus represents the ring’s cigrgi
valid wheneverL > C.,C, [80]. The inverse of Eqs[{48), energy and involves the inverse of the capacitance matrix
required for the Legendre transform, can then be approxi-

mated by Cs =C; =Cy
C=]| -C Cs. —C , 55
. o 7 Cx =Cy (55)
Ow & w + mej\/—c—(e,qu Q;)ev(2x5), -Cy =C; Cx
j o

. C . built from the junction capacitanc&s; and the sum capaci-
F, ~K'Q,; - ZmM—C(K’lemj)(A,,gp,,(zAj). (49) tanceLs, = 20, + C. + Cy,. The inductive energy contribu-
v qe tions are given by

In these last equations, we have retained the leading @naler,
corrections are of the order 6 C2/[C, cL]). Asaresult, the  V(¢;,®) = —E; Z cos [ (@jut1— 05, —P/3)|, (56)
weak-coupling Hamiltonian can be written in the form

. o o where theu indices, enumerating the superconducting islands
H =) Hia+) Hij+) Huxs, (50)  Within one ringj, are understood modulo 3, i,e+1 = 4 and

1 = 1 are to be identified. For the following discussion, it is
with convenient to drop the ring index™and to switch to dimen-
1 1 sionless charge and flux variables definedipy= Q,,/(2e),
Hiy =5 (@3, +wpid,) = > wwlal,an + 3) B1)  @u =21/ Do, andyp = 210/ Py
v v Itis intuitively clear that the total charg€ = n +ns+ns
on each ring is a conserved quantity. Formally, this can
be confirmed by demonstrating that the total charge opera-
R P N tor and the ring Hamiltonian commute, i.e., using the canoni
Hij=5Q;CTQ; +V(; D). (52) cal commutator§n,,, e=*?w' ] = F4,,,, e+ one verifies that

and

[NV, Hi] = 0 holds. The eigenstates of the Josephson ring
Hamiltonian can consequently be written in the foriv, & ),
wherek = 0,1, ... enumerates the eigenstates in the subspace
of total chargeV.

We assume that a residual coupling of the circuit to its en-
vironment allows it to relax into its ground state,) =
| No,0). Noting that the interaction HamiltoniaHj,; also
The form of the coupling Hamiltonian obtained with Ha.l(53) commutes withN, we will assume that, for the duration of
has a simple interpretation: the voltaygt = el c'qQy an experiment, the circuit remains in this ground state. The
of coupling elemenyj (component.) is coupled by the ca- virtual intermediate states involved in the transfer of joins
pacitor C, to the voltaged ", gx, ¢, (2;) at the correspond- correspondingly belong to the same total charge subspakce an
ing end of resonatoA. It is important to note that in the hence can be written Vo, & ).
Hamiltonian formalism, this intuitive form of the coupling Since, in the general case, the ring Hamiltonian is not
valid only in the weak-coupling limit. As soon as higher- amenable to an analytical solution, we obtain its spectmieh a
order termsO(C?/[C, cL]) are included, the coupling be- the charge matrix elements (required in the subsequent sub-
comes more complicated. section) by numerically exact diagonalization. Our sggte

(Note that we have reverted back from our temporary rescal
ingandthaQ; = C;”QQ]- has proper dimensions of electric
charge.) Finally, the coupling Hamiltonian is given by

Hinp g = maiCele), CT'Q)) D awpn(2y),  (53)
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is as follows: in the first step, we employ diagonalization in
the charge basis to obtain the ground statg) and use it to
extract the total charge,

No = (o | N |o). (57)

No=2  No=3 | Numerical results for this ground state charge in a Josephso
: ring with realistic parameters are presented in Eid. 10. As
] can be inferred from the figurgy, is generally an integer-
valued function of both offset charges and external magneti
flux. In the regime of strong charging effects, the dependenc

] on flux weakens, and explicit expressions can be obtained for
w w ] the boundaries betweé¥, regions in offset-charge space [see
06 08 1.0 AppendixT].

In the second step, we may then restrict ourselves to one

FIG. 10: (Color online) Dependence of the ground state ehatgn- partlculqr subspace of tf)ta| charg®. To do so, we perform

ber N, on external magnetic flu and offset charges, here for the @ canonical transformation

uniform casengi = ng2 = ngz = ng. As expected,N, takes

on only integer values corresponding to the total numberxtfae — / — —

Cooper pairs located on the Josephson ring. The integebstend- PL=PLE G P2 =030 9= (58)

aries between regions of differenf in general acquire a small fi-

nite width due to the residual coupling to the environmeat gilows

charge relaxation. Parameters chosen for this iot/h = 10GHz,  after which the variable); is cyclic and the corresponding

Cy =0.71F, andC.. = 51F, yielding E; / Ex, ~ 2. canonical momentumy, = n,+ns+ns = N is the conserved
total charge. With this, the restriction of the Hamiltonian
the Ny subspace can be brought into the form

! ! I I !
ny=nj, MNo=—ny, ng=—nj+ny+ns, (59)

1 2 1 2
Hr(iNO) :4E2 (nll — §[Hg1 — Ng3 —+ No]) —+ 4EE <7’I,/2 —+ 5[7192 — Ng3 —+ No]) — 4Egn’1n/2 (60)

— Ejcos (S"i‘%) — Ej cos (@Iz—g) — Ejcos (cpll-i-solg—i—%).

Here, the charging energis; has been defined such that \/w,/2(ax + a;). Vims = Vwr/2p(0) = \/w,/cL is the
4Ex. = (2¢)*(71 — 72), and~y, 2 are reciprocal capacitances root-mean-square voltage in the resonators at the relessnt
obtained in the inversion of the capacitance maftisee Ap-  onator end [81]. Once the Hamiltonidn161) is restrictedhe t

pendiXB. The HamiltonialHr(iN“) has one degree of freedom Subspace of total chargé,, one can show that it assumes the
less than the original ring Hamiltoniak,;, and is thus more form
convenient for the numerical calculation of eigenenergies (No)
charge matrix elements. Hy'® =2efVimsn' (a1 — a3 + H.C)

In preparation for the next subsection where the Josephson +2e8Vimsnb(asz — az + H.c.) (62)
rings will be integrated out (relying on the dispersive timi
we finally rewrite the interaction Hamiltonian in the subspa with capacitance rati¢ = C., (y1 — 72). Note that here we
No. For the example of a single Josephson ring coupled t@aye discarded terms of the formfa, + al) with o repre-
three resonators, the component functjom the coupling  senting a c-number. Such terms merely displace the resonato

Hamiltonian [58) takes the simple form,; = jdx ;. Con-  mode, and can ultimately be absorbed into a redefinition of
sidering only one of the low-lying modes of the resonatoes, W tne offset charges.

will drop the mode index?” from here on, and writev,. for
the (angular) resonance frequency. For the coupling Hamilt

nian we then obtain
Hipe = Cchms(a + aT)chle (61)

where the vectoa collects the annihilators for the three res- We now turn to the crucial step of integrating out the
onatorsA = 1,2,3, which are obtained by rewritingy, =  Josephson ring elements and specifying the conditionsrunde

IV. EFFECTIVE PHOTON LATTICE HAMILTONIAN
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which the resulting photon lattice Hamiltonian breaks tig@e  where the index in the second term is to be understood as
versal symmetry. The adiabatic elimination of the degrdes oA mod 3, and where the energy shifts and photon hopping ma-
freedom of the coupling circuits is based on being in the distrix elements are found to be

persive regime of large energy mismatch between photonic 9

excitations of the resonators, and excitations of the dogpl 61 = 2(BeVims)? Z M, (67)
circuits. Specifically, the dispersive regime is defined hy t wy — By

inequalityg < A, whereA represents the detuning between o Ina.x|?
photonic and circuit excitations ands the effective strength o = 2(BeVims)? Z 27”“, (68)
of their mutual coupling. For a general and systematic expos >0 “r T Ei
tion of the adiabatic elimination technique we refer thedeza N1 — a2
to Ref. [39]. €3 = 2(8eVims)’ Z ﬁa (69)
Working within the rotating-wave approximation (RWA), k>0 " F
the total number of (dressed) photons is conserved. For a —(n1 k) N2k
given total photon number, we defing as the projector th = 2(56‘/"“5)22 ﬁ’ (70)
(P¢ = 1) onto the subspace with that photon number and k>0
with all Josephson rings occupying their ground states. The ts = 2(BeVims)? Z (n1k)* nak — |n2kl? 1)
effective photon lattice HamiltoniaH,, can be obtained by a 2 rms Wy — Ey ’
canonical transformation, h=0 (1 4)" | 2
n n — n
th _ PoeiSHe—iSPO (63) ty = Q(ﬁevrms)Q Z Lk w Qf B, L . (72)
k>0 "

E}, denotes the energy of theth circuit excitation (measured
relative to the ground state enerdy). Egs. [Z0)-(7R) for
where the generatd¥ of the transformation is chosen such the hopping matrix elements confirm our previous statement
that the linear coupling between rings and resonatorsrisieli  that the emergence of complex phase factors in the hopping is
nated. To leading order in the interaction, it is given by directly linked to the possibility of non-real charge matle-
' (o | Hing| ) ) ments. Befolre investigating the conditions unde_r WhiC|$d.!he
iS = Z & g5 bo |a") (a|Pr—H.c.  (64) charge matrix elements are non-real and result in breaking o
ol o time-reversal symmetry, it is useful to note that, in gehtig
above equations will also lead to breaking of the three-foid
tation symmetry due to the energy shiffs The origin of this
I'L§, of course, the possible presencealidferent offset charges

1 .
= Z Hy ) + iPo[zS, Hind Py + O(Hiyy),
A

wherea, o/ are indices for the eigenstatesidf + Hi in the

Py subspace, and’, = 1 — P, projects onto the comple-
mentary subspace. The main task hence consists of evauati S
the contribution%Po [i.S, Hint) Py to the effective Hamiltonian. on each of the three _superc_onductmg |slands. ) .
Following the arguments about charge relaxation in the pre- For the present discussion, we restrict our discussion to

vious subsection, we carry out this evaluation in the sutispa :he case Whe(;e no S.h“;]h brealﬂng of_(tjhe t‘ghrTe-fffoIdt nge'
with chargeNy, which contains the ground state of the cou- y OECUI‘S, En We_W' Ienfr? c_doolse ' en.|c§1. % sel charge
pling elements. ng1 = Nga = Ng3 = ng. Inthe ideal case, individual super-

To illustrate our procedure, we consider the simple case ofonducting islands would not need to be connected to separat

three resonators attached to a single coupling elemene [Trg?tetvcilrt]ageh_soulrces; inste%d, agloﬁal etlectric:‘(ijeLd pmﬁpg dt
generalization to a full array can be achieved by startiognfr ular to the chip plane (e.g., by a back gate) could be appie

Eq. and proiecting it onto th&. charae subspace of all achieve a uniform and tunable offset charge. (This, of agurs
rir?g?ﬁ% RWAF\) trJ1e intgraction Har%iltonigﬂBZ) rgads neglects the presence of random offset charges Afidharge
' noise which we address in Section TV C.) With the threefold

RWA symmetry intact, one concludes that
Hine = 26[3‘4msz [nl,k | No, k) (No,0| (a1 — as) Y Y

k>0 €1 = €2 = €3 (73)
+n2k [ No, k) (No,0f(az —az)| +H.c, (65)  mystbe satisfied. In other words, application of a global-ele
tric field does not lead to energy detuning between resosiator
wheren,, ,, = (No, k[ n), | No, 0) denotes the relevantcharge  we need to be cautious though not to throw out the baby
matrix element. Itis crucial to note that the origin of photo \ith the bath water. Clearly, fixing all offset charges to be
hopping with complex-valued hopping elements is directlyjdentical is a strong restriction of parameter space arsdliyi
based on the fact that these charge matrix elements may @ means obvious that this leaves any freedom for complex-
non-real, as we will see momentarily. A tedious but elemenvyalued matrix elements and hence time-reversal symmetry
tary calculation shows that the effective photon Hamilioni - preaking on the level of the effective photon Hamiltoniast L
is given by us thus verify that Eq[(73) when combined with Eds] (67)—
3 3 (Z2) is in general compatible with complex-valued hoppilag e

Hopn=> (wr +ex)afar + [twia”l + H.c.] , (66) ements,. Given thak, must take the form of Eq€.(57)=(69),
=1 =1 a sufficient condition for satisfying; = e = €3 is obtained



by requiring that, for each excitation levi] the charge ma-
trix elementsn,, ,, have equal modulugp, | = |n2 x|, and
0bey|n17k|2 = |nix— n21k|2. Evaluating these conditions,
we find that the charge matrix elements obey
ifuk

(74)

Ny = TkE

with modulusr;, > 0 independent of the charge indgx=
1,2, and phases
7T
fie— for = (i)kg + 272, (75)
The latter equation must hold for all levels= 1,2, ..., but

both the sign and the integer € Z may differ among lev-
els. The freedom in the phase sign turns out tocheial
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Several comments are in order to provide an intuitive under-
standing of the numerical results shown in Figl 11. We note
that the excitation energies of the Josephson ring and the re
sulting photon hopping amplitudes and phases exhibit a step
like dependence on the global offset charge. This is easily u
derstood from the Josephson ring Hamiltonian, Eq. (60): The
values of the offset charges fix the total chafgge Further,
in the case of identical offset chargeg, = ng42 = ngys, this
is theonly way the offset charges enter the Hamiltonian. By
consequence, the fact thag is an integer-valued function
of ng4, explains the step-wise dependence on offset charges.
Only at special points where an increase in the common offset
charge causes a level crossing of the two lowest states in sub
spaces with different total charge, the paraméfgrchanges
discontinuously from one integer to another and thus leads t

for breaking time-reversal symmetry. Without the sign free the observed steps.

dom or when truncating the system to a two-level system, The fact that time-reversal symmetry is broken féy =

the (gauge-invariant) phase sum over the three-resoratpr | 1 2 (and, by means of charge periodicity, for alj mod 3 =
would always be an integer multiple of Hence, as discussed 1 1) and that the gauge-invariant phase sums are of opposite
in Sectior{]), time-reversal symmetry would be intact on thesjgn for these two cases can easily be motivated by consider-
level of the effective photon Hamiltonian. However, due tojng the case of large charging energy. P4y = 1 there are

sign flips for higher levels: and together with the different

three nearly degenerate states with one additional Co@per p

prefactors in the terms of the sum [Eds.](70)4+(72)], arbitra (the “particle”) located on one of the three islands. Win

gauge-invariant phases

3 3
E Par+1 = arg H tx
A=1 A=1

(76)

is finite, the extra Cooper pair can start to move, becomes sus
ceptible to the vector potential and produces an effectiaesp

in the photon hopping. Conversely, fof, = —1 (equivalent

to No = 2) there are three nearly degenerate states with a
Cooper pair missing (i.e., a “hole”) on one of the three is-

can in principle be generated and time-reversal symmetry th lands. This results in the opposite signs of the gauge-igwar

be broken.

A. Numerical resultsfor intermediate E;/Ex

phase sums since hopping of particles involves the phase
whereas hopping of holes is associated with phage The
caseNy mod 3 = 0 corresponds to the particle-hole sym-
metric case, where the photons acquire zero synthetic gauge
charge and time-reversal symmetry holds.

Equations [(70)E(72) allow for a direct evaluation of the As we will prove below, the regime of very largé;/Ex,
essential parameters of the effective photon Hamiltoniantatios (where Josephson tunneling completely overwhelms
The most important quantity for determining whether time-charging effects) is inadequate for breaking time-reversa
reversal symmetry breaking succeeds is the gauge-intariaeymmetry. As a result, charge noise must be expected to im-
phase surly . ¢, Eq. [76). Whenever this sum corresponds topose limitations on the proposed device, which we briefly ad-

an integer multiple ofr, time-reversal symmetry is intact; for

dress in Section IVIC. Future work must establish the optimal

all other values it is broken. In these terms, our prime camce working point wherey’ . ¢ comfortably reaches the crucial

is to demonstrate that

> ¢z
C

(77)

can be achieved for realistic device parameters and reason-

value of3 x 7/6 = 7/2 while keeping sensitivity to offset-
charge fluctuations at a minimum.

B. Conditionsfor time-reversal symmetry breaking

able magnitude of the photon hopping element (clearly, for

hopping matrix elements witjt| = 0 the complex phase be-
comes arbitrary and completely meaningless).

First, let us establish that in the regime where Josephson
tunneling dominates over charging effects, ifg;,/Es. > 1,

Results from numerical diagonalization for a selected et othe Josephson rinfgils to break time-reversal symmetry. To

parameters, chosen with current fabrication capabildied

general parameter requirements in mind, are presentedin Fiwheren;,

see this, consider the ring Hamiltonidn(60) in phase basis
id/dy), (we will drop primes in the following).

[I3. We find that breaking time-reversal symmetry is feasiblé=or £; > Ex, the Hamiltonian describes the situation of a

under realistic conditions, and that the external dc ateatrd
magnetic fields can be utilized to switch time-reversal irva

fictitious particle with large mass in a two-dimensionalgrot
tial. (Strictly speaking, the space described by the coateis

ance on and off (with the electric field) and to smoothly tuney;  is a torus, since the periodic boundary conditions require
the value of the gauge-invariant phase sum (with the magnetithat ¢, andy,, + 27 be identified as the same coordinate.)

field).

Due to the large mass, the low-energy part of the spectrum can
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FIG. 11: (Color online) Numerical results for a junction bfée resonators attached to a central Josephson ring colipéedevice is tunable
by varying the magnetic flu®, see color/gray scale, and by changing the global offsetgeha, as set by a constant electric field, see
x axes. Panel (a) shows the lowest transition frequengy 2w of the Josephson ring device in comparison with the resoriegquency
wr/2m = TGHz. As one can check, the dispersive limit is maintainedtffer selected values of magnetic fl# Panel (b) displays the
resulting magnitude of photon hopping strengftis The non-monotonic behavior is explained by the crossinth@t,: transition and the
resonator frequency arourde/ @, ~ 0.3. Panel (c) presents the corresponding results for the giauggant phase sur, ¢ and proves the
breaking of time-reversal symmetry. As expected from galnesnsiderations, time-reversal invariance remainiradizero offset charge,
and at zero magnetic flux. (Parameters as in[Fih. 10, in addifi. = 5 fF, w, /2r = 7GHz and\/W =500.)

be described by a local approximation of the two-dimendionatwo general conditions required for breaking of time-reaér

potential at its minimu 2], symmetry. First, we note that breaking particle-hole symme
1 try, or equivalently, the presence of nonzero offset chagrige
V(p) ~ 5(90 — @min) ' M(@ — @min)- (78)  required. The argument for this directly follows from ouepr

vious discussion: without offset charges, all eigenfuoi
Here,M is positive definite, and we have used the vector noof the Josephson ring Hamiltonian in phase basis can be cho-
tationp = (p1,2). (Note that both the curvature matrix Sen real-valued outright [i.e., without the substep of agpr
M and the position of the minimugam, still depend on the mating the potential in Eq[{¥8)]. The repetition of our argu
magnetic flux, which we suppress in our notation.) Oncements following Eq.[(80) then again leads to the conclusion
the approximation[(8) is employed, the periodic boundan®f no time-reversal symmetry breaking. For the case of iden-
conditions are changed into the regular boundary conditiotical offset charges, we can narrow down the necessary con-
[ diprdip lY(p1,02)]> = 1. This opens the way for a dition further: since the Hamiltonia_(60) remains invatia

gauge transformation (up to an irrelevant overall constant) under the transféiona
- Ny — Ny + 3, we find thatVy mod 3 = +1 is required to
Y(p1,2) = exp(iarpr + i) (e1, 2), (79)  break time-reversal symmetry.

) » Second, we note that the presence of Josephson junctions
which leaves the new boundary condition unchanged. Choogs crycial in our scheme. Without them, the inductive energy
ing would generically take the form of EJ_([78), and all subse-

m = (—1)™(No + 3ngm — Zi:l n)/3,  (80) g;;%:{gugl::gﬁnlgiﬂﬂf to the conclusion of no time-revers
this transformation can be used to eliminate all offsetrgba
related first derivatives from the Schrodinger equatiarfo
In other words, in this gauge the fictitious particle does not C. Consequencesof random offset chargesand 1/f charge
“see” a vector potential and its wavefunction can be cho- noise
sen entirely real-valued. This in turn reveals that all gear
matrix elements can be chosen purely imaginary, and conse- It is known from experiments with superconducting charge
quently all hopping elements for photons purely real-vajue qubits [63-66] that the coupling of a superconducting éircu
t, €R [83]. While time-reversal symmetry is thus not broken to its environment generally results in random offset charg
in this regime, we emphasize that Josephson rings in the largon superconducting islands, and that these offset chayges t
E;/Ex regime are still very useful: they make the photonically fluctuate as a function of time with a characterigtigf
hopping strengtti,, tunable with an external magnetic field noise spectruni [66-58]. This behavior will likely affeceth
and remain insensitive to the effects of random offset absrg performance of the Josephson coupler circuits proposed her
and1/f charge noise just like the transmon qubit [61, 62]. and we comment on consequences and potential solutions to

Closely related to the no-go statement for time-reversathis issue.
symmetry breaking with larg€’; / Ex; ratios, one can specify For superconducting charge qubits, the negative effects of
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the lattice hopping elements, and how these phases aredelat
to time-reversal symmetry breaking. Much of this discussio

is general and can readily be transferred to lattices ottear t
photon lattices. Our subsequent discussion has hightighte
consequences and applications of breaking time-revensel s
metry in non-interacting lattices of photons, including tie-
alization of an on-chip circulator and the achievement of a
highly tunable band structure for the concrete case of a pho-
tonic Kagome lattice. We note that the existence of locdlize
photon states on hexagons in the Kagome lattice may be of
interest for photon storage in the future. These localizea p

ton states do not necessitate the presence of a large |hitice
can rather be accessed in a single Kagome star consisting of
only twelve resonators — a setting that is well within reath o
F_IG. _12: (Color onlir_le) (a) Josephson ring with attachedag® .~ rrent experimental capabilities.

bias lines for cancelling random offset charges. (b) Effecpho- The second part of our paper has addressed a concrete pro-
ton hopping strengths and gauge-invariant phase sums fidora | for the realization of such passive coupling elements

offset charges, withu,,, € [0, 1] with uniform probability distribu- — . . .
tion. Data points are placed such that theipositions correspond in the circuit QED architecture. Our presentation aimed to

to the gauge-invariant phase sud$¢ (modulo 27), and theiry Ige pedagogical and to collect the necessary c.ircuit queantiz
positions display the arithmetic mean of the three photgophg  tion tools to handle an array of transmission line resomsator
strengthslt,,|. For each data point, an “error” bar shows the spreadcoupled to small superconducting circuits playing the afle
from the minimum|t,,| to the maximum. (Device parameters used coupling elements. We have stated the general conditions fo
are the same as in Fig.J11.) breaking time-reversal symmetry with a passive couplileg el
ment, including the necessity of non-linear elements (ose
son junctions), the presence of a magnetic field, and break-
charge noise can be cured by working with transmon qubits ifng of particle-hole symmetry. We have shown that an ex-
the regime where Josephson tunneling dominates over chartfemely simple circuit, a superconducting ring interrapibs
ing effects|[6/1| 62]. This venue, however, is not available f three Josephson junctions, can be used to satisfy all the nec
the Josephson ring circuit when aiming at time-reversalsymessary requirements. For realistic device parametersagwe h
metry breaking, as follows from our discussion in the prasio calculated the resulting photon hopping strengths anderaug
section. While devices with large€;/ Ex; will be insensitive  invariant phases as a function of external magnetic flux and
to charge noise and very useful for making photon hoppingylobal offset charge. Finally, we have identified random off
strengths tunable, the gauge-invariant phase sum aroend teet charges and charge noise as likely challenges whert-targe
loop will be exponentially suppressed. ing a lattice without disorder in hopping strengths and pkas
For devices with one or maximally a few Josephson coupleFuture works will explore alternative circuits for tackdithis
circuits, it is conceivable to work with intermediafe; / Fs; issue, and will address the interesting question of styeng|
ratios and to couple the individual superconducting istand correlated photon states with broken time-reversal symynet
capacitively to voltage bias lines, see Hig] 12(a). This,waywhich are expected for large effective photon-photon atter
random offset charges can be cancelled and the device stéeon such as in the Jaynes-Cummings lattice.
bilized. For larger arrays, attaching individual bias &rse-
comes cumbersome. Random offset charges then lead to dis-
order in the photon hopping elements as well as in the gauge- Acknowledgments
invariant phase sums, see Higl 12(b). While presence of such

disorder poses interesting questions itself (comparerghe  This work was supported in part by Yale University via

cent interest in potential disorder in ultracold atom syste 3 Quantum Information and Mesoscopic Physics Fellowship
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V. CONCLUSIONSAND OUTLOOK
Appendix A: Time-reversal symmetry

In summary, we have shown that superconducting circuits
based on Josephson junctions can be used to break time-Generally, the dynamics of a system is said to be time-
reversal symmetry in arrays of on-chip microwave resosator reversal symmetric if for a given solution to the equations
In the first part of our paper, we have explored how to use passf motion, the corresponding motion-reversed evolutioa is
sive coupling elements to generate gauge-invariant phases valid solution as well. In the following, we briefly compile
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the most important facts about time-reversal in quantum me- To demonstrate how the pha$és determined by our gauge

chanics. choice, consider the example of a particle with mas an
In quantum mechanics, symmetries manifest as nsaps  external potential with Hamiltonia®/ = p?/2m + V(x).
Hilbert space, which leave all observable probabilitiegiit ~ Choosing(x) = 0, one can verify thaBpO~—! = —p,

ant, i.e.|(S¢|Sv)> = [(¢])|° for all states|¢),|v)  andhenc®HO™! = H. As expected, the problem is time-
[Iﬁ,]. This is fulfilled if and only ifS is either a unitary ~reversal symmetric. The same system can, of course, be de-
operator, or an operator which is anti-linear and antiangit ~ scribed in a different basis, related to the original positya-
[1%,@]. While the former choice applies to discrete and-consis by a local gauge transformatig,) — ex*) |x). Inthe
tinuous symmetries including rotations and parity, théetat transformed basis, the Hamiltonian takes the modified form
option must be selected for time reversal, in ordelEréo avnid e . )

ergy spectra not bounded from below [see, e.g.,IRef. 72 éor th _ b

proof of this statement]. The time-reversal operatdmust i = 2m [p + VX(X)] +V(x). (A6)

thus be anti-linear and anti-unitary, i.e. ) _ _
Performing a gauge transformation cannot affect timesale

Olale)+B|v))=a"0|d)+B°0|¢), (A1) invariance, and s& HO~! = H should hold for an appropri-
(06]0v) = (¥]6). (A2) ate choice of). Indeed, using Eq[{A5), we can construict
by requiring

Once time reversab has been properly defined for a specific )
system with Hamiltoniart/, symmetry of that system under ,; _ gyg-1_ L [ _ 9
time reversal is signalled by the fact tiaf7©—! = H holds. OHo 2m P+ Vi(x) + Vx(x)| +V(x),

(For simplicity, we are excluding the case of degeneratereig (A7)
states ofH, for which © may additionally induce a rotation which yieldsVd(x) 4+ 2Vx(x) = 0. As a result, the phase
within the degenerate subspace.) of the time-reversal operator is fixed by the gaudex) =

To define® explicitly, we assume that the system provides—2x(x) up to an irrelevant constant. If we interpiet= V
us with an observable (with non-degenerate spectrum)xsay as a vector potential (here with zero curl), we can write
which is expected to be time-reversal invariant for phylsica <
reasons. For exan_1p|e, this operator may be the position op- 9(x) = _2/ ds- A. (A8)
erator for the location of a particle in real space; for auwirc x
network, it may be the operator for charge on a certain net- ) )
work node, which also must remain invariant under time re/AS @n immediate corollary we note that the presence of a
versal. Under these assumptions, time-reversal is expezte Magnetic field would manifest in a vector potentlwith
leave the eigenstates efinvariant, possibly up to a phase, ~ nonzero curl. In that case, the resulting equafioi(x) +

2A = 0 has no solutions, and hence time-reversal symmetry
0]x) =™ |x), (A3)  is broken.

In summary, one can thus show that the following equiv-
from which©x©~! = x immediately follows. Time-reversal alences hold for the case of position and momentum oper-
symmetry thus holds if and only if there exists a phése) ator having continuous spectra: Time-reversal symmetry is
suchtha® HO~! = H is satisfied. We will see momentarily intact. < There exists a phase choice fé(x) such that
that the phasé is intimately related to phases arising from ©HO~! = H holds. < There exists a local gauge trans-
gauge transformations. formation that makes the Hamiltonian real-valueg: The

Eq. (A3) has several important consequences, which weector potential satisfieg, ds - A = 0 for any closed contour
briefly gather in the following. (i) Oncé)(x) is fixed, the C. (Note that non-singularity of the phase functions is iregli
action of©® on the entire Hilbert space is uniquely defined by everywhere.)

0

Eg. (A3). To see this, decompose any state in the position Finally, let us switch to the case of a discrete position eper
basis and invoke anti-linearity to obtain ator, such as for a lattice Hamiltonian
o1v) = [atrolvtolx)] T2 oy 2wy (on = =)
J J
. (A9)
= / dz et (x) | x) . (Ad4)  describing a system of particles which can hop betweewéatti

sites, say fromyj to k&, and doing so pick up a phase factor

(i) The anti-unitarity condition, Eq.[{A2), is automatlya  ¥;x- As the analog of the continuous position basis, we use
satisfied by this definition 0®. (iii) The canonical momen- the particle number stat¢s,, n, . ..), and hence define the
tump transforms under time-reversal as time-reversal operation via

OpO ! = —p + Vi(x), (A5) O|n1,ng,...) =e?Mm2) ny ny ). (A10)

which can be derived using E@. (A3) and the canonical com¥or our purposes it is sufficient to consider linear funcsioh
mutator[x, p] = i. the formd(ni,na,...) = >, 9;n;. Invariance under time



continuous discrete

|X> |n1,n2,...)

I(x) {9;}

A(x) Pkj

VI+2A =0 T — V5 + 2p1; € 217
Jds-A=0 Yepjn @ik € TL

TABLE II: Correspondences for time-reversal symmetry intaau-
ous and discrete systems. The statements in the last twoarmys
hold if the system is time-reversal invariant.

reversal is then equivalent (by definition) to the existeote
phased); suchtha® HO~! = H holds.

From Eg.[[AI0) with linear), one obtains the transforma-

tion law for annihilation operators, which reads
(Al1)
Applying the time-reversal operation to the Hamilton{fa@jA

@ai@fl =i a;.

we thus find that invariance under time-reversal implies th

existence of a set of phasgg, } such that

v — 19j + 2<,ij € 21 (A12)

holds for all lattice indiceg, k. (Note: once such phases
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FIG. 13: (Color online) Regions of fixed total chare= 0, +1 in

the charge regime, as a function of the three offset chargesn g2
andngys. The shape of the region boundaries depends on the charging
energy ratioEc/E¢, chosen as (&)/4, (b) 5/2, and (c)20. Note

that the coordinate axes are oriented differently in pac)eio(reveal

the flatness of the boundaries for lage / E¢-.

neous eigenstates of the total ring chalge- ny + no + ns,
here measured in units of the Cooper pair chatyg. For
the subsequent discussion in that section, it was important
to extract the total charge number of the ground stéte=

e(wo | N |1 ) for given offset charges, = (ng1,n42,n43)

and model parameters. While numerical diagonalization of
the Hamiltonian[(B4) allows the direct calculation/g, it is
useful to first understand the general structuré&/ef

Our starting point is the ring Hamiltonian, written in terms

; have been found, the gauge transformation with phasegf dimensionless charge numbers= (n,, n2,73) and phase
{¥;/2} makes the number-basis Hamiltonian real—valued.}jiﬁerence(pj,

The last condition[(AT2) can finally be shown to be equiva-

lent to the requirement that

E Pik € w7

Cl5k]

(A13)

for all closed loop€. The correspondences between the con

tinuous and the discrete case are summarized in Table 1.

Appendix B: Inverse of the capacitance matrix

For completeness, we provide explicit expressions for th%ersZ)

inverse of the capacitance matfix

Cs —C; =Cy T2 Y2
Cl=| -0, ¢y -Cy = 2 mn
-C; =C; Cx Y2 Y2 M
(B1)
The reciprocal capacitances, > 0 are defined as
Cy —Cy
= B2
71 (CE-?CJ)(CZ‘f'CJ)’ ( )
= (83)

e (Cx —2C5)(Cs+Cy)’

Appendix C: Total charge number of the Josephson ring ground
state

In Sectiori IITQ, we noted that the eigenstates of the Josep
son ring Hamiltoniar(34) can naturally be chosen as simulta

Hyi =4Ec(n —1n,) M(n —n,) (C1)

3
- EJZcos(goj —pj1—¢/3)=Hc+ Hy,
j=1

Where4Ec = 1(2e)y, is the charging energy associated
with the reciprocal capacitaneg [see Eq.[(BR)].M is a di-
mensionless matrix obtained from the inverse capacitamee m
trix C~! by rescaling and is defined &41);; = (1—~)d;;+",
withy =2 /71 = E¢/Ec.

Since N has a discrete spectrum (comprised of all inte-
it is clear that the offset-charge space spanned by
(ng1,ng2, ng3) is divided into regions of constant ground state
charge numbenV,. At the boundaries of these regionsy
must jump discontinuously. To understand the boundaries be
tween such regions, we make an important observation which
is not limited to the charging regime, but holds farbi-
trary F;/E¢ ratio, and is also independent of all remaining
model parameters: Any shift of the offset charges by integer

amounts,
(2: € Z) (C2)

leaves the spectrum @f invariant and shiftsVy according to

No—)N0+ZZi.

n, — ng+ (21, 22, 23)

(C3)

Further, at zero offset chargg, = 0, particle-hole symmetry
is intact and dictated’y = 0. From Eq. [[CB) one thus imme-
hdiately knows that the ground state charge number obeys

No(Zl, 292, 23) =21+ 22+ 23 (Zl S Z) (C4)
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Equation [[CR), in fact, allows one to restrict the entire-dis tween thelVy = 0 region centered ai, = 0 and the adjacent
cussion to the domain,; € [—1/2,1/2). Symmetry also N, = =1 regions reached via the planar diagonals are ob-
dictates that, assuming the simplest case of a direct trandiained by requiring that the respective energies match,

tion fromNo = 0 atn, = 0to Ny = +£1 atn, = +e;,

the transition must occur at the midpoints. In other words, Eo(ny) = Exie,(ny). (C5)

the points+(1/2,0,0), £(0,1/2,0) and £(0,0,1/2) must

lie on the boundaries separating, = 0 from N, = +1.  This yields six equations of the form

Analogous arguments apply for the transitionp = +1 at

n, = fe; ey —e3etc. along six out of the eight space diago- (=1 2(1 — y)ng; + 2727% (j=1,2,3), (C6)
nals, which puts the corresponding six corners of the utécu %

on the boundaries. This sets the overall structur®/gf The

detailed form of the full boundary, however, depends on dewhich define planes in the offset charge space. Consistent
tails such as th&; / E¢ ratio. In the charge limitf; < Ec),  truncation of the planes to the region wheéyg = 0 — +1

Ny can be constructed analytically and it is instructive to docan occur, yields the full charge boundaries, see[Fiy. 13 No
so and to discuss how, is modified for increased Josephson that in the charge regime, thi&, boundaries do not depend on

tunneling. the magnetic flux.
In the charging regime, it is primarily the charging contri- The presence of Josephson tunneling will generally mod-
bution H~ which determines the boundaries betwéénre-  ify the shape of these boundaries, but leave the properties

gions. To leading order, we hence neglect Josephson tunnalerived from general symmetry arguments intact. We expect
ing (H ;) completely, and the problem becomes similar to theH ; to introduce flux-dependence and to smoothen the sharp-
question of charge stability in a triple quantum dot [75].€Th edge boundaries [see, e.qg., Fig. 13(a) and (b)], as it higlesd
eigenstates ofi are charge eigenstatén) with n € Z*  the statege; ) for j = 1,2,3 and thus turns crossings into
and corresponding eigenenergigs(n,). The boundary be- avoided crossings.
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