7 Lesson 7

7.1 Fluctuation Theorems (Cont.)

7.1.1 Reminder

- We were talking about classical (non-quantum) description.
- We have described the Large Deviation Functions (LDFs).
- We have also stated the Gallavotti-Cohen relation between the values the LDF takes and the applied field. We have shown the response of the system, and saw that

$$
\begin{equation*}
\operatorname{Prob}\left(\left.\frac{x(t)}{t}=j \right\rvert\, C \rightarrow C^{\prime}\right) \sim \mathrm{e}^{t G(j, E)} \tag{7.1}
\end{equation*}
$$

where G is the LDF and E the applied field.

- We have shown the Detailed balance condition (in equilibrium):

$$
\begin{equation*}
M_{x}\left(C, C^{\prime}\right) P_{\mathrm{eq}}\left(C^{\prime}\right)=M_{-x}\left(C^{\prime}, C\right) P_{\mathrm{eq}}(C) \tag{7.2}
\end{equation*}
$$

- We saw that one cannot break the detailed balance condition at will, but several constraints must be applied.

7.1.2 Out of Equilibrium

Out of equilibrium, $E \neq 0$ and Eq. (7.2) is changed into

$$
\begin{equation*}
\bar{M}_{x}\left(C, C^{\prime}\right) P_{\mathrm{eq}}\left(C^{\prime}\right)=\bar{M}_{-x}\left(C^{\prime}, C\right) P_{\mathrm{eq}}(C) \exp \left(\frac{E \cdot x}{k_{\mathrm{B}} T}\right) \tag{7.3}
\end{equation*}
$$

There exists a proof of (7.3) (not shown).
We therefore can calculate the outcome of the Detailed Balance probability:

$$
\begin{equation*}
\operatorname{Prob}\left(C(t) \mid C \rightarrow C^{\prime}\right)=\operatorname{Prob}\left(\Theta C(t) \mid C \rightarrow C^{\prime}\right) \frac{P_{\mathrm{eq}}\left(C^{\prime}\right)}{P_{\mathrm{eq}}(C)} \exp \left(\frac{E \cdot x(t)}{k_{\mathrm{B}} T}\right) \tag{7.4}
\end{equation*}
$$

where $x(t)$ is the total number of particles that has been exchanged after time t. Next, we sum over all the trajectories $C(t)$; a fixed $x(t)$ is transformed to

$$
\begin{equation*}
\operatorname{Prob}\left(x(t) \mid C \rightarrow C^{\prime}\right)=\exp \left(\frac{E \cdot x(t)}{k_{\mathrm{B}} T}\right) \operatorname{Prob}\left(-x(t) \mid C^{\prime} \rightarrow C\right) \frac{P_{\mathrm{eq}}\left(C^{\prime}\right)}{P_{\mathrm{eq}}(C)} \tag{7.5}
\end{equation*}
$$

We now apply the LDF assumption, $\frac{x(t)}{t}=j$, to obtain

$$
\begin{equation*}
\frac{P\left(\frac{x}{t}=j\right)}{P\left(\frac{x}{t}=-j\right)}=\exp \left(\frac{t j E}{k_{\mathrm{B}} T}\right) \tag{7.6}
\end{equation*}
$$

Apply LDF's $P\left(\frac{x(t)}{t}=j\right) \sim \mathrm{e}^{t G(j, E)}$ and get

$$
\begin{equation*}
t G(j, E)=t G(-j, E)+\frac{t j E}{k_{\mathrm{B}} T} . \tag{7.7}
\end{equation*}
$$

Hence, we have the Gallavotti-Cohen relations

$$
\begin{equation*}
G(j, E)-G(-j, E)=\frac{j E}{k_{\mathrm{B}} T} . \tag{7.8}
\end{equation*}
$$

The temperature T is the temperatures of the reservoirs (recall that it cannot be defined out of equilibrium).

7.1.3 Implications

The G\&C relations implies the Fluctuation-Dissipation Theorem (FDT) and the Onsager relations.
Reminder: FDT states that for

$$
\begin{equation*}
\Delta=\left.\frac{\left\langle x^{2}(t)\right\rangle-\langle x(t)\rangle^{2}}{t}\right|_{E=0} \tag{7.9}
\end{equation*}
$$

and a linear response of the applied field E

$$
\begin{equation*}
\sigma E=\frac{\langle x(t)\rangle}{t} \tag{7.10}
\end{equation*}
$$

one has

$$
\begin{equation*}
\Delta=2 k_{\mathrm{B}} T \sigma . \tag{7.11}
\end{equation*}
$$

Another reminder: for two fields j_{x} and j_{y} one has the Onsager relations,

$$
\begin{equation*}
\sigma_{x y}=\sigma_{y x} \tag{7.12}
\end{equation*}
$$

To prove FDT, we expand G close to equilibrium has a up to second order,

$$
\begin{equation*}
G(j, E)=a j+B E+c j^{2}+d j E+e E+\ldots \tag{7.13}
\end{equation*}
$$

And since $G=0$ for $j=\bar{\jmath}=\sigma E$ one has

$$
\begin{equation*}
G(j, E)=-\frac{(j-\bar{\jmath})^{2}}{2 \Delta} \tag{7.14}
\end{equation*}
$$

From G\&C we have

$$
\begin{equation*}
-\frac{(j-\sigma E)^{2}}{2 \Delta}=-\frac{(j+\sigma E)^{2}}{2 \Delta}+\frac{E j}{k_{\mathrm{B}} T} \tag{7.15}
\end{equation*}
$$

hence

$$
\begin{equation*}
\Delta=2 k_{\mathrm{B}} T \sigma \tag{7.16}
\end{equation*}
$$

To prove Onsager relations, we need at least two fields E_{x}, E_{y} to have

$$
\begin{equation*}
G\left(j_{x}, j_{y}, E_{x}, E_{y}\right)=G\left(-j_{x},-j_{y}, E_{x}, E_{y}\right)+\frac{E_{x} j_{x}}{k_{\mathrm{B}} T}+\frac{E_{y} j_{y}}{k_{\mathrm{B}} T} \tag{7.17}
\end{equation*}
$$

and after some algebra one has

$$
\begin{equation*}
\sigma_{x y}=\sigma_{y x} \tag{7.18}
\end{equation*}
$$

7.2 Quantum Statistical Mechanics

In this chapter we will try to describe the statistical mechanics of a pure quantum system.

7.2.1 KMS (Kubo-Martin-Schwinger) Condition

Let A be a quantum system. We define the thermal average of A by

$$
\begin{equation*}
\langle\hat{A}\rangle=\frac{\operatorname{Tr}\left(\hat{A} \mathrm{e}^{-\beta \hat{H}}\right)}{\operatorname{Tr}\left(\mathrm{e}^{-\beta \hat{H}}\right)} \tag{7.19}
\end{equation*}
$$

and let us define the partition function

$$
\begin{equation*}
Z=\operatorname{Tr}\left(\mathrm{e}^{-\beta \hat{H}}\right) \tag{7.20}
\end{equation*}
$$

We now would like to look on the correlation functions

$$
\begin{equation*}
C_{A B}(t) \equiv\langle\hat{A}(t) \hat{B}(0)\rangle=\frac{1}{Z} \operatorname{Tr}\left(\mathrm{e}^{\beta \hat{H}} \hat{A}(t) \hat{B}(0)\right), \tag{7.21}
\end{equation*}
$$

where we used the Heisenberg evolution

$$
\begin{equation*}
\hat{A}(t)=\mathrm{e}^{\mathrm{i} \hat{H} t / \hbar} \hat{A}(0) \mathrm{e}^{-\mathrm{i} \hat{H} t / \hbar} \tag{7.22}
\end{equation*}
$$

Plug in and obtain

$$
\begin{align*}
C_{A B}(t) & =\frac{1}{Z} \operatorname{Tr}\left(\mathrm{e}^{-\beta \hat{H}} \mathrm{e}^{\mathrm{i} \hat{H} t / \hbar} \hat{A}(0) \mathrm{e}^{-\mathrm{i} \hat{H} t / \hbar} \hat{B}(0)\right) \\
& =\frac{1}{Z} \operatorname{Tr}\left(\mathrm{e}^{\mathrm{i} \hat{H} t / \hbar} \mathrm{e}^{-\beta \hat{H}} \hat{A}(0) \mathrm{e}^{-\mathrm{i} \hat{H} t / \hbar} \hat{B}(0)\right) \tag{7.23}\\
& =\frac{1}{Z} \operatorname{Tr}\left(\mathrm{e}^{-\beta \hat{H}} \hat{A}(0) \mathrm{e}^{-\mathrm{i} \hat{H} t / \hbar} \hat{B}(0) \mathrm{e}^{\mathrm{i} \hat{H} t / \hbar}\right) \\
& =\langle\hat{A}(t) \hat{B}(-t)\rangle
\end{align*}
$$

where in the 3 rd line we used the cyclicity of the trace. So far, nothing surprising. On the other hand,

$$
\begin{align*}
C_{A B}(t) & =\frac{1}{Z} \operatorname{Tr}\left(\mathrm{e}^{-\mathrm{i} \hat{H} t / \hbar} \hat{B}(0) \mathrm{e}^{\mathrm{i} \hat{H} t / \hbar} \mathrm{e}^{-\beta \hat{H}} \hat{A}(0)\right) \\
& =\frac{1}{Z} \operatorname{Tr}\left(\mathrm{e}^{-\beta \hat{H}} \mathrm{e}^{+\beta \hat{H}} \mathrm{e}^{-\mathrm{i} \hat{H} t / \hbar} \hat{B}(0) \mathrm{e}^{\mathrm{i} \hat{H} t / \hbar} \mathrm{e}^{-\beta \hat{H}} \hat{A}(0)\right) \tag{7.24}\\
& =\frac{1}{Z} \operatorname{Tr}\left(\mathrm{e}^{-\beta \hat{H}} \mathrm{e}^{\mathrm{i} \hat{H}(-t-\mathrm{i} \hbar \beta)} \hat{B}(0) \mathrm{e}^{-\mathrm{i} \frac{\hat{H}}{\hbar}(-t-\mathrm{i} \hbar \beta)} \hat{A}(0)\right) \\
& =\langle\hat{B}(-t-\mathrm{i} \hbar \beta) \hat{A}(0)\rangle .
\end{align*}
$$

We therefore have the KMS condition

$$
\begin{equation*}
C_{A B}(t)=C_{B A}(-t-\mathrm{i} \hbar \beta) \tag{7.25}
\end{equation*}
$$

In other words, Quantum Mechanics is a game of imaginary time.

7.2.2 Remarks

In order to obtain the KMS results, we had to play with two operators. One is $\mathrm{e}^{-\beta \hat{H}}$, which is a Trace Class (a trace of a given operator, $\operatorname{Tr}(\hat{O})<\infty)$ and well defined. The other operator is $\mathrm{e}^{+\beta \hat{H}}$, which is ill-defined.

If we go to the complex t plane, where $z=t+\mathrm{i} s$, we have

$$
\begin{equation*}
C_{A B}(z)=\frac{1}{Z} \operatorname{Tr}\left(\mathrm{e}^{-\mathrm{i} \hat{H} z / \hbar} \hat{B}(0) \mathrm{e}^{-\mathrm{i} \frac{\hat{H}}{\hbar}(-z-\mathrm{i} \hbar \beta)} \hat{A}(0)\right) . \tag{7.26}
\end{equation*}
$$

In order to this quantity to be defined, we must have two conditions,

$$
\left\{\begin{array}{l}
\Re(-\mathrm{i} z)<0 \tag{7.27}\\
\Re(-\mathrm{i}(-z-\mathrm{i} \hbar \beta))<0
\end{array}\right.
$$

or equivalently,

$$
\begin{equation*}
-\hbar \beta<\Im(t)<0 \tag{7.28}
\end{equation*}
$$

Similarly,

$$
\tilde{C}_{A B} \equiv\langle\hat{B}(0) \hat{A}(t)\rangle
$$

implies that

$$
\begin{equation*}
0<\Im(t)<\hbar \beta \tag{7.29}
\end{equation*}
$$

7.2.3 The Opposite Direction

In other words, the KMS condition is very strong. It is a condition for a thermal equilibrium.
Now, let us assume the KMS and show thermal equilibrium. Let

$$
\begin{equation*}
\langle A\rangle=\operatorname{Tr}(\rho A), \tag{7.30}
\end{equation*}
$$

where $\operatorname{Tr}(\rho)=1$ and ρ is unknown. Some algebra gives

$$
\begin{align*}
\langle\hat{B}(0) \hat{A}(t+\mathrm{i} \hbar \beta)\rangle & =\operatorname{Tr}(\rho \hat{B}(0) \hat{A}(t+\mathrm{i} \hbar \beta))=\ldots \\
& =\operatorname{Tr}\left(\mathrm{e}^{-\beta \hat{H}} \hat{A}(t) \mathrm{e}^{\beta \hat{H}} \rho \hat{B}(0)\right) \tag{7.31}\\
& =\operatorname{Tr}(\rho \hat{A}(t) \hat{B}(0))
\end{align*}
$$

The last line is simply the KMS condition. Note that it is true for any t and any \hat{A}. It is possible only if $\rho \mathrm{e}^{\beta \hat{H}}=N$ for N some number. Hence

$$
\begin{equation*}
\rho=N \mathrm{e}^{-\beta \hat{H}} \tag{7.32}
\end{equation*}
$$

7.2.4 Fourier Transforms

Let us define

$$
\left\{\begin{array}{l}
C_{A B}(t)=\langle\hat{A}(t) \hat{B}(0)\rangle=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \mathrm{d} \omega \mathrm{e}^{\mathrm{i} \omega t} \tilde{C}_{A B}(\omega) \tag{7.33}\\
C_{A B}(t)=\langle\hat{B}(t) \hat{A}(0)\rangle=\ldots
\end{array}\right.
$$

KMS condition states that

$$
\begin{equation*}
\langle\hat{A}(t) \hat{B}(0)\rangle=\langle\hat{B}(-t-\mathrm{i} \hbar \beta) \hat{A}(0)\rangle=\langle\hat{B}(0) \hat{A}(t+\mathrm{i} \hbar \beta)\rangle, \tag{7.34}
\end{equation*}
$$

hence

$$
\begin{equation*}
\tilde{C}_{A B}(\omega)=\tilde{C}_{B A}(\omega) \mathrm{e}^{\beta \hbar \omega} \tag{7.35}
\end{equation*}
$$

This is the Detailed Balance condition. Recall that KMS has

$$
\begin{equation*}
C_{A B}(t)=C_{B A}(-t-\mathrm{i} \hbar \beta) . \tag{7.36}
\end{equation*}
$$

