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7 Lesson 7

7.1 Fluctuation Theorems (Cont.)

7.1.1 Reminder

• We were talking about classical (non-quantum) description.

• We have described the Large Deviation Functions (LDFs).

• We have also stated the Gallavotti-Cohen relation between the values the LDF takes and the applied field. We
have shown the response of the system, and saw that

Prob
(
x (t)
t

= j

∣∣∣∣C → C ′
)
∼ etG(j,E) (7.1)

where G is the LDF and E the applied field.

• We have shown the Detailed balance condition (in equilibrium):

Mx (C,C ′)Peq (C ′) = M−x (C ′, C)Peq (C) (7.2)

• We saw that one cannot break the detailed balance condition at will, but several constraints must be applied.

7.1.2 Out of Equilibrium

Out of equilibrium, E 6= 0 and Eq. (7.2) is changed into

M̄x (C,C ′)Peq (C ′) = M̄−x (C ′, C)Peq (C) exp
(
E · x
kBT

)
. (7.3)

There exists a proof of (7.3) (not shown).
We therefore can calculate the outcome of the Detailed Balance probability:

Prob (C (t)|C → C ′) = Prob (ΘC (t)|C → C ′) Peq (C ′)
Peq (C) exp

(
E · x (t)
kBT

)
(7.4)

where x (t) is the total number of particles that has been exchanged after time t. Next, we sum over all the trajectories
C (t); a fixed x (t) is transformed to

Prob (x (t)|C → C ′) = exp
(
E · x (t)
kBT

)
Prob (−x (t)|C ′ → C) Peq (C ′)

Peq (C) . (7.5)

We now apply the LDF assumption, x(t)
t = j, to obtain

P
(
x
t = j

)
P
(
x
t = −j

) = exp
(
tjE

kBT

)
. (7.6)

Apply LDF’s P
(
x(t)
t = j

)
∼ etG(j,E) and get

tG (j, E) = tG (−j, E) + tjE

kBT
. (7.7)

Hence, we have the Gallavotti-Cohen relations

G (j, E)−G (−j, E) = jE

kBT
. (7.8)

The temperature T is the temperatures of the reservoirs (recall that it cannot be defined out of equilibrium).
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7.1.3 Implications

The G&C relations implies the Fluctuation-Dissipation Theorem (FDT) and the Onsager relations.
Reminder: FDT states that for

∆ =
〈
x2 (t)

〉
− 〈x (t)〉2

t

∣∣∣∣∣
E=0

(7.9)

and a linear response of the applied field E
σE = 〈x (t)〉

t
(7.10)

one has
∆ = 2kBTσ. (7.11)

Another reminder: for two fields jx and jy one has the Onsager relations,

σxy = σyx. (7.12)

To prove FDT, we expand G close to equilibrium has a up to second order,

G (j, E) = aj +BE + cj2 + djE + eE + . . . (7.13)

And since G = 0 for j = ̄ = σE one has

G (j, E) = − (j − ̄)2

2∆ . (7.14)

From G&C we have

− (j − σE)2

2∆ = − (j + σE)2

2∆ + Ej

kBT
(7.15)

hence
∆ = 2kBTσ. (7.16)

To prove Onsager relations, we need at least two fields Ex, Ey to have

G (jx, jy, Ex, Ey) = G (−jx,−jy, Ex, Ey) + Exjx
kBT

+ Eyjy
kBT

(7.17)

and after some algebra one has
σxy = σyx. (7.18)

7.2 Quantum Statistical Mechanics
In this chapter we will try to describe the statistical mechanics of a pure quantum system.

7.2.1 KMS (Kubo-Martin-Schwinger) Condition

Let A be a quantum system. We define the thermal average of A by

〈
Â
〉

=
Tr
(
Âe−βĤ

)
Tr
(

e−βĤ
) (7.19)

and let us define the partition function
Z = Tr

(
e−βĤ

)
. (7.20)

We now would like to look on the correlation functions

CAB (t) ≡
〈
Â (t) B̂ (0)

〉
= 1
Z

Tr
(

eβĤÂ (t) B̂ (0)
)
, (7.21)

where we used the Heisenberg evolution
Â (t) = eiĤt/~Â (0) e−iĤt/~. (7.22)

Plug in and obtain
CAB (t) = 1

Z
Tr
(

e−βĤeiĤt/~Â (0) e−iĤt/~B̂ (0)
)

= 1
Z

Tr
(

eiĤt/~e−βĤÂ (0) e−iĤt/~B̂ (0)
)

= 1
Z

Tr
(

e−βĤÂ (0) e−iĤt/~B̂ (0) eiĤt/~
)

=
〈
Â (t) B̂ (−t)

〉
.

(7.23)
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where in the 3rd line we used the cyclicity of the trace. So far, nothing surprising. On the other hand,

CAB (t) = 1
Z

Tr
(

e−iĤt/~B̂ (0) eiĤt/~e−βĤÂ (0)
)

= 1
Z

Tr
(

e−βĤe+βĤe−iĤt/~B̂ (0) eiĤt/~e−βĤÂ (0)
)

= 1
Z

Tr
(

e−βĤei Ĥ
~ (−t−i~β)B̂ (0) e−i Ĥ

~ (−t−i~β)Â (0)
)

=
〈
B̂ (−t− i~β) Â (0)

〉
.

(7.24)

We therefore have the KMS condition

CAB (t) = CBA (−t− i~β) . (7.25)

In other words, Quantum Mechanics is a game of imaginary time.

7.2.2 Remarks

In order to obtain the KMS results, we had to play with two operators. One is e−βĤ , which is a Trace Class (a trace
of a given operator, Tr

(
Ô
)
<∞) and well defined. The other operator is e+βĤ , which is ill-defined.

If we go to the complex t plane, where z = t+ is, we have

CAB (z) = 1
Z

Tr
(

e−iĤz/~B̂ (0) e−i Ĥ
~ (−z−i~β)Â (0)

)
. (7.26)

In order to this quantity to be defined, we must have two conditions,{
< (−iz) < 0
< (−i (−z − i~β)) < 0

, (7.27)

or equivalently,
−~β < = (t) < 0. (7.28)

Similarly,
C̃AB ≡

〈
B̂ (0) Â (t)

〉
implies that

0 < = (t) < ~β. (7.29)

7.2.3 The Opposite Direction

In other words, the KMS condition is very strong. It is a condition for a thermal equilibrium.
Now, let us assume the KMS and show thermal equilibrium. Let

〈A〉 = Tr (ρA) , (7.30)

where Tr (ρ) = 1 and ρ is unknown. Some algebra gives〈
B̂ (0) Â (t+ i~β)

〉
= Tr

(
ρB̂ (0) Â (t+ i~β)

)
= . . .

= Tr
(

e−βĤÂ (t) eβĤρB̂ (0)
)

= Tr
(
ρÂ (t) B̂ (0)

)
.

(7.31)

The last line is simply the KMS condition. Note that it is true for any t and any Â. It is possible only if ρeβĤ = N
for N some number. Hence

ρ = Ne−βĤ (7.32)

7.2.4 Fourier Transforms

Let us define CAB (t) =
〈
Â (t) B̂ (0)

〉
= 1

2π
´∞
−∞ dω eiωtC̃AB (ω)

CAB (t) =
〈
B̂ (t) Â (0)

〉
= . . .

(7.33)
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KMS condition states that 〈
Â (t) B̂ (0)

〉
=
〈
B̂ (−t− i~β) Â (0)

〉
=
〈
B̂ (0) Â (t+ i~β)

〉
, (7.34)

hence
C̃AB (ω) = C̃BA (ω) eβ~ω. (7.35)

This is the Detailed Balance condition. Recall that KMS has

CAB (t) = CBA (−t− i~β) . (7.36)


