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5 Lesson 5

5.1 Linear Response (Classical Approach)
5.1.1 The last time

We looked on the perturbed Hamiltonian
H′ = H− fA, (5.1)

and got the Onsager Fluctuation-Dissipation theorem

∆A = βf 〈δA (0) δA (t)〉0 , (5.2)

which states that the response of the system is indistinguishable from the fluctuations in equilibrium.

5.1.2 Calculation of χ

We have also generalized the calculation to the case of f (t):

∆A (t) =
ˆ

dt′ χ (t, t′) f (t′) . (5.3)

In order to have causality, χ (t, t′) = 0 for t′ > t.

Remark. The susceptibility χ depends on the system S only and not on f .

For a system S at equilibrium (stationary)

χ (t, t′) = χ (t− t′) , (5.4)

therefore,

χ (t, t′) =
{
χ (t− t′) , t > t′

0, t′ > t
(5.5)

Take, for example, a step-wise f

f (t) =
{
f, t > t′

0, t′ > t
(5.6)

therefore

∆A (t) =
ˆ 0

−∞
dt′ χ (t, t′) f =

χ(t−t′)
f

ˆ ∞
t

dt′ χ (t′) . (5.7)

Hence
β 〈δA (0) δA (t)〉0 =

ˆ ∞
t

dt′ χ (t′) , (5.8)

and we obtain

χ (t) =
{
−β d

dt 〈δA (0) δA (t)〉0 t > 0
0 otherwise

. (5.9)

We could generalize this to any f .

5.1.3 Generalization

Let’s generalize the Hamiltonian to any perturbation B

H′ = H− fB, (5.10)

and measure the response of A. We’d get

∆A (t) = βf 〈δB (0) δA (t)〉0 (5.11)

and the susceptibility depends on both A and B,

χAB (t) =
{
−β d

dt 〈δB (0) δA (t)〉0 t > 0
0 otherwise

. (5.12)
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5.1.4 Example: Brownian of a Particle in a Fluid

When we apply a force f0 to the system (particle), the conjugate coordinate to the force (position x) changes, and we
measure the velocity v. In this case,

H′ = H− f0x, (5.13)

and
v (t) =

ˆ 0

−∞
dt′ χvx (t− t′) f (t′) = f0

ˆ ∞
t

dt′ χvx (t′) . (5.14)

Apply f0 from −∞ to 0 and f = 0 at t = 0; expect

v (0) = µf0 (5.15)

where µ is the mobility,
µ = 1

kBT

ˆ ∞
0
〈v (t) v (0)〉0︸ ︷︷ ︸
Kvv, symmetric

dt, (5.16)

hence
v (0) = f0

ˆ ∞
0

dt′ χvx (t′)︸ ︷︷ ︸
out of equilibrium

= f0

kBT

ˆ ∞
0
〈v (t) v (0)〉0 dt︸ ︷︷ ︸

in equilibrium

. (5.17)

This suggest a relation between the fluctuation out of equilibrium (linear response theory) and the correlation functions
in equilibrium:

χxv (t) = βKvv (t) . (5.18)

This is the Onsager relation hypothesis.

5.1.5 Proof of (5.18)

Claim.
χxv (t) = −β d

dt 〈x (0) v (t)〉0 . (5.19)

Proof. In the stationary case,
〈x (0) v (t)〉0 = 〈x (t′) v (t′ + t)〉0 . (5.20)

Now, derive with respect to t′,

0 = d
dt′ 〈x (t′) v (t′ + t)〉0 = 〈ẋ (t′) v (t′ + t)〉0 +

〈
x (t′) d

dt′ v (t′ + t)
〉

0 . (5.21)

Also,
d
dt 〈x (t′) v (t′ + t)〉0 = 〈x (t′) v̇ (t′ + t)〉0 = −〈ẋ (t′) v (t′ + t)〉0

= −〈v (t) v (0)〉0 = −Kvv (t)
(5.22)

hence
χxv (t) = Kvv (t) = 1

me−t/τ . (5.23)

This is the Onsager Regression Hypothesis.

5.2 Fluctuation-Dissipation Theorem in Fourier Space
5.2.1 Brownian Particle

Let us look on the susceptibility,
x (t) =

ˆ
dt′ χ (t− t′) f (t′) . (5.24)

We can automatically write the the correlation function,

χxx (t) = −β d
dt 〈x (t)x (0)〉0 = −β d

dtKxx (t) . (5.25)

Now, take a Fourier transform and get a wrong result

χ̃xx (ω) 6= −βiωK̃xx (ω) . (5.26)

Because {
χxx (t) is defined for t < 0 only!
Kxx (t) is defined for all t.

(5.27)
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How to solve this problem? Recall that{
F [real & symmetric] = real & symmetric
F [real & odd] = purely imaginary & odd

.

Therefore, break χxx (t) into even and odd functions

χxx (t) = χe (t) + χo (t) (5.28)

and call the Fourier parts {
χ̃e (ω) = χ′ (ω)
χ̃o (ω) = iχ′′ (ω)

(5.29)

such that
χxx (ω) = χ′ (ω) + iχ′′ (ω) . (5.30)

Now,
χxx (t) = 2χo (t) = −β d

dt 〈x (t)x (0)〉0 = −β d
dtKxx (t) (5.31)

hence,
2iχ′′ (ω) = iβω 〈xωx−ω〉0 (5.32)

and, finally,
χ′′ (ω) = 1

2ωβ
〈
|xω|2

〉
0. (5.33)

This is the FD theorem in Fourier space.

5.3 Onsager Reciprocity Relations
Assign our simple working horse, Brownian Particle, in order to make things a bit simpler. Our usual Hamiltonian,

H′ = H− fx. (5.34)

From now on f and x are not necessarily force and position, but any type of conjugated variables. We get the ‘velocity’,

v (t) = ẋ (t) = 1
kBT

ˆ ∞
0

dτ f (t− τ) 〈ẋ (0) ẋ (τ)〉0 . (5.35)

Let’s generalize to other velocities,
H′ = H− fixi (5.36)

so that
ẋi (t) = β

ˆ ∞
0

dτ fj (t− τ) 〈ẋj (0) ẋi (τ)〉0 , (5.37)

(where the order of i and j is similar to our previous discussion of A and B).

5.3.1 Principle of Dynamical Reversibility of Microscopic Processes

The macroscopic behaviour is irreversible (e. g., friction). The outlined microscopic process, however, is reversible.
Any correlation can be written as

〈ẋj (0) ẋi (τ)〉0 =
reversibility

〈ẋj (0) ẋi (−τ)〉0 =
translation

in time

〈ẋj (τ) ẋi (0)〉0 , (5.38)

hence
〈ẋj (0) ẋi (τ)〉0 = 〈ẋi (0) ẋj (τ)〉0 . (5.39)

5.3.2 Essential Ingredients of Onsager Relations

Onsager Relations. Let’s write the Onsager relations,

dv
dt = −γv =⇒ dẋi

dt = −γij ẋj . (5.40)

Remark. γij has no reasons to be symmetric.
Define the mobility,

v = ẋ = µF =⇒ ẋi = µijFj . (5.41)

Note that for a single particle, γ = µ−1. The Onsager relations state that µij has to be symmetric. Therefore,
γij 6= µ−1

ij .
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Thermodynamic Equilibrium. In equilibrium we can define any transformation through the entropy:

1
kB

dS = βdU − β
∑
s

fsdxs, (5.42)

at equilibrium,
U = x0, β = F0. (5.43)

Let’s set some definitions,
Fs ≡ −βfs
Σ ≡ S/kB

(5.44)

such that
dΣ =

∑
s

Fsdxs ⇐⇒ Fs = ∂Σ
∂xs

. (5.45)

At equilibrium Σ = 0 and x̄s = 0. Therefore, close to equilibrium,

Σ = −1
2Sijxixj (5.46)

where Sij is not necessarily symmetric, but must be negative definite.
Let’s introduce some more terminology,

Ji ≡ ẋi = dxi
dt

fluxes (currents) (5.47)

Fi = ∂Σ
∂xi

= −Sikxk (forces) (5.48)

such that
Ji = µijFj . (5.49)

Let’s define the probability
P (x0, . . . , xn) dx0 . . . dxn ∝ eΣdx0 . . . dxn. (5.50)

Hence, at equilibrium,

〈xiFj〉0 =

´
dxieΣ ∂Σ

∂xj
xj´

dxieΣ = δij , (5.51)

and we get
〈xiFj〉0 = δij . (5.52)

On the other hand,
〈xi (τ)xj (0)〉 = 〈xi (−τ)xj (0)〉 , (5.53)

hence
〈xi (τ)xj (0)〉 = 〈xi (0)xj (τ)〉 , (5.54)

but
〈xi (τ)xj (0)〉 − 〈xi (0)xj (0)〉

τ
= 〈xi (0)xj (τ)〉 − 〈xi (0)xj (0)〉

τ
, (5.55)

and when τ → 0,
〈ẋi (0)xj (0)〉 = 〈xi (0) ẋj (0)〉 . (5.56)

Put in Eq. (?) and get
µik 〈Fkxj (0)〉 = µjk 〈xi (0)Fk〉 (5.57)

or
−µikδkj = −µjkδik, (5.58)

and we get the Onsager relations (only at equilibrium!)

µij = µji (5.59)

Remark. Outside of equilibrium µij is not symmetric.
Generally,

γijµjk = Sik (5.60)

and Sik is not generally symmetric.


