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8 Lesson 8
8.1 Quantum Statistical Mechanics
8.1.1 Reminder

We saw the equilibrium condition for a quantum system (the KMS condition),

CAB (t) = CBA (t) (−t− i~β) . (8.1)

for −~β < = (t) < ~β. We then went to the Fourier space, where this equation reads,

C̃AB (ω) = C̃BA (−ω) eβ~ω. (8.2)

This is the Detailed Balance Condition.
Remark. These results (previous and forthcoming) hold irrespective of the exact statistics (e.g., Fermi-Dirac or Bose-
Einstein).

8.1.2 Quantum Version of the F-D Theorem1

We have an Hamiltonian H and a perturbation f (t) B̂ (t). We are interested in the quantity〈
Â (t)

〉
= 1
Z

Tr
(

e−βHÛt (f)A (0) Û−1
t (f)

)
. (8.3)

Note that unlike the classical case, we do not start at H and stop and t = 0; nevertheless, the calculation will be the
same.

The evolution operator Ût (f) holds

−i~ ∂
∂t
Ût (f) =

(
H+ f (t) B̂ (t)

)
Ût (f) , (8.4)

hence,

Ût (f) = U (t) + i
~

ˆ t

0
dτ U (τ) f (τ)B (τ)U (t− τ)

− 1
~2

ˆ t

0
dτ1

ˆ τ1

0
dτ2 U (τ2) f (τ2)B (τ2)U (τ1 − τ2) f (τ1)B (τ1)U (t− τ1) +O

(
f3) . (8.5)

More compactly, we can write this equation with T the time ordering operator:

Ût (f) = T
[
exp

(
i
~

ˆ t

0
dτ
(
H+ f (t) B̂ (t)

))]
. (8.6)

After we inserted this expression to
〈
Â (t)

〉
we obtain

〈
Â (t)

〉
=
〈
Â (0)

〉
+
ˆ t

0
dτ RAB (t− τ) f (τ) +O

(
f2) , (8.7)

with

RAB (t− τ) = − i
~
〈[A (t) , B (τ)]〉 = − i

~
1
Z

Tr
(
e−βH [A (t) , B (τ)]

)
, t > τ. (8.8)

8.1.3 A Massage and Games

We’d like to play with various functions. Let’s begin with the correlation function

C[A,B] (t) ≡ 〈[A (t) , B (0)]〉 = 〈A (t)B (0)−B (0)A (t)〉
= 〈A (t)B (0)−B (−t)A (0)〉 .

(8.9)

Now write the Fourier transform as

C[A,B] (t) = 1
2π

ˆ ∞
−∞

dω eiωtC̃[A,B] (ω) , (8.10)

to obtain
C̃[A,B] (ω) = C̃AB (ω)− C̃BA (−ω) = C̃AB (ω)

(
1− e−β~ω

)
, (8.11)

1We will mostly follow the paper of Callen & Welton, PR., 1951
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where in the last equation we used (8.2).
Now, let’s inspect the correlation function of the anti-commutator

C{A,B} (t) ≡
〈
{A (t) , B (0)}+

〉
. (8.12)

The same massage gives
C̃{A,B} (ω) = C̃AB (ω)

(
1− e−β~ω

)
. (8.13)

This gives us a direct relation between the two:

C̃[A,B] (ω) = 2 tanh
( 1

2β~ω
)
C̃{A,B} (ω) . (8.14)

We now can write (8.8) as

RAB (t) = − 1
2π

ˆ ∞
−∞

dω eiωt 2
~

tanh
( 1

2β~ω
)
C̃{A,B} (ω) . (8.15)

This is sometimes called the Quantum Fluctuation-Dissipation Theorem (QFDT).

8.1.4 Linear Response – Definitions and Properties

Let us write

RAB (t− τ) ≡ − i
~
〈[A (t) , B (τ)]〉Θ (t− τ) . (8.16)

Usually in the literature we see the susceptibility

χ̃AB (t− t′) ≡ i
~
〈[A (t) , B (t′)]〉Θ (t− t′) . (8.17)

This is sometimes called the Response function, Retarded Green function, Retarded propagator, etc.
Let us now write the properties of H. We expand it in its eigenfunctions,

H |ϕn〉 = En |ϕn〉 , (8.18)

with the equilibrium population

ρeq = 1
Z

e−βH, (8.19)

such that

〈ϕn|ρeq|ϕn〉 ≡ Πnδnn′ = 1
Z

e−βEnδnn′ . (8.20)

Therefore

χ̃AB (τ) = Θ (τ) i
~
∑
n,q

(Πn −Πq)AnqBqnei(En−Eq)τ/~, (8.21)

where Θ (τ) ensures causality. We can now write its Fourier components,

χAB (ω) ≡
ˆ ∞

0
dτ eiωτ χ̃AB (τ) . (8.22)

Let us introduce a factor eετ/~ with ε→ 0+ to have

χAB (ω) = 1
~
∑
n,q

(Πn −Πq)AnqBqn lim
ε→0+

1
ωqn − ω − iε , (8.23)

where ~ωqn ≡ Eq − En. This value χAB (ω) is called the Susceptibility, Admittance, 1/Impedance.

Remark. Note that we used simple quantum mechanics, and not quantum statistics. Quantum statistics came after
introducing QFT into quantum mechanics: when you need to quantize a field (scalar or spinor), you need to know
whether it is a Fermion or a Boson. The statistics we used when calculating, for example, black body radiation were
not quantized. The FD or BE distributions are simply a matter of choice. Therefore all this derivation is valid.
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8.1.5 Extension of χAB (ω) to the Complex Plane

This is related to the Kramers-Krönig relations.
Let us look on the complex plane z = x+ iy,

χ̂AB (z) =
ˆ ∞
−∞

dτ eizτ χ̃AB (τ) =
ˆ ∞
−∞

dτ e−yτeixτ χ̃AB (τ) , (8.24)

on the upper half-plane y = = (z) ≥ 0. Here the �̂ denotes a function on the complex plane. Note that χ̂AB (z) is well
defined in the upper half-plane. It is analytic and given by χAB (ω),

χAB (ω) = lim
ε→0+

χ̂AB (z = ω + iε) . (8.25)

Therefore,
χ̂AB (z) = 1

~
∑
n,q

(Πn −Πq)AnqBqn
1

ωqn − z
. (8.26)

Therefore, all the singularities of χ̂AB (z) come from the poles of 1
ωqn−z . Since ωqn are real, all singularities of χ̂AB (z)

are poles along the real axis.
There is a discrete energy spectrum for H. In the V →∞ limit, we’ll obtain a cut in the complex plane along the

real axis (the poles become a line).

Corollary. A single isolated atom does not dissipate energy. You need a continuum in order to dissipate.

8.1.6 Spectral Function (Dissipation)

Let us define
ξAB (ω) ≡ π

~
1
~
∑
n,q

(Πn −Πq)AnqBqnδ (ωqn − ω) . (8.27)

It is usually denoted by χ′′AB (ω). Hence,

χ̂AB (z) = 1
π

ˆ ∞
−∞

dωξAB (ω)
ω − z

. (8.28)

Therefore
χAB (ω) = 1

π
lim
ε→0+

ˆ ∞
−∞

dω′ ξAB (ω′)
ω′ − ω − iε . (8.29)

On the other hand,
ξ̂AB (t) = 1

2π

ˆ ∞
−∞

dω e−iωtξAB (ω) , (8.30)

implies that
ξ̂AB (t) = 1

2~ 〈[A (t) , B (0)]〉 . (8.31)

Note that there is no Θ function; therefore ξ̂AB (t) (the spectral / Green’s function) does not preserve causality. The
relation between the two reads

χ̃AB (t) = 2iΘ (t) ξAB (t) . (8.32)
We can now write

ξAB (ω) = 1
2i lim

ε→0+
[χ̂AB (ω + iε)− χ̂AB (ω − iε)] , (8.33)

where we used the Cauchy principal value relation,

lim
ε→0+

1
ω′ − ω ∓ iε = P

(
1

ω′ − ω

)
± iπδ (ω′ − ω) . (8.34)

Remark. The value χ̂AB (ω − iε) exists in the lower-half plane. Since χAB (ω − iε) was not shown to exist, it must
preserve the hat χ̂. The hat on χ̂AB (ω + iε) is there for solidarity.

Let us continue. Causality

χ̂AB (ω − iε) = 1
~
∑
n,q

(Πn −Πq)
AnqBqn

ωqn − ω + iε .

= 1
~
∑
n,q

(Πn −Πq)
(

A∗nqB
∗
qn

ωqn − ω − iε

)∗

= 1
~
∑
n,q

(Πn −Πq)
(

B†nqA
†
qn

ωqn − ω − iε

)∗
= (χ̂B†A† (ω + iε))∗ ,

(8.35)
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and therefore well defined. Hence
ξAB (ω) = 1

2i (χAB (ω)− χ∗B†A† (ω)) . (8.36)

For A† = B we have
ξAA† (ω) = = (χAA† (ω)) ≡ χ′′AA† (ω) (8.37)


