
Summary : Quantum dynamics for a fractal spec-
trum : Thouless coefficient - Thouless formula -
quantum dynamics for a Fibonacci potential and
for a Cantor spectrum in the tight-binding model

We note K the triadic Cantor set, embedded in [0, 1], and dµ the associated
measure. dµ verifies :∫
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Thouless coefficient

Thouless formula

Fibonacci potential in the tight-binding model

Quantum dynamics for a triadic Cantor set spectrum in the
tight-binding model

Therefore, the wave function ψ(k, t), describing the wave packet, is given by :
Thus, the dynamical behaviour of the system depends essentially on the func-

tions : aka the Fourier transforms on K of the moments xk.

Study of hk(t)

Using the Mellin transform (see annexe), we may express hk(t) as a series :
It is not clear, from this expression, whether or not hk(t) has a log-periodic

feature, which is expected as a fingerprint of the scaling symmetry of the spectrum
expressed in (1). We shall now show that there is, however, such a behaviour. We
will do so by calculating the zeroes of hk(t) and the maximas of |hk(t)|.

First note that h0(t) verifies the following functional equation, derived by direct
application of (1) :

By repeating this process, and using h0(0) =
∫
K 1dµ = 1, we find the exact

expression of h0(t) :
This is consistent with the expression derived in [1]. Furthermore, there is a per-

fect fit between the graph of the theoretical expression (2) and the one obtained
from the direct calculation of h0(t) using : with Kn the set of the left edges of the
remaining segments after n iterations in the construction of the Cantor set from the
segment [0, 1].

From (2), we easily deduce the zeroes of h0(t) : it is the set :
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Figure 1 – Numerical curves of h0(t), h1(t) and h31(t).

We also get the local maxima of |h0(t)| : with the property :
Now, using (1) again, we derive the following recurrence formula for hk(t) :

hk(t) =
∫
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We will use this relation to show, by recurrence, that the set Zk of zeroes of hk,
k 6= 0 contains the set :

It seems that there are no other zeroes for hk(t), e.g. that but it is not rigorously
proven ; the numerics however seem to support this hypothesis (see fig. 2).

We therefore deduce that hk(t) has the same zeroes than hk−1(t/3).
Using a similar reasoning, we can study the points at which the module |hk(t)|

has a local maximum. One can show (see annexe) that these maxima are reached,
for |h0(t)|, at points of the form : tm,n = 3nmπ. It is also easy to show that, for all
n,m, one has : h0(tm,n) = h0(tm,0). Using the recurrence relation between the hk,
one can see that hk(tm,n) ≈ 3−kh0(tm,n−1).

Thus, we may infer, with a good approximation, that :

hk(t) ∝ hk−1(t/3)

This is confirmed by the numerics.
To summarize, the functions hk(t) themselves are not log-periodic, and have

periodically spaced zeroes of the form tm,n = π
2 (2m + 1)3n. The fingerprint of the

fractal spectrum lies in the recurrence relation :
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which, up to a good approximation, can be simplified in the following renorma-
lization relation :

hk(t) ∝ hk−1(t/3)

in good approximation (e.g, it is not a rigorous proportionality relation, since the
hk
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Application to the RMS and the participation ratio
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