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4 Lesson 4
4.1 Stochastic Processes
4.1.1 Relation between γ and the mobility µ

Where γ−1 = µ
Let’s look on a stochastic process ~v (t). Let’s define a (1D) relation

r (t) =
ˆ t′

0
v (t′) dt′ (4.1)

This is well defined (thanks to Ito calculus). We, therefore, can write the correlation〈
r2 (t)

〉
=
ˆ t′

0

ˆ t′′

0
〈v (t′) v (t′′)〉︸ ︷︷ ︸

new correlation Kvv

(
t′, t′′

) (4.2)

such that
Kξξ (t, t′) = 〈ξ (t) ξ (t′)〉︸ ︷︷ ︸

τ∗

(4.3)

and we can:
Anticipate the result

t� τ,
〈
r2 (t)

〉
= 6Dt. (4.4)

Note that the correlation time of the velocity, Kvv (t′, t′′) = τ = m
γ is different than τ∗ → 0.

Show that (as in the last week)

v (t) = v (0) e−t/τ + e−t/τ 1
m

ˆ t

0
dt′ et

′/τξ (t′) (4.5)

such that the correlation

〈v (t+ s) v (t)〉 ' v2 (0) e−(2t+s)/τ + e−(2t+s)/τ 1
m2Cξξ

ˆ t+s

0
dt′
ˆ t

0
dt′′ e(t′+t′′)/τδ (t′ − t′′) (4.6)

using Kξξ (t, t′) = Cξξδ (t− t′). Therefore

〈v (t+ s) v (t)〉 t�τ−−−→ kBT

m
e|s|/τ , (4.7)

where {
Cξξ = 2kBTγ (D = 1)
τ = m

γ

. (4.8)

Hence 〈
r2 (t)

〉
= t→∞−−−→ t

ˆ ∞
−∞

ds 〈v (t′ + s) v (t′)〉 ≡ tCvv = 2Dt (4.9)

and when we plug Cvv = 2kBT
m τ , we get the Einstein relation:

D = kBT

γ
(4.10)

and
Cvv =

ˆ ∞
−∞

ds 〈v (s) v (0)〉 = 2kBT

γ
(4.11)

4.1.2 Correlation Functions

Following the previous discussion, we have three correlation functions:
1. The Noise Correlation Function

1
µ

= γ = 1
2kBT

ˆ ∞
−∞

ds 〈ξ (s) ξ (0)〉 (4.12)

which describes the white noise;

2. The Velocity Correlation Function
µ = 1

2kBT

ˆ ∞
−∞

ds 〈v (s) v (0)〉 (4.13)

which is derived from the noise, but has different correlation argument;

3. The Diffusion
D =

ˆ ∞
−∞

ds 〈v (s) v (0)〉 (4.14)
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4.1.3 Nyquist theorem — Kubo formula

Let’s look on the following circuit:

which is described by the simple formula

L
dI
dt = Vext︸︷︷︸

"gravity"

−RI (t) + V ′ (t)︸ ︷︷ ︸
underlying

stochastic process

(4.15)

such that the noise is thermal:
〈I〉 = 1

R
Vext (4.16)

and the resistance of the stochastic process1 abides

R = 1
2kBT

ˆ ∞
−∞

ds 〈V ′ (t+ s)V ′ (t)〉 = CV V (0)
2kBT

(4.17)

Hence, we can write a correlation function

CV V (ω) =
ˆ ∞
−∞

ds eiωs 〈V ′ (s)V ′ (0)〉 ' 2kBT R. (4.18)

This is the Nyquist-Johnson theorem2.
We can also write it in terms of the conductance:

1
R

= G = 1
2kBT

ˆ ∞
−∞

ds 〈I (t+ s) I (t)〉 (4.19)

It is usually more convenient to write it in terms of the conductivity σ, where G = σLd−2 (using R = ρLS ):

G = 1
2kBT

ˆ ∞
−∞

ds 〈j (s) j (0)〉 . (4.20)

This is the Kubo formula3.

Corollary. Any time we have some “viscosity”, we must seek the noise.

Remark. When we have several sources of noise (classical), each characterized by its own viscosity ηi, then we can add
all of them linearly H =

∑
i ηi (The Mathison rule). In quantum case it is not true: due to entanglement we cannot

separate them (this is the quantum mesoscopic physics).

4.2 Fluctuation-Dissipation Theorem (FDT) – Linear Response
Idea & objective: Formalize all the previous results.

4.2.1 Basic Idea

Each time we have a system out of equilibrium we can express its properties (viscosity, etc.) using the properties of
the system in equilibrium (correlation function). This result is attributed to Callen & Welton (PR, 1951)4.

The basic idea behind (Onsager regression hypothesis, 1930): If you take a system out of equilibrium, in order to
return back to equilibrium there will be fluctuations. However, there isn’t any difference between those fluctuations
and the fluctuations at equilibrium.

The derivation of Callen & Welton is quantum mechanical, but it ought not to be so.
1The equipartition assumption we use is due to the kinetic term in the Hamiltonian, 1

2 L
〈

I2
〉

= 1
2 kBT , similarly to the mechanical

1
2 m
〈

v2
〉

= 1
2 kBT .

2This is true only in the classical case; in the quantum case the formulae break, since T → 0.
3In the quantum case, we have the same formula without the 1

2kBT
factor, after deriving the Kubo formula using another source of

noise (not thermal).
4Before that, Einstein (1905), Nyquist (1928).
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4.2.2 Classical description

1. Hamiltonian Mechanics. Let there be a system S and microscopic states (point in phase space) {p1, p2 . . . pn} ∪
{q1, q2 . . . q} ≡ (p, q).
At t = 0 we have (p (0) , q (0)). The state of S at time t is completely determined by initial conditions
+H (p (0) , q (0)), where we have defined the time evolution Tt : (p (t) , q (t)) = Tt (p (0) , q (0)). We also assume
statistical mechanics: the microstates of S at equilibrium are distributed with

P (p, q) = 1
Q

e−βH(p,q), Q =
ˆ

dp dq e−βH(p,q) (4.21)

2. Time Setup. t→ −∞.
S is perturbed→ new equilibrium at t = 0 characterized by H′ (p, q). At t = 0 turn off the perturbation H (p, q).
Relaxation: physical variable A (p, q).

3. Linear response: Perturbation is weak enough such that

H′ = H+ ∆H (4.22)

where
∆H = −fA (4.23)

and f is the perturbing field. With this definition,

f = ∂F

∂A
(4.24)

and F is the free energy.

Let’s solve. At t = 0
P ′ (p, q) = 1

Q′
e−βH

′(p,q), (4.25)

and the relaxation
〈A〉 = 1

Q′

ˆ
dp dq e−βH

′(p,q)A (p, q) . (4.26)

At t > 0, we have f → 0 and the system S evolves with H. Therefore

〈A (t)〉 = 1
Q′

ˆ
dp dq e−βH

′(p,q)A (Tt (p, q)) . (4.27)

Now we expand to the 1st order (because f is small)

〈A (t)〉 '
´

dp dq e−βH (1− β∆H) A (Tt (p, q))´
dp dq e−βH (1− β∆H)

. (4.28)

After some algebra,

〈A (t)〉 '
´

dp dq e−βHA (Tt (p, q))´
dp dq e−βH

+ βf

´
dp dq e−βHA (p, q)A (Tt (p, q))´

dp dq e−βH

− βf
´

dp dq e−βHA (p, q)´
dp dq e−βH

´
dp dq e−βHA (Tt (p, q))´

dp dq e−βH
.

(4.29)

This is equivalent to
〈A (t)〉 ' 〈A (t)〉0 + βf

(
〈A (0)A (t)〉0 − 〈A〉

2
0

)
(4.30)

where 〈·〉0 is equilibrium w.r.t. H. The last term in the equation is because equilibrium at 0 is equal to equilibrium at
t.

Let us define δA (t) = A (t)− 〈A〉0. We get

∆A = 〈A (t)〉 − 〈A (t)〉0 = βf 〈δA (0) δA (t)〉0 . (4.31)

This is another form of the Fluctuation Dissipation Theorem.

4.2.3 Generalize

Let’s take some perturbation f (t) (not constant). Using the same calculation, we’d get

∆A (t) =
ˆ

dt′ χ (t, t′) f (t′) (4.32)

Therefore, the relaxation at time t is related to all the relaxations (possible equilibrium correlations) at all the times
prior to t. But, we cannot drive the system with times t′ > t (causality). Therefore

χ (t, t′) = 0 @ t′ > t (4.33)


