7 Lesson 7

7.1 Fluctuation Theorems (Cont.)
7.1.1 Reminder

e We were talking about classical (non-quantum) description.

We have described the Large Deviation Functions (LDFs).

We have also stated the Gallavotti-Cohen relation between the values the LDF takes and the applied field. We
have shown the response of the system, and saw that

Prob (mit) = j‘C’ — C’) ~ etGU.E) (7.1)

where G is the LDF and F the applied field.

We have shown the Detailed balance condition (in equilibrium):

M, (C,C") Poy (C") = M_, (C',C) Poy (C) (7.2)
e We saw that one cannot break the detailed balance condition at will, but several constraints must be applied.

7.1.2 Out of Equilibrium

Out of equilibrium, E # 0 and Eq. (7.2) is changed into

My (C,C) Pag (C) = N (€, C) Poy (C) exp (f;B;f ) . (7.3)

There exists a proof of (7.3) (not shown).
We therefore can calculate the outcome of the Detailed Balance probability:

Prob (C (£)|C' — C") = Prob (OC (t)|C' — ") 1;%1 ((g)) exp <E k;”T(t)) (7.4)

where z (t) is the total number of particles that has been exchanged after time ¢. Next, we sum over all the trajectories
C (t); a fixed « (t) is transformed to

E-x(t) Peq (C")
Prob (z (t)|C — C') = ex < >Prob —z (t)|C" — C) =2 . 7.5
@®IC =) =en (7 (-2 (0IC" = 0) e (75)
We now apply the LDF assumption, @ = 7, to obtain
P (%= ) tjE
£=0) e () 7.6
Pl "\t o
Apply LDF’s P (%t) = j) ~ e!GUE) and get
) . tjE
G (j, B) = G (—j. E) + —. (7.7)
kT
Hence, we have the Gallavotti-Cohen relations
) . JE
G(j,E)—G(—j,F)=—. 7.8
U, B) =G (=, B) = 1= (7.8)

The temperature T is the temperatures of the reservoirs (recall that it cannot be defined out of equilibrium).



7.1.3 Implications

The G&C relations implies the Fluctuation-Dissipation Theorem (FDT) and the Onsager relations.

Reminder: FDT states that for

E=0
and a linear response of the applied field F

one has

A= QkBTU.

Another reminder: for two fields j, and j, one has the Onsager relations,

Oy = Oyg.

To prove FDT, we expand G close to equilibrium has a up to second order,
G(j,E)=aj+ BE +cj* + djE +eE + ...
And since G =0 for j = j = oF one has
.2
)

From G&C we have

_G-0B) _ (+oB)  Ej

2A 2A kT
hence
A= 2]€BTO'.
To prove Onsager relations, we need at least two fields F, F, to have
o S Ezje | Eyj
G (Ju E. Ey) = G(—Ju, —Jy, Ex, E - Ll

and after some algebra one has

Oy = Oyg.

7.2 Quantum Statistical Mechanics

In this chapter we will try to describe the statistical mechanics of a pure quantum system.

7.2.1 KMS (Kubo-Martin-Schwinger) Condition
Let A be a quantum system. We define the thermal average of A by

Tr (/Ale*ﬁﬁ>

e

and let us define the partition function

Z =1Tr (e_’@ﬁ) .
We now would like to look on the correlation functions
~ ~ 1 oA N
Cap (1) = <A (t) B (0)> =T (eﬁHA(t) B (o)) ,

where we used the Heisenberg evolution

B

(t) _ eifIt/hA (0) efiﬁt/h.
Plug in and obtain

Cap (t) = = Tr (efﬁHeth/hA (0) e~ Ht/h R (0))
Tr (eiﬁt/he—BﬁA (O) e—iﬁt/hé (0))
Tr (e—BﬁA (0) e—iflt/hB (0) eiﬁt/h)

A(t) B (—t)> .
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where in the 3rd line we used the cyclicity of the trace. So far, nothing surprising. On the other hand,

1 P N 7 oA
Cap () = ;T (e_‘Ht/hB (0) eift/he=BH 4 (0))

_ l Tr (efﬁﬁe+ﬂff€ﬁiﬁt/h§ (0) eif{t/hefﬂﬁA (O))
“ A A (7.24)
_ —BH i (—t—inB) —if (—t—inB) 3
T (e e B(0)e A (0))
- <1§ (—t — ihB) A(0)>.
We therefore have the KMS condition
| Cap (t) = Cpa (—t — ihB) .| (7.25)

In other words, Quantum Mechanics is a game of imaginary time.

7.2.2 Remarks

In order to obtain the KMS results, we had to play with two operators. One is o8 , which is a Trace Class (a trace
of a given operator, Tr (O) < 00) and well defined. The other operator is et## which is ill-defined.

If we go to the complex ¢ plane, where z =t + is, we have
1 e N " . ~
Cap(x) = 5 Tr (eﬂHz/ﬁB (0) e~ # (2= 4 (0)) . (7.26)

In order to this quantity to be defined, we must have two conditions,

R(-iz) <0
{éR(—i (—z—inB)) <0 ’ (7.27)

or equivalently,

|—hB<S (1) <0.| (7.28)

Similarly,
Cap = <1§ (0) A (t)>

implies that

]0 <3 (t) < hB. \ (7.29)

7.2.3 The Opposite Direction

In other words, the KMS condition is very strong. It is a condition for a thermal equilibrium.
Now, let us assume the KMS and show thermal equilibrium. Let

(4) = Tr (pA), (7.30)

where Tr (p) = 1 and p is unknown. Some algebra gives
=T (efﬁﬁ A@t) e pB (0)) (7.31)

The last line is simply the KMS condition. Note that it is true for any ¢ and any A. It is possible only if peﬁH =N
for N some number. Hence R
p=Ne P (7.32)

7.2.4 Fourier Transforms
Let us define

Cap(t)=(AM)B(0)) = 5 [° dwe®'Cap (w) (7.33)
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KMS condition states that

<A(t) B (0)> - <1§ (—t—ing) A (0)> - <B (0)A(t+ ihﬂ)> : (7.34)

hence

Cap (w) = Cpa (w) . (7.35)

This is the Detailed Balance condition. Recall that KMS has

Cag (t) = Cpa(—t —ihpB). (7.36)



