## 8 Lesson 8

### 8.1 Quantum Statistical Mechanics

### 8.1.1 Reminder

We saw the equilibrium condition for a quantum system (the KMS condition),

$$
\begin{equation*}
C_{A B}(t)=C_{B A}(t)(-t-\mathrm{i} \hbar \beta) . \tag{8.1}
\end{equation*}
$$

for $-\hbar \beta<\Im(t)<\hbar \beta$. We then went to the Fourier space, where this equation reads,

$$
\begin{equation*}
\tilde{C}_{A B}(\omega)=\tilde{C}_{B A}(-\omega) \mathrm{e}^{\beta \hbar \omega} \tag{8.2}
\end{equation*}
$$

This is the Detailed Balance Condition.
Remark. These results (previous and forthcoming) hold irrespective of the exact statistics (e.g., Fermi-Dirac or BoseEinstein).

### 8.1.2 Quantum Version of the F-D Theorem ${ }^{1}$

We have an Hamiltonian $\mathcal{H}$ and a perturbation $f(t) \hat{B}(t)$. We are interested in the quantity

$$
\begin{equation*}
\langle\hat{A}(t)\rangle=\frac{1}{Z} \operatorname{Tr}\left(\mathrm{e}^{-\beta \mathcal{H}} \hat{U}_{t}(f) A(0) \hat{U}_{t}^{-1}(f)\right) \tag{8.3}
\end{equation*}
$$

Note that unlike the classical case, we do not start at $\mathcal{H}$ and stop and $t=0$; nevertheless, the calculation will be the same.

The evolution operator $\hat{U}_{t}(f)$ holds

$$
\begin{equation*}
-\mathrm{i} \hbar \frac{\partial}{\partial t} \hat{U}_{t}(f)=(\mathcal{H}+f(t) \hat{B}(t)) \hat{U}_{t}(f) \tag{8.4}
\end{equation*}
$$

hence,

$$
\begin{align*}
\hat{U}_{t}(f)=U(t) & +\frac{\mathrm{i}}{\hbar} \int_{0}^{t} \mathrm{~d} \tau U(\tau) f(\tau) B(\tau) U(t-\tau)  \tag{8.5}\\
& -\frac{1}{\hbar^{2}} \int_{0}^{t} \mathrm{~d} \tau_{1} \int_{0}^{\tau_{1}} \mathrm{~d} \tau_{2} U\left(\tau_{2}\right) f\left(\tau_{2}\right) B\left(\tau_{2}\right) U\left(\tau_{1}-\tau_{2}\right) f\left(\tau_{1}\right) B\left(\tau_{1}\right) U\left(t-\tau_{1}\right)+O\left(f^{3}\right)
\end{align*}
$$

More compactly, we can write this equation with $\mathcal{T}$ the time ordering operator:

$$
\begin{equation*}
\hat{U}_{t}(f)=\mathcal{T}\left[\exp \left(\frac{\mathrm{i}}{\hbar} \int_{0}^{t} \mathrm{~d} \tau(\mathcal{H}+f(t) \hat{B}(t))\right)\right] \tag{8.6}
\end{equation*}
$$

After we inserted this expression to $\langle\hat{A}(t)\rangle$ we obtain

$$
\begin{equation*}
\langle\hat{A}(t)\rangle=\langle\hat{A}(0)\rangle+\int_{0}^{t} \mathrm{~d} \tau R_{A B}(t-\tau) f(\tau)+O\left(f^{2}\right), \tag{8.7}
\end{equation*}
$$

with

$$
\begin{equation*}
R_{A B}(t-\tau)=-\frac{\mathrm{i}}{\hbar}\langle[A(t), B(\tau)]\rangle=-\frac{\mathrm{i}}{\hbar} \frac{1}{Z} \operatorname{Tr}\left(\mathrm{e}^{-\beta \mathcal{H}}[A(t), B(\tau)]\right), \quad t>\tau . \tag{8.8}
\end{equation*}
$$

### 8.1.3 A Massage and Games

We'd like to play with various functions. Let's begin with the correlation function

$$
\begin{align*}
C_{[A, B]}(t) \equiv\langle[A(t), B(0)]\rangle & =\langle A(t) B(0)-B(0) A(t)\rangle \\
& =\langle A(t) B(0)-B(-t) A(0)\rangle \tag{8.9}
\end{align*}
$$

Now write the Fourier transform as

$$
\begin{equation*}
C_{[A, B]}(t)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \mathrm{d} \omega \mathrm{e}^{\mathrm{i} \omega t} \tilde{C}_{[A, B]}(\omega), \tag{8.10}
\end{equation*}
$$

to obtain

$$
\begin{equation*}
\tilde{C}_{[A, B]}(\omega)=\tilde{C}_{A B}(\omega)-\tilde{C}_{B A}(-\omega)=\tilde{C}_{A B}(\omega)\left(1-\mathrm{e}^{-\beta \hbar \omega}\right), \tag{8.11}
\end{equation*}
$$

[^0]where in the last equation we used (8.2).
Now, let's inspect the correlation function of the anti-commutator
\[

$$
\begin{equation*}
C_{\{A, B\}}(t) \equiv\left\langle\{A(t), B(0)\}_{+}\right\rangle \tag{8.12}
\end{equation*}
$$

\]

The same massage gives

$$
\begin{equation*}
\tilde{C}_{\{A, B\}}(\omega)=\tilde{C}_{A B}(\omega)\left(1-\mathrm{e}^{-\beta \hbar \omega}\right) \tag{8.13}
\end{equation*}
$$

This gives us a direct relation between the two:

$$
\begin{equation*}
\tilde{C}_{[A, B]}(\omega)=2 \tanh \left(\frac{1}{2} \beta \hbar \omega\right) \tilde{C}_{\{A, B\}}(\omega) \tag{8.14}
\end{equation*}
$$

We now can write (8.8) as

$$
\begin{equation*}
R_{A B}(t)=-\frac{1}{2 \pi} \int_{-\infty}^{\infty} \mathrm{d} \omega \mathrm{e}^{\mathrm{i} \omega t} \frac{2}{\hbar} \tanh \left(\frac{1}{2} \beta \hbar \omega\right) \tilde{C}_{\{A, B\}}(\omega) . \tag{8.15}
\end{equation*}
$$

This is sometimes called the Quantum Fluctuation-Dissipation Theorem (QFDT).

### 8.1.4 Linear Response - Definitions and Properties

Let us write

$$
\begin{equation*}
R_{A B}(t-\tau) \equiv-\frac{\mathrm{i}}{\hbar}\langle[A(t), B(\tau)]\rangle \Theta(t-\tau) \tag{8.16}
\end{equation*}
$$

Usually in the literature we see the susceptibility

$$
\begin{equation*}
\tilde{\chi}_{A B}\left(t-t^{\prime}\right) \equiv \frac{\mathrm{i}}{\hbar}\left\langle\left[A(t), B\left(t^{\prime}\right)\right]\right\rangle \Theta\left(t-t^{\prime}\right) \tag{8.17}
\end{equation*}
$$

This is sometimes called the Response function, Retarded Green function, Retarded propagator, etc.
Let us now write the properties of $\mathcal{H}$. We expand it in its eigenfunctions,

$$
\begin{equation*}
\mathcal{H}\left|\varphi_{n}\right\rangle=E_{n}\left|\varphi_{n}\right\rangle \tag{8.18}
\end{equation*}
$$

with the equilibrium population

$$
\begin{equation*}
\rho_{\mathrm{eq}}=\frac{1}{Z} \mathrm{e}^{-\beta \mathcal{H}}, \tag{8.19}
\end{equation*}
$$

such that

$$
\begin{equation*}
\left\langle\varphi_{n}\right| \rho_{\mathrm{eq}}\left|\varphi_{n}\right\rangle \equiv \Pi_{n} \delta_{n n^{\prime}}=\frac{1}{Z} \mathrm{e}^{-\beta E_{n}} \delta_{n n^{\prime}} \tag{8.20}
\end{equation*}
$$

Therefore

$$
\begin{equation*}
\tilde{\chi}_{A B}(\tau)=\Theta(\tau) \frac{\mathrm{i}}{\hbar} \sum_{n, q}\left(\Pi_{n}-\Pi_{q}\right) A_{n q} B_{q n} \mathrm{e}^{\mathrm{i}\left(E_{n}-E_{q}\right) \tau / \hbar} \tag{8.21}
\end{equation*}
$$

where $\Theta(\tau)$ ensures causality. We can now write its Fourier components,

$$
\begin{equation*}
\chi_{A B}(\omega) \equiv \int_{0}^{\infty} \mathrm{d} \tau \mathrm{e}^{\mathrm{i} \omega \tau} \tilde{\chi}_{A B}(\tau) \tag{8.22}
\end{equation*}
$$

Let us introduce a factor $\mathrm{e}^{\varepsilon \tau / \hbar}$ with $\varepsilon \rightarrow 0^{+}$to have

$$
\begin{equation*}
\chi_{A B}(\omega)=\frac{1}{\hbar} \sum_{n, q}\left(\Pi_{n}-\Pi_{q}\right) A_{n q} B_{q n} \lim _{\varepsilon \rightarrow 0^{+}} \frac{1}{\omega_{q n}-\omega-\mathrm{i} \varepsilon} \tag{8.23}
\end{equation*}
$$

where $\hbar \omega_{q n} \equiv E_{q}-E_{n}$. This value $\chi_{A B}(\omega)$ is called the Susceptibility, Admittance, $1 /$ Impedance.
Remark. Note that we used simple quantum mechanics, and not quantum statistics. Quantum statistics came after introducing QFT into quantum mechanics: when you need to quantize a field (scalar or spinor), you need to know whether it is a Fermion or a Boson. The statistics we used when calculating, for example, black body radiation were not quantized. The FD or BE distributions are simply a matter of choice. Therefore all this derivation is valid.

### 8.1.5 Extension of $\chi_{A B}(\omega)$ to the Complex Plane

This is related to the Kramers-Krönig relations.
Let us look on the complex plane $z=x+\mathrm{i} y$,

$$
\begin{equation*}
\hat{\chi}_{A B}(z)=\int_{-\infty}^{\infty} \mathrm{d} \tau \mathrm{e}^{\mathrm{i} z \tau} \tilde{\chi}_{A B}(\tau)=\int_{-\infty}^{\infty} \mathrm{d} \tau \mathrm{e}^{-y \tau} \mathrm{e}^{\mathrm{i} x \tau} \tilde{\chi}_{A B}(\tau) \tag{8.24}
\end{equation*}
$$

on the upper half-plane $y=\Im(z) \geq 0$. Here the $\hat{\square}$ denotes a function on the complex plane. Note that $\hat{\chi}_{A B}(z)$ is well defined in the upper half-plane. It is analytic and given by $\chi_{A B}(\omega)$,

$$
\begin{equation*}
\chi_{A B}(\omega)=\lim _{\varepsilon \rightarrow 0^{+}} \hat{\chi}_{A B}(z=\omega+\mathrm{i} \varepsilon) \tag{8.25}
\end{equation*}
$$

Therefore,

$$
\begin{equation*}
\hat{\chi}_{A B}(z)=\frac{1}{\hbar} \sum_{n, q}\left(\Pi_{n}-\Pi_{q}\right) A_{n q} B_{q n} \frac{1}{\omega_{q n}-z} \tag{8.26}
\end{equation*}
$$

Therefore, all the singularities of $\hat{\chi}_{A B}(z)$ come from the poles of $\frac{1}{\omega_{q n}-z}$. Since $\omega_{q n}$ are real, all singularities of $\hat{\chi}_{A B}(z)$ are poles along the real axis.

There is a discrete energy spectrum for $\mathcal{H}$. In the $V \rightarrow \infty$ limit, we'll obtain a cut in the complex plane along the real axis (the poles become a line).
Corollary. A single isolated atom does not dissipate energy. You need a continuum in order to dissipate.

### 8.1.6 Spectral Function (Dissipation)

Let us define

$$
\begin{equation*}
\xi_{A B}(\omega) \equiv \frac{\pi}{\hbar} \frac{1}{\hbar} \sum_{n, q}\left(\Pi_{n}-\Pi_{q}\right) A_{n q} B_{q n} \delta\left(\omega_{q n}-\omega\right) \tag{8.27}
\end{equation*}
$$

It is usually denoted by $\chi_{A B}^{\prime \prime}(\omega)$. Hence,

$$
\begin{equation*}
\hat{\chi}_{A B}(z)=\frac{1}{\pi} \int_{-\infty}^{\infty} \mathrm{d} \omega \frac{\xi_{A B}(\omega)}{\omega-z} . \tag{8.28}
\end{equation*}
$$

Therefore

$$
\begin{equation*}
\chi_{A B}(\omega)=\frac{1}{\pi} \lim _{\varepsilon \rightarrow 0^{+}} \int_{-\infty}^{\infty} \mathrm{d} \omega^{\prime} \frac{\xi_{A B}\left(\omega^{\prime}\right)}{\omega^{\prime}-\omega-\mathrm{i} \varepsilon} . \tag{8.29}
\end{equation*}
$$

On the other hand,

$$
\begin{equation*}
\hat{\xi}_{A B}(t)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \mathrm{d} \omega \mathrm{e}^{-\mathrm{i} \omega t} \xi_{A B}(\omega) \tag{8.30}
\end{equation*}
$$

implies that

$$
\begin{equation*}
\hat{\xi}_{A B}(t)=\frac{1}{2 \hbar}\langle[A(t), B(0)]\rangle \tag{8.31}
\end{equation*}
$$

Note that there is no $\Theta$ function; therefore $\hat{\xi}_{A B}(t)$ (the spectral / Green's function) does not preserve causality. The relation between the two reads

$$
\begin{equation*}
\tilde{\chi}_{A B}(t)=2 \mathrm{i} \Theta(t) \xi_{A B}(t) . \tag{8.32}
\end{equation*}
$$

We can now write

$$
\begin{equation*}
\xi_{A B}(\omega)=\frac{1}{2 \mathrm{i}} \lim _{\varepsilon \rightarrow 0^{+}}\left[\hat{\chi}_{A B}(\omega+i \varepsilon)-\hat{\chi}_{A B}(\omega-i \varepsilon)\right] \tag{8.33}
\end{equation*}
$$

where we used the Cauchy principal value relation,

$$
\begin{equation*}
\lim _{\varepsilon \rightarrow 0^{+}} \frac{1}{\omega^{\prime}-\omega \mp \mathrm{i} \varepsilon}=\mathcal{P}\left(\frac{1}{\omega^{\prime}-\omega}\right) \pm \mathrm{i} \pi \delta\left(\omega^{\prime}-\omega\right) \tag{8.34}
\end{equation*}
$$

Remark. The value $\hat{\chi}_{A B}(\omega-i \varepsilon)$ exists in the lower-half plane. Since $\chi_{A B}(\omega-i \varepsilon)$ was not shown to exist, it must preserve the hat $\hat{\chi}$. The hat on $\hat{\chi}_{A B}(\omega+i \varepsilon)$ is there for solidarity.

Let us continue. Causality

$$
\begin{align*}
\hat{\chi}_{A B}(\omega-i \varepsilon) & =\frac{1}{\hbar} \sum_{n, q}\left(\Pi_{n}-\Pi_{q}\right) \frac{A_{n q} B_{q n}}{\omega_{q n}-\omega+\mathrm{i} \varepsilon} . \\
& =\frac{1}{\hbar} \sum_{n, q}\left(\Pi_{n}-\Pi_{q}\right)\left(\frac{A_{n q}^{*} B_{q n}^{*}}{\omega_{q n}-\omega-\mathrm{i} \varepsilon}\right)^{*}  \tag{8.35}\\
& =\frac{1}{\hbar} \sum_{n, q}\left(\Pi_{n}-\Pi_{q}\right)\left(\frac{B_{n q}^{\dagger} A_{q n}^{\dagger}}{\omega_{q n}-\omega-\mathrm{i} \varepsilon}\right)^{*} \\
& =\left(\hat{\chi}_{B^{\dagger} A^{\dagger}}(\omega+i \varepsilon)\right)^{*}
\end{align*}
$$

and therefore well defined. Hence

$$
\begin{equation*}
\xi_{A B}(\omega)=\frac{1}{2 \mathrm{i}}\left(\chi_{A B}(\omega)-\chi_{B^{\dagger} A^{\dagger}}^{*}(\omega)\right) . \tag{8.36}
\end{equation*}
$$

For $A^{\dagger}=B$ we have

$$
\begin{equation*}
\xi_{A A^{\dagger}}(\omega)=\Im\left(\chi_{A A^{\dagger}}(\omega)\right) \equiv \chi_{A A^{\dagger}}^{\prime \prime}(\omega) \tag{8.37}
\end{equation*}
$$


[^0]:    ${ }^{1}$ We will mostly follow the paper of Callen \& Welton, PR., 1951

