11 Lesson 11

11.1 Quantum Statistical Mechanics
11.1.1 A few additional words on Matsubara Frequencies

A flavor on how it works. We will use the contour integral method.
For example, let’s inspect free Fermions,
fe)=
2) = ——.
efz + 1
This function has poles at each z = iw,, with strength —kgT. We see it immediately from

, o 1 kT

Now, suppose we have a general function F' (iw,). Then

kT F (iw,) = o),

and C represents some contour, and we applied Jordan’s lemma.
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Figure 11.1: The contour on Matsubara Frequencies.

11.1.2 Free energy of a gas of free Fermions

Let’s recall the Free energy of a gas of Fermions,

HZZ&‘)\CT/\C)\, £>\:E:/\—u.
A
The number of particles N (u) is given by the Green’s function

Ny = <CJ;\C)\> = G» (0_) ,

where '
Gr(T) =T Gx(wn)e .
Therefore,
N(p) =Y Na=TY" Gy (iwn) "

A AWn
Hence,

oF H

N(H):—% = F=—/ dp’ N (1) .
Explicitly,
W eiuunO+ . 4
F=-T Z / dum =-T Z elwno In (6)\ — lwn),
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and we have
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Notice that F'(z) = ln(e) — 2z) has a branch cut running from 5 — +oco. Hence

F:Z/md?wf( )=-Th(1+e 7). (11.11)

A e

Similarly for free Bosons we’d have the same expression, but with a — sign and another set of €.

11.1.3 Another approach

Let’s look on free Bosons (photon gas). Their partition function reads

mZ(T,V)= > (-In(1-e"™)). (11.12)
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n—=—oo n=—oo

We shall now use the Poisson formula

We also have to account for the zero point energy %" (since we are dealing with harmonic oscillators). Therefore,

the partition function goes to
mZ(T,V)= > (-B;‘“’—m( —B"W)), (11.15)

modes

and after some calculation we have

I Z(T,V) Z / i ST et (i) (11.16)

modes n=-—00

Note that 7 has units of [timeﬂ.

11.1.4 Matsubara modes
Let’s define 93 = g—; + PBCs (periodic boundary conditions). Hence

Ko )=o), et+hs)=p(). (11.17)
Also,
Tear (e778) = 3 e (#)°T, (11.18)

We now can write

InZ (T, V) Z / —e—w TTrM< —788), (11.19)

modes

Here M represents the Matsubara frequencies. Next, let w = c|k| and w? = c?k? so that e~’T = ¢=¢’k*7 Therefore

3 e = Ty (e—”“) , (11.20)

modes

where A is the Laplacian and M is some manifold, on which we integrate.

Hence we write d
7/ Sl Try ( _TCZA) Tras (e_Tag)
2 0 T

1 [~dr —r(82+¢2A) 11.21
2/0 T TTMXM( ) ( ’ )

InZ(T,V)

= —% Tryix s In (38 + C2A) .



11.1 Quantum Statistical Mechanics 3

Here we used — fooo d7 exp (*OT) =InO. We now use the identity Tr In A = Indet fl, and obtain

T

1
InZ(T,V) = —§lndethM (95 + PA). (11.22)

Note that though it looks like the wave equation, it is not. First, we used a special time derivative 9. Second, the
wave equation has a minus sign; we have a plus because we have an imaginary time.

11.1.5 Some Calculations

We shall now see how the equation (11.22) is useful. Let the volume of the system be V = L%. Therefore

InZ(T,V) :/mCiT( i e_"’2(§3)27> S et
0 T

n=—oo modes
> du 2 2 T
= —f(u e~ (hB) W u u= (11.23)
J W E a7
o . 2
= /O %Lf (u) zn:e_(hﬁcv ) un® w=clk|= CVTZ (in a box)
Hence
nZ(T,V) =g (hﬁcv—l/d) = g(Ls/L), (11.24)

and Lg = hfc is the deBroglie wavelength and L is the geometrical wavelength.
Since we know the partition function, we can calculate several thermodynamic properties:

F(T,V) = —% InZ, (11.25a)
U*—ian (11.25b)
=33 .
oF

P=_ (2= 11.2

(%), (1:25¢
and ]

PV = ~U. (11.26)

11.1.6 Another approach: One-loop Quantum Corrections

Now, in the previous section we cheated a bit. We obtained an equation of the form

1 N
InZ (T,V) = =5 Indetisxn (A) . (11.27)
Now, for example, the manifold as a line M = [0, L] and A= —%. The spectrum now is A, = z—znz, n € 7Z*.

Hence det A = | G n?. In other words, we got a beautiful result (11.22), but never stopped to ask whether this
g (hﬁcV‘l/d) exists at all.

11.1.7 A useful representation: (-functions

Let’s use a regularization to solve this problem. Let an operator A with spectrum {\,}. Let us define

/
1
Ca(s) = zn: NS¢ C. (11.28)
Also R A
Indet A=TriIn A= "In\,. (11.29)
n
Formally, we write
d d . —sln A —sln A
0 () = g;e "= —;m/\ne (11.30)
hence q
26 s) e zn:ln An = —Indet A. (11.31)




Herr RIEMANN (1859) defined the (-function as

— 1
C(S):ZE’ s € C (except for s =1).

n=1
It has some useful relations
C(S) = (1 - S) X (S) s _ _s—12 1—s _
(©) 2257r51sin(”25)T(1—5)} = :F(§)C(s) =7 F( 5 )C(l s).

So that if it is defined somewhere, it is defined everywhere. For example, we have

1
C(0)=1+1+...=—§.
Let’s return to our sheep.
92+ A
~ =

1 A
InZ(T,V) = —3 Trln A

1S d3k 27n \ 2
=—92) V[ —In||l=—) +2%?
2 nz::l /(2@3 [( fw)

Now, use the relation

(2m)° (4)
and have - . .
mZ(T, V)=V a (_i) (2“”)
e GO RN
C(-3)C(4) =55
hence

2 3
InZ(T,V) = 79L0 (kBT> V.

Note that all of this is for equilibrium statistical mechanics.
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