6 Lesson 6

We have talked about the fluctuation-dissipation relations, linear response, Kubo formula and Onsager reciprocal relations. All of these were done close to equilibrium. Today, we will talk about systems far from equilibrium.

6.1 Generalization of the F. D. Relations far from Equilibrium

6.1.1 Synopsis

- Notion of Equilibrium: detailed balance.
- Generalization of the F. D. Relations: fluctuation theorems.¹
- Large deviations.

6.1.2 Thermal Equilibrium.

Definition. Thermal equilibrium is the $\# \Omega$ of microscopic configurations C of energy E(C). The probability is given by the Gibbs-Boltzmann distribution

$$P_{\rm eq}\left(C\right) = \frac{1}{Z} e^{-E(C)/k_{\rm B}T}$$

$$\tag{6.1}$$

The entropy is given by

$$S = -k_{\rm B} \sum_{C} P_{\rm eq}\left(C\right) \ln P_{\rm eq}\left(C\right)$$
(6.2)

6.1.3 Markov process

Lets examine the process from configuration C_i to C_j

$$\begin{array}{c} C_i \to C_j \\ t & t+\mathrm{d}t \end{array} \tag{6.3}$$

The Markov Assumption: Let $M(C_j, C_i, t) dt$ the probability to have a transition $C_i \to C_j$ at t during dt. And let's examine the network of transitions

And let $P_t(C)$ be the probability to be at configuration C at time t. We can write the master equation

$$\frac{\mathrm{d}}{\mathrm{d}t}P_t\left(C\right) = \sum_{C' \neq C} \underbrace{M\left(C, C'\right) P_t\left(C'\right)}_{\text{arrives to }C} - \underbrace{M\left(C', C\right) P_t\left(C\right)}_{\text{leaving }C}$$
(6.5)

A stationary state is

$$\frac{\mathrm{d}}{\mathrm{d}t}P_t\left(C\right) = 0\tag{6.6}$$

and it gives conditions on Ω .

Shorter Constraint (Onsager)

$$\forall C, C' : M(C, C') P_t(C') = M(C', C) P_t(C)$$
(6.7)

and we have $\frac{1}{2}\Omega(\Omega-1)$ constraints.

Eq. 6.7 is a necessary condition for equilibrium. A system that breaks Eq. 6.7 is necessarily out of equilibrium. This means, that in Detailed Balance we have absence of currents.

Time reversal

Theorem. The equilibrium state of a system, which satisfies Eq. 6.7 is necessarily invariant by time reversal,

$$P(C(t)) = P(\Theta C(t))$$
(6.8)

where Θ is the time reversal operator.

 $^1 \mathrm{Gallavotti}$ & Cohen, 1995

6.1.4 Physical Consequences of Detailed Balance

1. At equilibrium:

Let P(Q) is the probability that the system S gives heat Q to the reservoir R. Then, P(-Q) is the same:

$$\frac{P\left(Q\right)}{P\left(-Q\right)} = 1\tag{6.9}$$

2. Out of Equilibrium (far from equilibrium):

Let us look on two reservoirs with temperatures $T_H > T_C$

$$T_H \xrightarrow{\text{Mean heat flux}} T_L \tag{6.10}$$

and the mean heat of flow is related to the system entropy

$$\frac{\langle Q \rangle}{T} = \langle S \rangle \tag{6.11}$$

Thermodynamics says nothing about fluctuations. We would like to know, what is the probability to observe a rare event, such that a heat flows to the other direction.

Claim. The probability distribution $P(Q_{\tau})$ of exchanging with the reservoir C the heat Q_{τ} in a time τ is related to that of exchanging $-Q_{\tau}$. In simple words,

$$\ln\left(\frac{P\left(Q_{\tau}\right)}{P\left(-Q_{\tau}\right)}\right) = \Delta\beta Q_{\tau} \tag{6.12}$$

where

$$\Delta\beta = \frac{1}{k_{\rm B}} \left(\frac{1}{T_C} - \frac{1}{T_H} \right) \tag{6.13}$$

but

$$\Delta\beta Q_{\tau} = \underbrace{\sigma}_{\text{rate of entropy change}} \tau \tag{6.14}$$

hence

$$\frac{P(\sigma)}{P(-\sigma)} = e^{\sigma\tau}$$
(6.15)

This is the Large Deviation Function (LDF).

Corollary. The fluctuations always dissipate heat.

Remark. The heat and entropy are extensive properties. Therefore, in very large systems (e. g., human body), $e^{\sigma\tau} \gg 1$. Therefore, $P(\sigma) \gg P(-\sigma)$, and we don't see rare events. We need nanoscopic or mesoscopic systems to see such events.

6.1.5 Examples of Large Deviation Functions

Example 1. Consider a sum of independent random variables $\varepsilon_1, \varepsilon_2, \ldots, \varepsilon_N$, where $\varepsilon_i = \begin{cases} +1 & \text{probability } p \\ -1 & \text{probability } q \end{cases}$. Then

- 1. Large Numbers Thm.: let $S_N = \sum_{i=1}^N \varepsilon_i$; then $\frac{S_N}{N} \xrightarrow{N \to \infty} \langle \varepsilon \rangle = p q$.
- 2. Central Limit Thm.: $\frac{S_N N(p-q)}{\sqrt{4pqN}}$ is the Gaussian

The behaviour of the probability $P\left(\frac{S_N}{N}=r\right)$ for large N and $r\in [-1,1]$ is

$$\operatorname{Prob}\left(\frac{S_N}{N} = r\right) \underset{N \to \infty}{\sim} e^{-N\phi(r)}$$
(6.16)

where

$$\phi(r) = \frac{1+r}{2} \ln\left(\frac{1+r}{2p}\right) + \frac{1-r}{2} \ln\left(\frac{1-r}{2q}\right)$$
(6.17)

and

$$\begin{cases} \phi (r = p - q) = 0\\ \phi' (p - q) = 0 \end{cases}$$
(6.18)

The function $\phi(r)$ is called the Large Deviation Function of this problem. It is a convex function with a minimum at p-q.

Example 2. Free Energy as an example of LDF. Consider N particles in a volume V with a density $r = \frac{N}{V}$. Let's look on some small volume $v \ll V$ inside the large one with particles n. Therefore,

$$\operatorname{Prob}\left(\frac{n}{v} = \rho\right) \sim e^{-va(\rho)} \tag{6.19}$$

for some density ρ .

The free energy f per unit volume is

$$f(\rho) = \lim_{V \to \infty} -k_{\rm B}T \frac{\ln Z_V(\rho V)}{V}$$
(6.20)

with the partition function

$$Z = e^{-\beta V f\left(\frac{N}{V}\right)} \tag{6.21}$$

and the probability

$$P\left(\frac{n}{v} = \rho\right) = \frac{Z_V(n) Z_{V-v}(N-n)}{Z_V(N)} = e^{-va(\rho)}$$
(6.22)

and the LDF $a(\rho)$,

$$va(\rho) = \frac{1}{k_{\rm B}T} \left(vf(\rho) + (V-v)f\left(\frac{Vr-v\rho}{V-v}\right) - Vf(r) \right) \underset{v \ll V}{\simeq} \frac{v}{k_{\rm B}T} \left(f(\rho) - f(r) - (\rho-r)f'(r) \right).$$
(6.23)

Remark. We can consider the free energy f itself as a LDF.

Remark. From the LDF we can calculate all the former fluctuation theorems (Onsager relations, etc.).

6.2 Fluctuation Theorems (Gallavotti and Cohen Relations)

6.2.1 Introduction

Let's look on some system coupled to a reservoir

$$(S) - R \tag{6.24}$$

with $E \equiv \Delta T, \Delta \rho, \Delta V, \ldots$ and x(t) particles are transferred between S and R. Then the probability for some current j is

$$\operatorname{Prob}\left(\frac{x\left(t\right)}{t}=j,C\to C'\right)\underset{t\to\infty}{\sim} e^{tG(j,E)}.$$
(6.25)

Note that in some cases this formula may not hold. The LDF G(j, E) is independent of C and C' (prefactors can). Also $G(\bar{j}, E) = 0$ for the most probable current \bar{j} .

We will prove the Gallavotti and Cohen Relation:

$$G(j, E) - G(-j, E) = \frac{Ej}{k_{\rm B}T}$$
 (6.26)

and show that in order to break the detailed balance, we must follow a certain procedure. In other words, not every process can break DB.