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11 Lesson 11
11.1 Quantum Statistical Mechanics
11.1.1 A few additional words on Matsubara Frequencies

A flavor on how it works. We will use the contour integral method.
For example, let’s inspect free Fermions,

f (z) = 1
eβz + 1 . (11.1)

This function has poles at each z = iωn with strength −kBT . We see it immediately from

f (z = iω + δ) = 1
eβ(iω+δ) + 1

' − 1
βδ

= −kBT

δ
. (11.2)

Now, suppose we have a general function F (iωn). Then

kBT
∑
n

F (iωn) =
ˆ
C

dz
2πiF (z) f (z) , (11.3)

and C represents some contour, and we applied Jordan’s lemma.

Figure 11.1: The contour on Matsubara Frequencies.

11.1.2 Free energy of a gas of free Fermions

Let’s recall the Free energy of a gas of Fermions,

H =
∑
λ

ελc
†
λcλ, ελ = E = λ− µ. (11.4)

The number of particles N (µ) is given by the Green’s function

Nλ =
〈
c†λcλ

〉
= Gλ

(
0−
)
, (11.5)

where
Gλ (τ) = T

∑
iωn

Gλ (ωn) e−iωnτ . (11.6)

Therefore,
N (µ) =

∑
λ

Nλ = T
∑
λ,ωn

Gλ (iωn) eiωn0+
. (11.7)

Hence,
N (µ) = −∂F

∂µ
⇒ F = −

ˆ µ

dµ′N (µ′) . (11.8)

Explicitly,

F = −T
∑
λ,ωn

ˆ µ

dµ eiωn0+

iωn − Eλ − µ
= −T

∑
λ,ωn

eiωn0+
ln (ελ − iωn) , (11.9)

and we have
F =

∑
λ

˛ dz
2πif (z) ln (ελ − z) ez0

+
. (11.10)
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Notice that F (z) ≡ ln (ελ − z) has a branch cut running from ελ → +∞. Hence

F =
∑
λ

ˆ ∞
ελ

dω
π
f (ω) = −T ln

(
1 + e−βελ

)
. (11.11)

Similarly for free Bosons we’d have the same expression, but with a − sign and another set of ελ.

11.1.3 Another approach

Let’s look on free Bosons (photon gas). Their partition function reads

lnZ (T, V ) =
∑

modes

(
− ln

(
1− e−β~ω

))
. (11.12)

But,

− ln
(
1− e−β~ω

)
=
∞∑
n=1

1
n

e−nβ~ω

=
∞∑
n=1

1
n

ˆ ∞
0

dτ
τ
· e−ω2τ

√
τ
· e−n

2 (~β)2
4τ · ~βn4π

= ~β
4π

ˆ ∞
0

dτ
τ

1√
τ

e−ω
2τ

( ∞∑
n=1

e−n
2 (~β)2

4τ

)
.

(11.13)

We shall now use the Poisson formula
∞∑

n=−∞
e−n

2t =
√
π

t

∞∑
n=−∞

e−π
2n2
t . (11.14)

We also have to account for the zero point energy ~ω
2 (since we are dealing with harmonic oscillators). Therefore,

the partition function goes to

lnZ (T, V ) =
∑

modes

(
−β~ω2 − ln

(
1− e−β~ω

))
, (11.15)

and after some calculation we have

lnZ (T, V ) = 1
2
∑

modes

ˆ ∞
0

dτ
τ

e−ω
2τ

∞∑
n=−∞

e−n
2( 2π

~ω )2
τ . (11.16)

Note that τ has units of
[
time2].

11.1.4 Matsubara modes

Let’s define ∂2
0 ≡ ∂2

∂t2 + PBCs (periodic boundary conditions). Hence

∂2
0ϕ (t) = λ2ϕ (t) , ϕ (t+ ~β) = ϕ (t) . (11.17)

Also,

TrM
(

e−τ∂
2
0

)
=

∞∑
n=−∞

e−n
2( 2π

~ω )2
τ . (11.18)

We now can write
lnZ (T, V ) = 1

2
∑

modes

ˆ ∞
0

dτ
τ

e−ω
2τ TrM

(
e−τ∂

2
0

)
. (11.19)

Here M represents the Matsubara frequencies. Next, let ω = c |k| and ω2 = c2k2 so that e−ω2τ = e−c2k2τ . Therefore∑
modes

e−ω
2τ = TrM

(
e−τc

2∆
)
, (11.20)

where ∆ is the Laplacian and M is some manifold, on which we integrate.
Hence we write

lnZ (T, V ) = 1
2

ˆ ∞
0

dτ
τ

TrM
(

e−τc
2∆
)

TrM
(

e−τ∂
2
0

)
= 1

2

ˆ ∞
0

dτ
τ

TrM×M
(

e−τ(∂
2
0 +c2∆)

)
= −1

2 TrM×M ln
(
∂2

0 + c2∆
)
.

(11.21)
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Here we used −
´∞

0
dτ
τ exp

(
−Ôτ

)
= ln Ô. We now use the identity Tr ln Â = ln det Â, and obtain

lnZ (T, V ) = −1
2 ln detM×M

(
∂2

0 + c2∆
)
. (11.22)

Note that though it looks like the wave equation, it is not. First, we used a special time derivative ∂2
0 . Second, the

wave equation has a minus sign; we have a plus because we have an imaginary time.

11.1.5 Some Calculations

We shall now see how the equation (11.22) is useful. Let the volume of the system be V = Ld. Therefore

lnZ (T, V ) =
ˆ ∞

0

dτ
τ

( ∞∑
n=−∞

e−n
2( 2π

~ω )2
τ

) ∑
modes

e−ω
2τ

=
ˆ ∞

0

du
u
f (u)

∑
modes

e−(~β)2ω2u u ≡ τ

(~β)2

=
ˆ ∞

0

du
u
f (u)

∑
n

e−(~βcV −1/d)2
un2

. ω = c |k| = c
2πn

V 1/d (in a box)

(11.23)

Hence
lnZ (T, V ) = g

(
~βcV −1/d

)
= g (Lβ/L) , (11.24)

and Lβ = ~βc is the deBroglie wavelength and L is the geometrical wavelength.
Since we know the partition function, we can calculate several thermodynamic properties:

F (T, V ) = − 1
β

lnZ, (11.25a)

U = − ∂

∂β
lnZ (11.25b)

P = −
(
∂F

∂V

)
T

(11.25c)

and
PV = 1

d
U. (11.26)

11.1.6 Another approach: One-loop Quantum Corrections

Now, in the previous section we cheated a bit. We obtained an equation of the form

lnZ (T, V ) = −1
2 ln detM×M

(
Â
)
. (11.27)

Now, for example, the manifold as a line M = [0, L] and Â = − d2

dx2 . The spectrum now is λn = π2

L2n
2, n ∈ Z∗.

Hence det Â =
∏∞
n=−∞ n2. In other words, we got a beautiful result (11.22), but never stopped to ask whether this

g
(
~βcV −1/d) exists at all.

11.1.7 A useful representation: ζ-functions

Let’s use a regularization to solve this problem. Let an operator Â with spectrum {λn}. Let us define

ζA (s) =
′∑
n

1
λsn
, s ∈ C. (11.28)

Also
ln det Â = Tr ln Â =

∑
n

lnλn. (11.29)

Formally, we write
d
dsζA (s) = d

ds

′∑
n

e−s lnλn = −
∑
n

lnλne−s lnλn , (11.30)

hence
d
dsζA (s)

∣∣∣∣
s=0

= −
∑
n

lnλn = − ln det Â. (11.31)
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Herr Riemann (1859) defined the ζ-function as

ζ (s) =
∞∑
n=1

1
ns
, s ∈ C (except for s = 1). (11.32)

It has some useful relations

ζ (s) = ζ (1− s)χ (s)
χ (s) ≡ 2sπs−1 sin

(
πs
2
)

Γ (1− s)

}
⇒ . . .⇒ Γ

(
s
2
)
ζ (s) = πs−

1
2 Γ
( 1−s

2
)
ζ (1− s) . (11.33)

So that if it is defined somewhere, it is defined everywhere. For example, we have

ζ (0) = 1 + 1 + . . . = −1
2 . (11.34)

Let’s return to our sheep.

lnZ (T, V ) = −1
2 Tr ln

∂2
0 +c2∆︷︸︸︷
Â

= −1
22

∞∑
n=1

V

ˆ d3k

(2π)3 ln
[(

2πn
~β

)2
+ c2k2

]
.

(11.35)

Now, use the relation ˆ d3k

(2π)3 ln
(
α2 + k2) = −

Γ
(
−d2
)

(4π)
d
2
αd, (11.36)

and have

lnZ (T, V ) = V

∞∑
n=1

Γ
(
− 3

2
)

(4π)
3
2

(
2πn
~β

)3

︸ ︷︷ ︸
ζ(−3)∝ζ(4)=π4

90

(11.37)

hence

lnZ (T, V ) = π2

90

(
kBT

~c

)3
V. (11.38)

Note that all of this is for equilibrium statistical mechanics.


