11 Lesson 11

11.1 Quantum Statistical Mechanics

11.1.1 A few additional words on Matsubara Frequencies

A flavor on how it works. We will use the contour integral method.
For example, let's inspect free Fermions,

$$
\begin{equation*}
f(z)=\frac{1}{\mathrm{e}^{\beta z}+1} \tag{11.1}
\end{equation*}
$$

This function has poles at each $z=\mathrm{i} \omega_{n}$ with strength $-k_{\mathrm{B}} T$. We see it immediately from

$$
\begin{equation*}
f(z=\mathrm{i} \omega+\delta)=\frac{1}{\mathrm{e}^{\beta(\mathrm{i} \omega+\delta)}+1} \simeq-\frac{1}{\beta \delta}=-\frac{k_{\mathrm{B}} T}{\delta} . \tag{11.2}
\end{equation*}
$$

Now, suppose we have a general function $F\left(\mathrm{i} \omega_{n}\right)$. Then

$$
\begin{equation*}
k_{\mathrm{B}} T \sum_{n} F\left(\mathrm{i} \omega_{n}\right)=\int_{C} \frac{\mathrm{~d} z}{2 \pi \mathrm{i}} F(z) f(z) \tag{11.3}
\end{equation*}
$$

and C represents some contour, and we applied Jordan's lemma.

Figure 11.1: The contour on Matsubara Frequencies.

11.1.2 Free energy of a gas of free Fermions

Let's recall the Free energy of a gas of Fermions,

$$
\begin{equation*}
H=\sum_{\lambda} \varepsilon_{\lambda} c_{\lambda}^{\dagger} c_{\lambda}, \quad \varepsilon_{\lambda}=E=\lambda-\mu \tag{11.4}
\end{equation*}
$$

The number of particles $N(\mu)$ is given by the Green's function

$$
\begin{equation*}
N_{\lambda}=\left\langle c_{\lambda}^{\dagger} c_{\lambda}\right\rangle=G_{\lambda}\left(0^{-}\right) \tag{11.5}
\end{equation*}
$$

where

$$
\begin{equation*}
G_{\lambda}(\tau)=T \sum_{\mathrm{i} \omega_{n}} G_{\lambda}\left(\omega_{n}\right) \mathrm{e}^{-\mathrm{i} \omega_{n} \tau} . \tag{11.6}
\end{equation*}
$$

Therefore,

$$
\begin{equation*}
N(\mu)=\sum_{\lambda} N_{\lambda}=T \sum_{\lambda, \omega_{n}} G_{\lambda}\left(\mathrm{i} \omega_{n}\right) \mathrm{e}^{\mathrm{i} \omega_{n} 0^{+}} . \tag{11.7}
\end{equation*}
$$

Hence,

$$
\begin{equation*}
N(\mu)=-\frac{\partial F}{\partial \mu} \quad \Rightarrow \quad F=-\int^{\mu} \mathrm{d} \mu^{\prime} N\left(\mu^{\prime}\right) \tag{11.8}
\end{equation*}
$$

Explicitly,

$$
\begin{equation*}
F=-T \sum_{\lambda, \omega_{n}} \int^{\mu} \mathrm{d} \mu \frac{\mathrm{e}^{\mathrm{i} \omega_{n} 0^{+}}}{\mathrm{i} \omega_{n}-E_{\lambda}-\mu}=-T \sum_{\lambda, \omega_{n}} \mathrm{e}^{\mathrm{i} \omega_{n} 0^{+}} \ln \left(\varepsilon_{\lambda}-\mathrm{i} \omega_{n}\right), \tag{11.9}
\end{equation*}
$$

and we have

$$
\begin{equation*}
F=\sum_{\lambda} \oint \frac{\mathrm{d} z}{2 \pi \mathrm{i}} f(z) \ln \left(\varepsilon_{\lambda}-z\right) \mathrm{e}^{z 0^{+}} \tag{11.10}
\end{equation*}
$$

Notice that $F(z) \equiv \ln \left(\varepsilon_{\lambda}-z\right)$ has a branch cut running from $\varepsilon_{\lambda} \rightarrow+\infty$. Hence

$$
\begin{equation*}
F=\sum_{\lambda} \int_{\varepsilon_{\lambda}}^{\infty} \frac{\mathrm{d} \omega}{\pi} f(\omega)=-T \ln \left(1+\mathrm{e}^{-\beta \varepsilon_{\lambda}}\right) \tag{11.11}
\end{equation*}
$$

Similarly for free Bosons we'd have the same expression, but with a $-\operatorname{sign}$ and another set of ε_{λ}.

11.1.3 Another approach

Let's look on free Bosons (photon gas). Their partition function reads

$$
\begin{equation*}
\ln Z(T, V)=\sum_{\text {modes }}\left(-\ln \left(1-\mathrm{e}^{-\beta \hbar \omega}\right)\right) \tag{11.12}
\end{equation*}
$$

But,

$$
\begin{align*}
-\ln \left(1-\mathrm{e}^{-\beta \hbar \omega}\right) & =\sum_{n=1}^{\infty} \frac{1}{n} \mathrm{e}^{-n \beta \hbar \omega} \\
& =\sum_{n=1}^{\infty} \frac{1}{n} \int_{0}^{\infty} \frac{\mathrm{d} \tau}{\tau} \cdot \frac{\mathrm{e}^{-\omega^{2} \tau}}{\sqrt{\tau}} \cdot \mathrm{e}^{-n^{2} \frac{(\hbar \beta)^{2}}{4 \tau}} \cdot \frac{\hbar \beta n}{4 \pi} \tag{11.13}\\
& =\frac{\hbar \beta}{4 \pi} \int_{0}^{\infty} \frac{\mathrm{d} \tau}{\tau} \frac{1}{\sqrt{\tau}} \mathrm{e}^{-\omega^{2} \tau}\left(\sum_{n=1}^{\infty} \mathrm{e}^{-n^{2} \frac{(\hbar \beta)^{2}}{4 \tau}}\right) .
\end{align*}
$$

We shall now use the Poisson formula

$$
\begin{equation*}
\sum_{n=-\infty}^{\infty} \mathrm{e}^{-n^{2} t}=\sqrt{\frac{\pi}{t}} \sum_{n=-\infty}^{\infty} \mathrm{e}^{-\frac{\pi^{2} n^{2}}{t}} \tag{11.14}
\end{equation*}
$$

We also have to account for the zero point energy $\frac{\hbar \omega}{2}$ (since we are dealing with harmonic oscillators). Therefore, the partition function goes to

$$
\begin{equation*}
\ln Z(T, V)=\sum_{\text {modes }}\left(-\frac{\beta \hbar \omega}{2}-\ln \left(1-\mathrm{e}^{-\beta \hbar \omega}\right)\right) \tag{11.15}
\end{equation*}
$$

and after some calculation we have

$$
\begin{equation*}
\ln Z(T, V)=\frac{1}{2} \sum_{\text {modes }} \int_{0}^{\infty} \frac{\mathrm{d} \tau}{\tau} \mathrm{e}^{-\omega^{2} \tau} \sum_{n=-\infty}^{\infty} \mathrm{e}^{-n^{2}\left(\frac{2 \pi}{\hbar \omega}\right)^{2} \tau} \tag{11.16}
\end{equation*}
$$

Note that τ has units of $\left[\right.$ time $\left.^{2}\right]$.

11.1.4 Matsubara modes

Let's define $\partial_{0}^{2} \equiv \frac{\partial^{2}}{\partial t^{2}}+$ PBCs (periodic boundary conditions). Hence

$$
\begin{equation*}
\partial_{0}^{2} \varphi(t)=\lambda^{2} \varphi(t), \quad \varphi(t+\hbar \beta)=\varphi(t) \tag{11.17}
\end{equation*}
$$

Also,

$$
\begin{equation*}
\operatorname{Tr}_{M}\left(\mathrm{e}^{-\tau \partial_{0}^{2}}\right)=\sum_{n=-\infty}^{\infty} \mathrm{e}^{-n^{2}\left(\frac{2 \pi}{\hbar \omega}\right)^{2} \tau} \tag{11.18}
\end{equation*}
$$

We now can write

$$
\begin{equation*}
\ln Z(T, V)=\frac{1}{2} \sum_{\text {modes }} \int_{0}^{\infty} \frac{\mathrm{d} \tau}{\tau} \mathrm{e}^{-\omega^{2} \tau} \operatorname{Tr}_{M}\left(\mathrm{e}^{-\tau \partial_{0}^{2}}\right) \tag{11.19}
\end{equation*}
$$

Here M represents the Matsubara frequencies. Next, let $\omega=c|\boldsymbol{k}|$ and $\omega^{2}=c^{2} k^{2}$ so that $\mathrm{e}^{-\omega^{2} \tau}=\mathrm{e}^{-c^{2} k^{2} \tau}$. Therefore

$$
\begin{equation*}
\sum_{\text {modes }} \mathrm{e}^{-\omega^{2} \tau}=\operatorname{Tr}_{\mathbb{M}}\left(\mathrm{e}^{-\tau c^{2} \Delta}\right) \tag{11.20}
\end{equation*}
$$

where Δ is the Laplacian and \mathbb{M} is some manifold, on which we integrate.
Hence we write

$$
\begin{align*}
\ln Z(T, V) & =\frac{1}{2} \int_{0}^{\infty} \frac{\mathrm{d} \tau}{\tau} \operatorname{Tr}_{\mathbb{M}}\left(\mathrm{e}^{-\tau c^{2} \Delta}\right) \operatorname{Tr}_{M}\left(\mathrm{e}^{-\tau \partial_{0}^{2}}\right) \\
& =\frac{1}{2} \int_{0}^{\infty} \frac{\mathrm{d} \tau}{\tau} \operatorname{Tr}_{\mathbb{M} \times M}\left(\mathrm{e}^{-\tau\left(\partial_{0}^{2}+c^{2} \Delta\right)}\right) \tag{11.21}\\
& =-\frac{1}{2} \operatorname{Tr}_{\mathbb{M} \times M} \ln \left(\partial_{0}^{2}+c^{2} \Delta\right)
\end{align*}
$$

Here we used $-\int_{0}^{\infty} \frac{\mathrm{d} \tau}{\tau} \exp (-\hat{O} \tau)=\ln \hat{O}$. We now use the identity $\operatorname{Tr} \ln \hat{A}=\ln \operatorname{det} \hat{A}$, and obtain

$$
\begin{equation*}
\ln Z(T, V)=-\frac{1}{2} \ln \operatorname{det}_{\mathbb{M} \times M}\left(\partial_{0}^{2}+c^{2} \Delta\right) \tag{11.22}
\end{equation*}
$$

Note that though it looks like the wave equation, it is not. First, we used a special time derivative ∂_{0}^{2}. Second, the wave equation has a minus sign; we have a plus because we have an imaginary time.

11.1.5 Some Calculations

We shall now see how the equation (11.22) is useful. Let the volume of the system be $V=L^{d}$. Therefore

$$
\begin{array}{rlr}
\ln Z(T, V) & =\int_{0}^{\infty} \frac{\mathrm{d} \tau}{\tau}\left(\sum_{n=-\infty}^{\infty} \mathrm{e}^{-n^{2}\left(\frac{2 \pi}{\hbar \omega}\right)^{2} \tau}\right) \sum_{\text {modes }} \mathrm{e}^{-\omega^{2} \tau} & \\
& =\int_{0}^{\infty} \frac{\mathrm{d} u}{u} f(u) \sum_{\text {modes }} \mathrm{e}^{-(\hbar \beta)^{2} \omega^{2} u} & u \equiv \frac{\tau}{(\hbar \beta)^{2}} \tag{11.23}\\
& =\int_{0}^{\infty} \frac{\mathrm{d} u}{u} f(u) \sum_{n} \mathrm{e}^{-\left(\hbar \beta c V^{-1 / d}\right)^{2} u n^{2} .} & \omega=c|\boldsymbol{k}|=c \frac{2 \pi \boldsymbol{n}}{V^{1 / d}}(\text { in a box })
\end{array}
$$

Hence

$$
\begin{equation*}
\ln Z(T, V)=g\left(\hbar \beta c V^{-1 / d}\right)=g\left(L_{\beta} / L\right) \tag{11.24}
\end{equation*}
$$

and $L_{\beta}=\hbar \beta c$ is the deBroglie wavelength and L is the geometrical wavelength.
Since we know the partition function, we can calculate several thermodynamic properties:

$$
\begin{align*}
F(T, V) & =-\frac{1}{\beta} \ln Z \tag{11.25a}\\
U & =-\frac{\partial}{\partial \beta} \ln Z \tag{11.25b}\\
P & =-\left(\frac{\partial F}{\partial V}\right)_{T} \tag{11.25c}
\end{align*}
$$

and

$$
\begin{equation*}
P V=\frac{1}{d} U . \tag{11.26}
\end{equation*}
$$

11.1.6 Another approach: One-loop Quantum Corrections

Now, in the previous section we cheated a bit. We obtained an equation of the form

$$
\begin{equation*}
\ln Z(T, V)=-\frac{1}{2} \ln \operatorname{det}_{\mathbb{M} \times M}(\hat{A}) \tag{11.27}
\end{equation*}
$$

Now, for example, the manifold as a line $\mathbb{M}=[0, L]$ and $\hat{A}=-\frac{\mathrm{d}^{2}}{\mathrm{~d} x^{2}}$. The spectrum now is $\lambda_{n}=\frac{\pi^{2}}{L^{2}} n^{2}, n \in \mathbb{Z}^{*}$. Hence $\operatorname{det} \hat{A}=\prod_{n=-\infty}^{\infty} n^{2}$. In other words, we got a beautiful result (11.22), but never stopped to ask whether this $g\left(\hbar \beta c V^{-1 / d}\right)$ exists at all.

11.1.7 A useful representation: ζ-functions

Let's use a regularization to solve this problem. Let an operator \hat{A} with spectrum $\left\{\lambda_{n}\right\}$. Let us define

$$
\begin{equation*}
\zeta_{A}(s)=\sum_{n}^{\prime} \frac{1}{\lambda_{n}^{s}}, \quad s \in \mathbb{C} \tag{11.28}
\end{equation*}
$$

Also

$$
\begin{equation*}
\ln \operatorname{det} \hat{A}=\operatorname{Tr} \ln \hat{A}=\sum_{n} \ln \lambda_{n} \tag{11.29}
\end{equation*}
$$

Formally, we write

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} s} \zeta_{A}(s)=\frac{\mathrm{d}}{\mathrm{~d} s} \sum_{n}^{\prime} \mathrm{e}^{-s \ln \lambda_{n}}=-\sum_{n} \ln \lambda_{n} \mathrm{e}^{-s \ln \lambda_{n}} \tag{11.30}
\end{equation*}
$$

hence

$$
\begin{equation*}
\left.\frac{\mathrm{d}}{\mathrm{~d} s} \zeta_{A}(s)\right|_{s=0}=-\sum_{n} \ln \lambda_{n}=-\ln \operatorname{det} \hat{A} \tag{11.31}
\end{equation*}
$$

Herr Riemann (1859) defined the ζ-function as

$$
\begin{equation*}
\zeta(s)=\sum_{n=1}^{\infty} \frac{1}{n^{s}}, \quad s \in \mathbb{C}(\text { except for } s=1) \tag{11.32}
\end{equation*}
$$

It has some useful relations

$$
\left.\begin{array}{l}
\zeta(s)=\zeta(1-s) \chi(s) \tag{11.33}\\
\chi(s) \equiv 2^{s} \pi^{s-1} \sin \left(\frac{\pi s}{2}\right) \Gamma(1-s)
\end{array}\right\} \Rightarrow \ldots \Rightarrow \Gamma\left(\frac{s}{2}\right) \zeta(s)=\pi^{s-\frac{1}{2}} \Gamma\left(\frac{1-s}{2}\right) \zeta(1-s) .
$$

So that if it is defined somewhere, it is defined everywhere. For example, we have

$$
\begin{equation*}
\zeta(0)=1+1+\ldots=-\frac{1}{2} . \tag{11.34}
\end{equation*}
$$

Let's return to our sheep.

$$
\begin{align*}
\ln Z(T, V) & =-\frac{1}{2} \operatorname{Tr} \ln \overbrace{\hat{A}}^{\partial_{0}^{2}+c^{2} \Delta} \tag{11.35}\\
& =-\frac{1}{2} 2 \sum_{n=1}^{\infty} V \int \frac{\mathrm{~d}^{3} k}{(2 \pi)^{3}} \ln \left[\left(\frac{2 \pi n}{\hbar \beta}\right)^{2}+c^{2} k^{2}\right] .
\end{align*}
$$

Now, use the relation

$$
\begin{equation*}
\int \frac{\mathrm{d}^{3} k}{(2 \pi)^{3}} \ln \left(\alpha^{2}+k^{2}\right)=-\frac{\Gamma\left(-\frac{d}{2}\right)}{(4 \pi)^{\frac{d}{2}}} \alpha^{d} \tag{11.36}
\end{equation*}
$$

and have

$$
\begin{equation*}
\ln Z(T, V)=V \underbrace{\sum_{n=1}^{\infty} \frac{\Gamma\left(-\frac{3}{2}\right)}{(4 \pi)^{\frac{3}{2}}}\left(\frac{2 \pi n}{\hbar \beta}\right)^{3}}_{\zeta(-3) \propto \zeta(4)=\frac{\pi^{4}}{90}} \tag{11.37}
\end{equation*}
$$

hence

$$
\begin{equation*}
\ln Z(T, V)=\frac{\pi^{2}}{90}\left(\frac{k_{\mathrm{B}} T}{\hbar c}\right)^{3} V . \tag{11.38}
\end{equation*}
$$

Note that all of this is for equilibrium statistical mechanics.

