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Abstract
When random walks on a square lattice are biased horizontally to move solely to the

right, the probability distribution of their algebraic area can be exactly obtained [1]. We
explicitly map this biased classical random system on a non hermitian Hofstadter-like
quantum model where a charged particle on a square lattice coupled to a perpendicular
magnetic field hopps only to the right. In the commensurate case when the magnetic flux
per unit cell is rational, an exact solution of the quantum model is obtained. Periodicity
on the lattice allows to relate traces of the N th power of the Hamiltonian to probability
distribution generating functions of biased walks of length N .

PACS numbers: 05.40.Fb, 05.40.Jc, 05.30.Jp

1. Introduction

It is well-known that the probability distribution for the algebraic area enclosed by
closed random walks on a two-dimensional square lattice is related to the Hofstadter
model [2] of an electron hopping on a square lattice and coupled to a perpendicular
magnetic field. The generating function of the algebraic area probability distribution of
walks of length N is formally identified with the trace of the N th power of the Hofstadter
Hamiltonian. This mapping has been used in [3] to recover asymptotically Levy’s law [4]
and its first 1/N2 correction. Here we consider random walks biased horizontally to move
only to the right, a geometry which is intermediate between 2 and 1 dimensions. For such
biased walks the probability distribution of their algebraic area has been exactly obtained
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in [1]. We are going to relate the generating function of the algebraic area probability
distribution of biased walks of length N to the trace of the N th power of the Hamiltonian
of a non hermitian Hofstadter-like quantum model. This situation is reminiscent of other
biased classical systems mapped on non hermitian quantum models, as for example the
TASEP models [5] and their corresponding non hermitian quantum spin chains. It would
certainly be rewarding to look at possible physical interpretations, if any, of the non
hermitian Hofstadter quantum mechanics discussed here, in particular in relation to the
quantum Hall effect. Note that in the asymptotic limit N → ∞ one expects to recover
the probability distribution of the algebraic area under a 1d random curve, a distribution
which can be easily obtained by more direct means [6].

2. Algebraic area probability distribution generating function for biased ran-
dom walks on a square lattice

The generating function for the algebraic area probability distribution of closed walks
of length N -in the case of closed walks N is necesseraly even- is defined as

ZN(q) ≡
∞∑

A=−∞

CN(A) qA (1)

where CN(A) is the number, among the
(
N
N/2

)2
, of closed walks whose algebraic area is A.

The mapping to the Hofstadter model is obtained by setting q = eiγ where γ = 2πΦ/Φ0

is the flux Φ through the unit cell in unit of the flux quantum Φ0 = hc/e.
More generally, the algebraic area of an opened random walk with M1 steps right,

M2 steps left, L1 steps up and L2 steps down can be defined as those of the closed walk
obtained by adding to the end point of the opened walk a vertical path linking it to
the horizontal axis where it started from and then adding a horizontal path back to its
starting point. For such walks the generating function ZM1,M2,L1,L2(q) for their algebraic
area probability distribution obeys the recurrence relation [1, 7]

ZM1,M2,L1,L2(q) = ZM1,M2,L1−1,L2(q) + ZM1,M2,L1,L2−1(q)

+ qL2−L1ZM1−1,M2,L1,L2(q) + qL1−L2ZM1,M2−1,L1,L2(q) , (2)

with the initial condition Z0,0,0,0(q) = 1.
Let us recall that if x and y are two operators satisfying xy = qyx the q-binomial theorem
[8]

(x+ y)N =
N∑

M=0

(
N

M

)
q

yN−MxM , (3)

involves the q-binomial coefficient(
N

M

)
q

≡ [N ]q!

[M ]q![N −M ]q!
, (4)
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and the q-factorial

[L]q! =
L∏
i=1

1− qi

1− q
= 1(1 + q)(1 + q + q2) · · · (1 + q + . . .+ qL−1) . (5)

Here formally one has a generalized q-binomial theorem with four addends

(x+ y + x−1 + y−1)N =
∑

M1,M2,L1,L2
M1+M2+L1+L2=N

ZM1,M2,L1,L2(q)y−L1yL2xM1x−M2 (6)

where the unknown ZM1,M2,L1,L2(q)’s obey (2).
An exact solution of (2) for random walks biased on the horizontal axis to move solely

to the right, i.e. M2 = 0, has been obtained in [1]

ZM1,0,L1,L2(q) =

min(L1,L2)∑
k=0

[(
M1 + L1 + L2

k

)
−
(
M1 + L1 + L2

k − 1

)](
M1 + L1 − k

M1

)
1
q

(
M1 + L2 − k

M1

)
q

(7)
such that a q-binomial theorem for 3 addends holds

(x+ y + y−1)N =
∑

M1,L1,L2
M1+L1+L2=N

ZM1,0,L1,L2(q)y−L1yL2xM1 . (8)

It is indeed not difficult to prove that (7) is the solution of (2) when M2 = 0.
One can go a step further and "close" such biased walks by enforcing them to return after
N steps to the horizontal axis they started from, i.e. L1 = L2. It means that if one sets
M1 = M , and so L1 = L2 = N−M

2
, the generating function for their algebraic area -in the

sense defined above- is then

ZM,0,N−M
2

,N−M
2

(q) =

N−M
2∑

k=0

[(
N

k

)
−
(

N

k − 1

)](
N+M

2
− k

M

)
1
q

(
N+M

2
− k

M

)
q

≡ ZN,M(q) .

(9)
ZN,M(q) is by construction real.

3. Random walks counting and non hermitian Hofstadter-like quantum me-
chanics

3.1. Random walks counting
The question we would like to address is : what the exact expression of ZN,M(q) in (9)

can tell us on a corresponding Hofstadter-like model in quantum mechanics ? Recall that
in the Hofstadter case the counting of closed random walks of length N directly follows
from (1) by setting q = 1

ZN(1) =

N/2∑
M=0

N !

M !2(N−2M
2

)!2
=

(
N

N/2

)2

= (
1

2π
)2
∫ π

−π

∫ π

−π
(2 cos kx+2 cos ky)

Ndkxdky (10)
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The quantum spectrum in the RHS of (10) corresponds to the tight-binding Hamiltonian

H = Tx + T−1x + Ty + T−1y (11)

where Tx = eipx/~ and Ty = eipy/~ for a unit lattice step with Bloch eigenstates

eikxxeikyy (12)

where both kx and ky are in the interval [−π, π]. The eigenenergies are indeed

eikx + e−ikx + eiky + e−iky = 2 cos kx + 2 cos ky (13)

as in the RHS of (10).
Similarly, in (9), ZN,M(1) counts the number of biased random walks of length N with M
steps to the right and N−M

2
steps up and down

ZN,M(1) =
N !

M !(N−M
2

)!2
(14)

For a given N , the number of all possible such walks is, if N is even,

N∑
M=0,M even

ZN,M(1) =
N∑

M=0,M even

N !

M !(N−M
2

)!2
(15)

and if N is odd,
N∑

M=1,M odd

ZN,M(1) =
N∑

M=1,M odd

N !

M !(N−M
2

)!2
(16)

Both countings are equal4 to 1
2π

∫ π
−π(±1 + 2 cos ky)

Ndky: more precisely when N is even

N∑
M=0,M even

ZN,M(1) =
1

2π

∫ π

−π
(±1 + 2 cos ky)

Ndky , (18)

and when N is odd
N∑

M=1,M odd

ZN,M(1) = (±1)
1

2π

∫ π

−π
(±1 + 2 cos ky)

Ndky . (19)

In the RHS of (18,19) the spectrum

± 1 + 2 cos ky (20)

4and to 2F1

(
1−N
2 ,−N

2 ; 1; 4
)
. Note the N →∞ asymptotic scaling

N∑
M=0,M even or odd

ZN,M (1) ' 3N+ 1
2

2
√
πN

(17)

indicating a situation intermediate between 2 and 1 dimensions.
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corresponds again to a tight-binding-like Hamiltonian but with only right hoppings on
the horizontal axis

H = Tx + Ty + T−1y (21)

Indeed the eigenstates (12) has now for eigenenergies

eikx + eiky + e−iky (22)

If one insists on restricting the Hilbert space to a real spectrum then either kx = 0 or
kx = ±π so that one ends up with

1 + 2 cos ky or − 1 + 2 cos ky (23)

i.e. (20).

3.2. Non hermitian Hofstadter-like quantum mechanics
It follows that if one now introduces a magnetic field perpendicular to the lattice the
mapping at hand should be between the algebraic area probability distribution of random
walks biased horizontally to move only to the right and a non hermitian "Hofstadter-
like" quantum mechanics with only right hoppings. In the Landau gauge the quantum
Hamiltonian is

Hγ = Tx + Ty + T−1y (24)

where Tx and Ty act on a state Ψm,n at the lattice site {m,n} as [12]

TxΨm,n = Ψm+1,n, TyΨm,n = eiγmΨm,n+1 (25)

and obey the commutation relation

TxTy = e−iγTyTx, (26)

where, as said above, γ = 2πΦ/Φ0 is the flux Φ through the unit cell in unit of the flux
quantum Φ0 = hc/e. The Hamiltonian (24) is non hermitian, therefore it has complex
non-physical eigenvalues.

Using translational invariance in the y direction one sets Ψm,n = einkyΦm to get the
eigenenergy equation

Φm+1 + 2 cos(ky + γm)Φm = EΦm (27)

which can be iterated, for any k ≥ 0, to

Φm+k =
m+k−1∏
r=m

(E − 2 cos(ky + γr))Φm. (28)
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4. Commensurate case: exact solution

In the commensurate case where the magnetic flux per plaquette is rational

γ = 2π
p

q
(29)

with relatively prime integers p and q, the model can be solved exactly. The flux being
rational, one has a Harper-like model [9] of period q on the lattice. Using this periodicity,
the eigenfunctions in the periodic potential are such that Φm+q = eiqkxΦm. It follows from
(28) that

q∏
r=1

(E − 2 cos(ky + 2π
p

q
r)) = eiqkx (30)

has to be satisfied. The product in the LHS of (30) is independent of the integer p that
from now on will be fixed to 1. (30) can be easily solved with respect to E thanks to the
identity [10]

q∏
r=1

(a2 − 2ab cos

(
ky +

2π

q
r

)
+ b2) = a2q − 2(ab)q cos(qky) + b2q, (31)

valid for any a, b, q and ky. Using (31) with ab = 1 and a2 + b2 ≡ E, one rewrites the
product in the LHS of (30) as

q∏
r=1

(E − 2 cos(ky + 2π
p

q
r)) = Pq(E)− 2 cos(qky) (32)

where Pq is a Chebyshev polynomials of the first kind [11] of degree q. Some examples of
Chebyshev polynomials are shown in Fig. 1 and Fig. 2.

-2 -1 1 2

-6

-4

-2

2

4

6

Figure 1: Pq=17(E)

6



-2 -1 1 2
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Figure 2: Pq=18(E)

Setting either ky = 0 or π/(2q) in (32) one obtains

Pq(E) =

q∏
r=1

(
E − 2 cos

(
2πr

q

))
+2 =

q∏
r=1

(
E − 2 cos

(
π

2q
+

2πr

q

))
= 2 cos

(
q arccos

(
E

2

))
(33)

From (30, 32) the eigenenergy equation is

Pq(E) = eiqkx + 2 cos(qky) (34)

and, using (33), one finally gets

Eq(r) = 2 cos

[
arccos[eiqkx/2 + cos(qky)]

q
+

2πr

q

]
, with r = 1, 2, . . . , q. (35)

or, equivalently,

Eq(r) =

(
eiqkx/2 + cos(qky) +

√
(eiqkx/2 + cos(qky))2 − 1

)1/q

+

(
eiqkx/2 + cos(qky)−

√
(eiqkx/2 + cos(qky))2 − 1

)1/q

,

with r = 1, 2, . . . , q. (36)

(35) or (36) is the exact spectrum in the commensurate case with arbitrary boundary
conditions. For a given such energy, which satisfyes (30), iterating (28) from m = 0

Φk =
k−1∏
r=0

(E − 2 cos(ky + 2π
p

q
r))Φ0 (37)

gives the exact eigenfunction Φk at any lattice site k = 1, 2, . . . in terms of a state Φ0

which has to be defined by normalisation considerations.
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One has seen that in the absence of a magnetic field γ = 0, or equivalently q = 1, the
spectrum (35) is real when eikx = ±1

P1(E) = E = eikx + 2 cos ky → Eq=1 = ±1 + 2 cos ky , (38)

i.e. (20). In the presence of a magnetic field γ = 2π p
q
with q > 1, the spectrum (35) has

real eigenvalues only for eiqkx = ±1. Setting eiqkx = +1 corresponds to periodic boundary
conditions and eiqkx = −1 to anti-periodic boundary conditions on a q−cells lattice.

Consider for definiteness periodic boundary conditions. In the region |1/2+cos(qky)| <
1 the spectrum consists of q real eigenvalues |Eq| < 2, symmetric around 0 for even q,
and it contains [q/2 + 1] bands. At the points where |1/2 + cos(qky)| = 1, the spectrum
is degenerate with largest eigenvalue 2 (and by symmetry lowest eigenvalue −2 for even
q). In the region |1/2 + cos(qky)| > 1 there are only 1 or 2 (for odd/even q respectively)
real eigenvalues |Eq| & 2, and q − 1 or q − 2 complex eigenvalues (see Fig. 3 and Fig. 4).
Finally, for large q, the density of states with real energy ρq(E) converges to the 1d

E

k

-3 -2 -1 1 2 3

-2

-1

1

2

Figure 3: The spectrum Eq=7 for periodic boundary conditions: on the horizontal axis ky ∈ [−π, π], on
the vertical axis the energy.

E

k

-3 -2 -1 1 2 3

-2

-1

1

2

Figure 4: The spectrum Eq=8 for periodic boundary conditions: on the horizontal axis ky ∈ [−π, π], on
the vertical axis the energy.
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tight-binding density of state

ρq(E) ∝ 1√
4− E2

. (39)

The edges5 of the bands are given by the real values of the energy (35) at ky = 0 and
ky = π/q (not ordered)

for q even : {2 cos

(
2π

3q
+

2πr

q

)
with r = 1, 2, . . . , q, ±2 cos

(
arccos(3/2)

q

)
},

for q odd : {2 cos

(
2π

3q
+

2πr

q

)
with r = 1, 2, . . . , q, 2 cos

(
arccos(3/2)

q

)
}. (43)

A plot of the edge spectrum with periodic boundary conditions for q = 1, 2, . . . , 100 and
p ∈ [0, q] is displayed in Fig. 5.

The sum of the lengths of the gaps can be easily computed to be 4/(1+2 cos(2π/3q)) for
q even, and 2 cos(π/3q)− 2/(1 + 2 cos(π/3q)) for q odd. In the limit q →∞, it saturates
to 4/3 (4/3+ when q even, and 4/3− when q odd), whereas the sum of the lengths of
the bands saturates to 8/3 (8/3− for q even, and 8/3+ for q odd), and the largest and
smallest eigenvalues converge to ±2. A plot of the band spectrum as a function of 1/q for
q = 1, 2, . . . , 100 is displayed in Fig. 6.

Note that in the incommensurate case when the flux is irrational the period has to
be taken equal to the length L of the lattice. For periodic boundary conditions, one gets
from (28) the eigenenergy equation

ΦL = Φ0 ⇔
L−1∏
r=0

(E − 2 cos(γr + ky)) = 1 (44)

5As a remark, the edges can be easily retrieved from the zeroes of Pq in (33),

2 cos

(
π

2q
+

2πr

q

)
with r = 1, 2, . . . , q . (40)

For example when q = 2i, one gets for the zeroes

{
±

√
2± . . .

√
2±

√
2±
√
2

}
(41)

where the . . . means iterating i times ±
√
2. The edges of the bands follow by replacing the innermost 2

by a 1 and adjoining at both ends ±

√
2 + . . .

√
2 +

√
2 +
√
5: for example when i = 5

{
±

√√√√
2±

√
2±

√
2±

√
2±
√
2

}
→

{
±

√√√√
2±

√
2±

√
2±

√
2±
√
1, ±

√√√√
2 +

√
2 +

√
2 +

√
2 +
√
5

}
. (42)
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Figure 5: The edge spectrum for periodic boundary conditions: q = 1, 2, . . . , 55, on the horizontal axis
the edges and on the vertical axis p/q ∈ [0, 1].

Figure 6: The band spectrum for periodic boundary conditions: q = 1, 2, . . . , 100, on the horizontal axis
the bands and on the vertical axis 1/q.
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where the sites m = 0 and m = L are respectively on the left and right sides of the lattice.
A numerical analysis shows that for an arbitrary wave vector ky the spectrum is a mixture
of real and complex eigenvalues, see for example Fig. 7.

-2 -1 1 2

-20

-10

10

20

Figure 7:
∏L−1

r=0 (E − 2 cos(γr + ky)) for L = 40, γ = 2π/
√
2, ky = 0

5. Relation of TrH(γ)N to the probability distribution generating function
ZN,M(q)

In the commensurate case γ = 2πp/q → 2π/q the trace of the Hamiltonian (24) over
all eigenvalues -including the complex ones-

TrHN
γ=2π/q ≡

∫ π

−π

dky
2π

q∑
r=1

Eq(r)
N (45)

should be related to ZN,M(q) in (9) via the mapping q = eiγ = ei2π/q. Clearly q-cells
periodic boundary conditions on the quantum spectrum should imply, for the random
walks, summations over M with the same periodicity.

5.1. Periodic boundary conditions eiqkx = +1

One can easily check that, when q is even, for any even integer N

TrHN
2π/q =

[N/q]∑
M=0

ZN,qM(ei2π/q) (46)

whereas for any odd integer N , trivially,

TrHN
2π/q = 0 (47)

and when q is odd for any even integer N

TrHN
2π/q =

[N/(2q)]∑
M=0

ZN,2Mq(e
i2π/q) (48)
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and for any odd integer N

TrHN
2π/q =

[(N−q)/(2q)]∑
M=0

ZN,(1+2M)q(e
i2π/q) (49)

5.2. Anti-periodic boundary conditions eiqkx = −1

Similarly when q is even for any even integer N

TrHN
2π/q =

[N/q]∑
M=0

ZN,Mq(e
i2π/q)(−1)M (50)

whereas for any odd integer N
TrHN

2π/q = 0 (51)

and when q is odd for any odd even integer N

TrHN
2π/q =

[N/(2q)]∑
M=0

ZN,2Mq(e
i2π/q) (52)

and for any odd integer N

TrHN
2π/q = −

[(N−q)/(2q)]∑
M=0

ZN,(1+2M)q(e
i2π/q) (53)

Note that when γ = 0, i.e. q = 1, (48, 49, 52, 53) correctly reproduce (18, 19).

5.3. General boundary conditions eiqkx 6= ±1

So far, with periodic or antiperiodic boundary conditions, one has satisfied that the spec-
trum be real when γ = 0 and that, eventhough part of the spectrum is complex when
γ 6= 0, the traces in Sections 5.1 and 5.2 be as well real. One can drop the reality require-
ment and go a step further by considering general boundary conditions, eiqkx 6= ±1.
In the case q even, from (46, 50) one infers when N is even

TrHN
2π/q =

[N/q]∑
M=0

ZN,Mq(e
i2π/q)eiMqkx (54)

and when N is odd
TrHN

2π/q = 0 (55)

In the case q odd, from (48, 49, 52, 53) , one arrives when N is even at

TrHN
2π/q =

[N/(2q)]∑
M=0

ZN,2Mq(e
i2π/q)ei2Mqkx (56)
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and when N is odd at

TrHN
2π/q =

[(N−q)/(2q)]∑
M=0

ZN,(1+2M)q(e
i2π/q)ei(1+2M)qkx (57)

Note that the RHS of (54, 55, 56, 57) are unchanged if the argument ei2π/q in ZN,M is
replaced by ei2πp/q, as it should. Note also that these equations narrow down to the same
and unique equation (54) provided that one decides that each time a ZN,M appearing in
the sum has entries with different parities, it should be considered as zero: N andM have
indeed to have the same parity for the classical random walk to actually exist.

6. Discussion and Conclusion

Motivated by exact results for the probability distribution of the algebraic area of
biased random walks, we introduced a quantum mechanical 2d lattice model of charged
particles with an anisotropic hopping coupled to a perpendicular uniform magnetic field.
An exact solution in the case of a commensurate magnetic flux per unit cell was found with
explicit expressions for the eigenvalues and eigenfunctions spectrum. The Hamiltonian
is non hermitian due to the anisotropic hopping -the absence of right → left hopping:
it describes a quantum Hall effect setting of enforced left → right motions for charged
particles in a perpendicular magnetic field. As a result, the Hamiltonian has non real
eigenvalues which imply a damping of the corresponding states.

We explicitly mapped the biased classical random system on the non hermitian Hofstadter-
like quantum model. When the magnetic flux per unit cell is rational, periodicity on the
lattice allows to relate the biased length N random walks algebraic area probability gen-
erating functions to the traces of the N th power of the non hermitian Hofstadter-like
quantum Hamiltonian. The identities (54, 55, 56, 57) are the main results obtained so
far6: they do encapsulate the mapping between both models. Conversely, it would be
interesting to see at a possible geometric interpretation of the RHS of (54, 55, 56, 57) for
the biased random walks themselves.

It is interesting to note that one can recover the hermiticity of the Hamiltonian by
considering the system with a uniform constant current J , so that the Hamiltonian
becomes H − λJ , where λ is a Lagrange multiplier, J = i

∑
(ψ+

n+1ψn − ψ+
n ψn+1) and

H =
∑
ψ+
n+1ψn + . . .. Then, for the appropriate choice λ = −i/2, the resulting Hamilto-

nian becomes hermitian.
Acknowledgements: S.O. would like to thank Stefan Mashkevich for collaboration

in the early stages of this work (section 3.1) and Alexios Polychronakos for suggesting
to look at general boundary conditions (section 5.3). He would also like to thank Alain
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6We stress that these identities have been checked numerically for various N up to N = 20 and q up
to q = 10 but we did not derive them analytically.
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