8 Lesson 8

8.1 Quantum Statistical Mechanics
8.1.1 Reminder

We saw the equilibrium condition for a quantum system (the KMS condition),
Cap (t) = Cpa (t) (-t —ihp). (8.1)
for —hB < S (t) < hB. We then went to the Fourier space, where this equation reads,
Cap (w) = Cpa (—w) ePhw, (8.2)

This is the Detailed Balance Condition.

Remark. These results (previous and forthcoming) hold irrespective of the exact statistics (e.g., Fermi-Dirac or Bose-
Einstein).

8.1.2 Quantum Version of the F-D Theorem!

We have an Hamiltonian H and a perturbation f (t) B (t). We are interested in the quantity

(A1) = 21 (0, () A U7 (1) (8.3)

Note that unlike the classical case, we do not start at H and stop and t = 0; nevertheless, the calculation will be the
same.
The evolution operator U (f) holds

=i U () = (M4 F (O B ) 0 (). (8.4)

hence,

0N =UW+5 [ 40 O BEOUE=7)

(8.5)
1 t 1
- ﬁ/ dry / dryU (m2) f (r2) B(m2) U (11 = 72) f () B(m) U (¢ =m1) + O (£%).
0 0
More compactly, we can write this equation with 7 the time ordering operator:
. i [t .
U (f) :T[exp (/ dr (’H—i—f(t)B(t)))] (8.6)
h Jo
After we inserted this expression to <fl (t)> we obtain
. . t
<A(t)>:<A(0)>+/ dr Rap (t—7) f (1) + O (f?), (8.7)
0
with
. -
Rap(t—7)= =1 (AW B = =57 T (M [A@),B@)]), t>T. (8.8)
8.1.3 A Massage and Games
We'd like to play with various functions. Let’s begin with the correlation function
Clas) (1) = (A() . BO))) = (A () B(0) - BO) A (1) 59)
= (A(t) B(0) = B(-t) A(0)).
Now write the Fourier transform as
1 [ (o
C[A,B] (t) = %/ dw eMtC[AvB] (w) , (8.10)
to obtain ~ ~ - B
Clap (W) = Cap (w) — Cpa (—w) = Cap (w) (1 —e ™), (8.11)

1We will mostly follow the paper of Callen & Welton, PR., 1951



where in the last equation we used (8.2).
Now, let’s inspect the correlation function of the anti-commutator

Crapy ()= ({A(1), B(0)},)-
The same massage gives
é{A,B} (w) = éAB (OJ) (]. — e—,@hw) .
This gives us a direct relation between the two:

é[A,B] (w) = 2tanh (%ﬁhw) CNV{A,B} (w) .

We now can write (8.8) as

1 [ o2 ~
Rap (t) = 5 / dwe™* 7 tanh (18hw) Cya By (w).
—o0

This is sometimes called the Quantum Fluctuation-Dissipation Theorem (QFDT).

8.1.4 Linear Response — Definitions and Properties

Let us write

Rap(t—7)=—7([A®),B(M))O{—-7).
Usually in the literature we see the susceptibility

i

Rap (t= ) = 1 (A1) B O -1).

This is sometimes called the Response function, Retarded Green function, Retarded propagator, etc.

Let us now write the properties of . We expand it in its eigenfunctions,

H |<Pn> =E, |<pn> )

with the equilibrium population

Peq = %e’m‘,
such that
(@nlpeqlen) = Mpbpp = %e*BEwsm,.
Therefore
XaB (1) =0 (1) % Z (11, — 11,) Aanqnei(En,—Eq)r/h’
n,q

where O (7) ensures causality. We can now write its Fourier components,
o0 .
xap (w) = / dre“Txap (7).
0

Let us introduce a factor €™/ with € — 07 to have

1 . 1
xaB (W) = 7 Z (I, = II4) ApgBgn lim

. )
—0t w — W — 1€
n.q € qn

where fiwg, = E, — E,,. This value xap (w) is called the Susceptibility, Admittance, 1/Impedance.
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Remark. Note that we used simple quantum mechanics, and not quantum statistics. Quantum statistics came after
introducing QFT into quantum mechanics: when you need to quantize a field (scalar or spinor), you need to know
whether it is a Fermion or a Boson. The statistics we used when calculating, for example, black body radiation were
not quantized. The FD or BE distributions are simply a matter of choice. Therefore all this derivation is valid.
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8.1.5 Extension of y 45 (w) to the Complex Plane

This is related to the Kramers-Kronig relations.
Let us look on the complex plane z = x + iy,

XAB (Z) = / dr eiZT)ZAB (7‘) = / dTefyTei”f(AB (7‘) s (824)

on the upper half-plane y = S (2) > 0. Here the [J denotes a function on the complex plane. Note that {45 (2) is well
defined in the upper half-plane. It is analytic and given by x a5 (w),

XaB (W) = lim Yap(z =w+ie). (8.25)
e—0t
Therefore,
N 1 1
Xap (2) = > (I, —T0y) AngBon ———. (8.26)
n,q an

1

Wgn—2"

Therefore, all the singularities of X a5 (z) come from the poles of Since wg,, are real, all singularities of x a5 (2)

are poles along the real axis.
There is a discrete energy spectrum for H. In the V' — oo limit, we’ll obtain a cut in the complex plane along the
real axis (the poles become a line).

Corollary. A single isolated atom does not dissipate energy. You need a continuum in order to dissipate.

8.1.6 Spectral Function (Dissipation)
Let us define

w1
€ap (W) =25 > ([ = T1g) ApgBgn (wen — w) - (8.27)
nfq
It is usually denoted by x4 5 (w). Hence,
N 1 [ w
Xap (2) = f/ 4’42 ). (8.28)
T J oo w—2z
Therefore ) - Eap ()
1 ; §AB (W
Xap (@) = T al—l>%1+ oo dw W —w—ie’ (8.29)
On the other hand,
~ 1 o0 .
ban ()= 5 [ doe'eun @), (5.30)
implies that
A 1
€ap (t) = o2 ([A(), B(O)]). (8.31)

Note that there is no © function; therefore {45 (£) (the spectral / Green’s function) does not preserve causality. The
relation between the two reads

Xap (t) = 2i0 () Eap (1) - (8.32)
We can now write 1
¢ap (W) = 5 lim [XaB (W +i€e) — Xap (w —ig)], (8.33)

where we used the Cauchy principal value relation,

lim ———+— = +ind (W' —w). 8.34
si%hw’—wq:is (w’—w) i (' —w) ( )

Remark. The value Xap (w — i€) exists in the lower-half plane. Since xap (w — i€) was not shown to exist, it must
preserve the hat . The hat on Xap (w + i€) is there for solidarity.

Let us continue. Causality

A

Xap (w—ie) = < (IL,, — 11;)

(8.35)

n,q

= (Xprar (w+ie)",
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and therefore well defined. Hence )

§ap (W) = 2% (xaB (W) — X*B%A’r (w)). (8.36)
For AT = B we have

Eaat (W) = ¥ (xaat (@) = Xar (W) (8.37)



