
Summary : Quantum dynamics for a fractal spec-
trum : Thouless coefficient - Thouless formula -
quantum dynamics for a Fibonacci potential and
for a Cantor spectrum in the tight-binding model

We note K the triadic Cantor set, embedded in [0, 1], and dµ the associated
measure. dµ verifies :∫

k
f(x)dµ(x) = 1

2

∫
k
f
(
x

3

)
dµ(x) + 1

2

∫
k
f
(
x+ 2

3

)
dµ(x) (1)

Return probability
cf. correlation-fun-cantor.pdf

Thouless coefficient

Thouless formula

Fibonacci potential in the tight-binding model

Quantum dynamics for a triadic Cantor set spectrum in the
tight-binding model

We consider an infinite 1D lattice, with sites k labelled from 0 to ∞. We define
a potential V on this system such that the discrete Schrodinger operator : H =
−∆ + V , which acts on l2(Z), has a triadic Cantor set spectrum. As in the previous
paragraph, the eigenfunctions {φε}ε∈K , evaluated on the sites k, can be seen as
polynomials in ε :

φε(k) = pk(ε) (2)
We are interested of the evolution of a wave packet, described by the normalized
wave function ψ(t), evolving according to Schrodinger’s equation :

i
dψ(t)
dt

= Hψ(t)

The wave function is initially localized at the site 1 : 〈k|ψ(t = 0)〉 = δ(k − 1). At
time t, the system is in the state : |ψ(t)〉 = e−iHt|ψ(0)〉, and the value of the wave
function at site k is given by :

|ψ(k, t)| =
∫
K
φε(1)∗φε(k)e−iεtdµ

Using (2), we obtain :

ψ(k, t) =
∫
K
φε(1)∗φε(k)e−iεtdµ (3)

=
∫
K
p1(ε)pk(ε)e−iεtdµ (4)

=
∑
jk≤k

cjk

∫
K
εjke−iεtdµ (5)
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with pk(x) = ∑
0≤jk≤k cjkx

jk Thus, the dynamical behaviour of the system depends
essentially on the functions :

hk(t) =
∫
K
e−iεtεkdµ(ε)

aka the Fourier transforms on K of the moments xk.

Study of hk(t)

Using the Mellin transform (see annexe), we may express hk(t) as a series :

hk(t) =
∑
n6=0

(−it)n
n! µn+k

with µn =
∫
K x

ndµ. (Note that we obtain the same expression by writing e−iεt =∑
n≤0

(−iεt)n

n! and reversing the signs sum and integral).
It is not clear, from this expression, whether or not hk(t) has a log-periodic

feature, which is expected as a fingerprint of the scaling symmetry of the spectrum
expressed in (1). We shall now show that there is, however, such a behaviour. We
will do so by calculating the zeroes of hk(t) and the maxima of |hk(t)|.

First note that h0(t) verifies the following functional equation, derived by direct
application of (1) :

h0(t) =
∫
K
e−iεtdµ

= 1
2

∫
K
e−iεt/3dµ+ e−i2t/3

2

∫
K
e−iεt/3dµ

= 1 + e−i2t/3

2 h0(t/3)

By repeating this process, and using h0(0) =
∫
K 1dµ = 1, we find the exact

expression of h0(t) :

h0(t) =
∏
k≥1

1 + e−i2t/3k

2 (6)

This is consistent with the expression derived in [1]. Furthermore, there is a
perfect fit between the graph of the theoretical expression (2) and the one obtained
from the direct calculation of h0(t) using :

h0(t) = lim
n→∞

(3
2

)n ∑
ajn∈Kn

∫ ajn +3−n

ajn

e−ixtdx

with Kn the set of the left edges of the remaining segments after n iterations in the
construction of the Cantor set from the segment [0, 1].

From (2), we easily deduce the zeroes of h0(t) : it is the set :

Z0 = {tm = 3π
2 (2m+ 1),m ∈ Z}
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We also get the local maxima of |h0(t)| :

M0 = {vn,m = πm3n,m ∈ Z, n ∈ N∗}

with the property :

h0(vn,m) =
∏

k≥n+1

1 + e−i2t/3

k′︷ ︸︸ ︷
k − n

2 =
∏
k′≥1

1 + e−i2t/3k′

2 = h0(v0,m)

Furthermore, the product ∏k′≥1
1+e−i2t/3k′

2 is convergent and consists of nonzero
terms, therefore it is nonzero. Taking n → ∞, we can therefore deduce that h0(t)
does not converge to zero when t→∞ (as also found in [1]).

Now, using (1) again, we derive the following recurrence formula for hk(t) :

hk(t) =
∫
K
e−iεtεkdµ

= 3−k
2

∫
K
e−iεt/3εkdµ+ 3−ke−i2t/3

2

∫
K
e−iεt/3(ε+ 2)kdµ

= 3−k
2 hk(t/3) + 3−k

2 e−i2t/3
k∑
j=0

(
k

j

)
hj(t/3)2k−j

We will use this relation to show, by recurrence, that the set Zk of zeroes of hk,
k 6= 0 contains the set :

{tm,n = π

2 (2m+ 1)3k+1,m ∈ Z}

First, we deduce that, if tn,m = π
2 (2m+ 1)32, m ∈ Z}, then :

h1(tn,m) = 3−1

2 h1(tn,m/3)− 3−1

2 (h1(tn,m/3) + h0(tn,m/3)︸ ︷︷ ︸
0

)

since tn,m/3 ∈ Z0. Thus : {tm,n = π
2 (2m+ 1)32,m ∈ Z} ⊂ Z1. The generalization to

higher k is trivially derived using the recurrence relation above.

It seems that there are no other zeroes for hk(t), e.g. that

Zk = {tm,n = π

2 (2m+ 1)3k+1,m ∈ Z}

but it is not rigorously proven ; the numerics however seem to support this hypothesis
(see fig. 1).

We therefore deduce that hk(t) has the same zeroes than hk−1(t/3).
Using a similar reasoning, we can study the points at which the module |hk(t)|

has a local maximum. The maxima of |h0(t)| are reached at the points : tm,n = 3nmπ.
Using the recurrence relation between the hk, one can see that

hk(tm,n) ≈ 3−kh0(tm,n−1)
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Figure 1 – Numerical curves of |h0(t)| (blue), |h1(t)| (red) and |h31(t)| (yellow).
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Figure 2 – Numerical curves of |h0(t/9)| (blue), |h1(t/3)| (red) and |h2(t)| (yellow).
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Thus, we may infer, with a good approximation, that :

hk(t) ∝ hk−1(t/3)

This is confirmed by the numerics (see fig. 2).
To summarize, the functions hk(t) themselves are not log-periodic, and have

periodically spaced zeroes of the form tm,n = π
2 (2m + 1)3n. The fingerprint of the

fractal spectrum lies in the recurrence relation :

hk(t) = 3−k
2 hk(t/3) + 3−k

2 e−i2t/3
k∑
j=0

(
k

j

)
hj(t/3)2k−j

which, up to a good approximation, can be simplified into :

hk(t) ∝ hk−1(t/3)

Note however that it is not a rigorous proportionality relation.

Application to the RMS and the participation ratio

In order to study how the fractal feature of the spectrum affects the dynamics
of the system, we will now consider the RMS :

∆x(t)2 =
∞∑
k=1

k2|ψ(k, t)|2

and the participation ratio :

Pψ = 1∫
espace |〈x|ψ〉|4dx

Injecting (3) in the definition of the RMS, we obtain :

∆x(t) =
∞∑
k=1

k2|ψ(k, t)|2

=
∞∑
k=1

k2|
∑
jk≤k

cjk

∫
K
εjke−iεtdµ|2

=
∞∑
k=1

k2|
∑
jk≤k

cjkhjk(t)|2

Note that, even if the hk(t) have periodically spaced zeroes, this does not imply
that ∆x(t) cancels for some t : in fact, since the zeroes of hk are odd multiples of
3k+1, the infinite sum in the expression of ∆x insures that, for any time t, we are
always before the first zero of infinitely many hk.

Using hk(t) ∝ hk−1(t/3), we obtain in first approximation :

∆x(t) ∝ ∆x(t/3)
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which leads to :
∆x(t) = tαG(ln t)

with G periodic.

We can make a more precise calculation by using directly the recurrence relation
hk(t) = 3−k

2 hk(t/3) + 3−k

2 e−i2t/3∑k
j=0

(
k
j

)
hj(t/3)2k−j :

∆x(t) =
∞∑
k=1

k2|
∑
jk≤k

cjkhjk(t)|2

=
∞∑
k=1

k2|
∑
jk≤k

cjk
3−jk

2 hjk(t/3) + 3−jk
2 e−i2t/3

jk∑
l=0

(
jk
l

)
hl(t/3)2jk−l(t)|2

≈ 1
b

∆x(t/3) +R(t)

where b can be approximated numerically (there does not seem to be a simple
theoretical value for b) and R(t) is a sum of terms of the form k2hj(t)∗hj′(t).

A similar reasoning seems to indicate that the participation ratio also has a log-
periodic feature, however the calculation is more complicated and I have not yet
finished it.

Annexe

Calculation of the hk(t)
We derive the expression of the functions hk(t) =

∫
K e
−ixtεkdµ(−), k ∈ N using

Mellin’s transform.
The Mellin transform of hk is :

mk(s) =
∫ ∞

0
ts−1hk(t)dt

=
∫
K
dµ(x)xk

∫ ∞
0

ts−1e−ixtdt

= Γ(s)e−iπs/2
∫
K
dµ(x)xk−s︸ ︷︷ ︸
lk(s)

where Γ is Euler’s gamma function. The integral converges on the strip 0 <
<(s) < 1/2 but the final expression can be analytically extended on all C, except
on the countable set of poles we shall now determine. Applying (1) :

lk(s) =
∫
K
dµ(x)xk−s

= 1
2

∫
K
dµ(x)x

k−s

3k−s + 1
2

∫
K
dµ(x)(x+ 2)k−s

3k−s

= 3s−k
2 lk(s) + rk(s)
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Figure 3 – Contour used in the residue formula.

which leads to :

lk(s) = rk(s)
1− 3s−k/2

rk has no poles because x+ 2 is never null for x ∈ K. lk has poles at the points :
sm,k = k+ ln 2

ln 3 + 2iπm
ln 3 . Since Gamma(z) has poles at the negative integers −n, n ∈ N,

with residue Res(Γ)z=−n = (−1)n

n! , we conclude that mk(s) has poles at the points :

{sm,k = k + ln 2
ln 3 + 2iπm

ln 3 ,m ∈ Z} ∪ Z−

We now apply Mellin’s inverse formula :

hk(t) = 1
2iπ

∫ c+∞

c−i∞
mk(s)t−sds

with 0 < c < 1/2 to insure the convergence of the integral. We apply the residue
formula on a contour defined as the limit for r → ∞ of the semicircle of figure 3.
The asymptotic behaviour of the Γ function insures that the integral on the circular
part goes to zero as r →∞.

Therefore, the zeroes of the Γ function alone are taken into account in the residue
formula, which yields :

hk(t) =
∑
n 6=0

(−it)n
n! µn+k

with µn =
∫
K x

ndµ
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