
Quantum dynamics for a Cantor spectrum, tight-
binding model - log-periodic behaviour as a conse-
quence of time-averaging

This note is about the signature of the fractal structure of the spectrum in time-
averaged dynamical quantities. The model studied is the same as in the notes of
June 1 (tight-binding model and Cantor spectrum).

As showed in the notes of 1 June, the wave function is given by :

ψ(k, t) =
∫
K
φε(1)∗φε(k)e−iεtdµ

=
∫
K
|φ1(ε)|2pk(ε)e−iεtdµ

We define |φ1(ε)|2dµ as the local measure associated to ψ ; for simplicity we write
now |φ1(ε)|2dµ = dµ. Using : pk(x) = ∑

0≤jk≤k cjkx
jk , we have :

ψ(k, t) =
∑
jk≤k

cjk

∫
K
εjke−iεtdµ

Since the RMS (and many other dynamical quantities) can be expressed in terms
of the amplitude of ψ at the sites of the lattice, namely |ψ(k, t)|2, the dynamics of
the system depends essentially on the cumulants :

hk(t) =
∫
K
e−iεtεkdµ(ε)

The hk(t) are not scaling functions, and therefore neither is the RMS. However,
we showed that there is a structure and some invariant properties, with dynamical
implications which were discussed in the notes of June 1.

We discuss here the influence of time-averaging : instead of studying instan-
taneous dynamical quantities, we are interested in their time average, given by the
transformation 1

t

∫ t
0 . Thus, we study 1

t
|ψ(k, t′)|2dt′, which narrows down to the study

of the quantities :
1
t

∫ t

0
h∗k(t′)hl(t′)dt′

Since |ψ(k, t)|2 is real, we need only to consider the real part of 1
t

∫ t
0 h
∗
k(t′)hl(t′)dt′,

which we note fk,l(t). A standard calculation leads to :

fk,l(t) = <
(1
t

∫ t

0
h∗k(t′)hl(t′)dt′

)
=

∫∫
K×K

xkx′lsinc((x′ − x)t)dµ(x)dµ(x′)

Note that f0,0(t) is the time-averaged return probability C(t) = 1
t

∫ t
0 |〈ψ(0)|ψ(t′)〉|2dt′,

which we calculated exactly and which we know to have the following asymptotic
expression :

C(t) ∼t→∞
t−dK

ln(3)
∑
n

γnt
− 2iπn

ln(3) sin
(
π

2 (dK,n − 1)
)

Γ(dK,n − 1)
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Figure 1 – 2 dimensional Cantor dust (represented here at the second step of
construction) ; the infinitesimal surface dS(l, µ) corresponds to the surface of the
Cantor dust, in the sense of dµ, contained in the two red strips.

with dK = ln 2
ln 3 . The asymptotic behaviour of C(t) can be intuited by the following

observation : using the scaling property of the measure, we find that :

C(t) = 1
2C(t/3) + 1

2

∫∫
K×K

sinc(x− x
′ + 2

3 t)dµ(x)dµ(x′)

When t → ∞, the second term of the sum on the right tends to zero, since for all
x, x′ in K, 1 < x− x′ + 2 < 3. Thus, C(t) is asymptotically a scaling function :

C(t) ∼t→∞
1
2C(t/3)

This is due to the sinc in the expression of C(t) : C(t) is a wavelet transform of the
spectrum. For the same reason, we expect

∫∫
xkx′lsinc((x′ − x)t)dµ(x)dµ(x′) to be,

asymptotically, a scaling function.
For the calculation of C(t), we used the change of variable l = |x − x′| and

reduced the problem to calculating the area dS(l, µ) (see fig. 1). The log-periodic
behaviour comes from the expression of dS(l, µ).

If we make the approximation that : sinc(xt) = 1 for |xt| < π and sinc(xt) = 0
elsewhere, we get the following approximate expression for C(t) :

C(t) =
∫ π/t

l=0
dS(l, µ) = t− ln 2/ ln 3∑

n

dnt
−2iπn/ ln 3

which accounts for the typical asymptotic behaviour, although the coefficients
dn are a little bit different from the coefficients in the exact expression.

If we apply the same reasoning for fk,l(t) =
∫∫
xkx′lsinc((x′ − x)t)dµ(x)dµ(x′),

we find :
fk,l(t) ≈

∫∫
|x−x′|<π

t

xkx′ldµ(x)dµ(x′)
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Using a similar method as for C(t), we can show that (see detail in the next section) :∫∫
|x−x′|<π

t

xkx′ldµ(x)dµ(x′) = t− ln 2/ ln 3
[
G(ln t) +O

(1
t

)]

See a graph of f1,2(t) fig. 2.
Note that this implies that the wave function has the following asymptotic beha-

viour : 1
t

∫ t
0 |ψ(k, t′)|2dt′ ∼ t− ln 2/ ln 3, which is consistent with the results of Guarneri

[1].
Now, since

fk,l(t) =
∫∫

xkx′lsinc((x′ − x)t)dµ(x)dµ(x′) ∼t→∞ t− ln 2/ ln 3G(ln t/ ln 3)

we deduce, adapting the argument of Guarneri in [1], the following lower-bound for
the time-averaged RMS :

1
t

∫ t

0
∆x(t′)dt′ ≥ t

ln 2
ln 3

which is consistent with the numerics (fig. 3).

Calculation of fk,l(t)
We give the analytical expression of the approximated function for fk,l(t), which

we call
rk,l(t) =

∫∫
|x−x′|<π

t

xkx′ldµ(x)dµ(x′)

We show that :
rk,l(t) = t− ln 2/ ln 3

[
G(ln t) +O

(1
t

)]
We follow a similar method as for C(t).
First, we calculate the infinitesimal area dSk,l(u, µ), which is the integral of xkyl,

for the measure dµ, on the two strips y = x+u and y = x−u (red strips on fig. 1) :

dSk,l(u, µ) =
∫
K

(xk(x+ u)lθ(1− u− x) + xk(x− u)lθ(x− u))dµ(x)

To derive dSk,l(u, µ), we study the poles of its Mellin transform and apply the residue
theorem. The Mellin transform is :

mk,l(s) =
∫ 1

0
us−1dSk,l(u, µ) =

∫∫
K×K

xkyl|x− y|s−1dµdµ

We now show by recurrence that the poles of mk,l(s) is the set :

Sk,l = {1− ln 2
ln 3 − j + 2iπn

ln 3 ; j ∈ [|0, k + l|], n ∈ Z}

Initialization :
m0,0(s) =

∫∫
K×K |x − y|s−1 has been calculated for C(t) and has poles at S0,0 =

3
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Figure 2 – Loglog scale graphs of f1,2(t) (green) and t− ln 2/ ln 3 (blue)
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Figure 3 – Loglog scale graphs of 1
t

∫ t
0 ∆x(t′)dt′ (blue) and t ln 2

2 ln 3 (green)
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{1− ln 2
ln 3 + 2iπn

ln 3 ;n ∈ Z}.

Inductive step :
using the symmetry of the measure, we find :

mk,l(s) =
∫∫

K×K
xkyl|x− y|s−1dµdµ

= 31−s−(k+l)

4

∫∫
K×K

xkyl|x− y|s−1dµdµ

+ 31−s−(k+l)

4

∫∫
K×K

(x+ 2)k(y + 2)l|x− y|s−1dµdµ+Rk,l(s)

with

Rk,l(s) = 31−s−(k+l)

4

∫∫
K×K

(x+2)kyl|x−y+2|s−1dµdµ+31−s−(k+l)

4

∫∫
K×K

xk(y+2)l|x−y−2|s−1dµdµ

has no poles. Expanding the second term :

mk,l(s) = 31−s−(k+l)

4

∫∫
K×K

xkyl|x− y|s−1dµdµ

+ 31−s−(k+l)

4

k∑
i=0

l∑
j=0

(
k

i

)(
l

j

)
2k+l−i−j

∫∫
K×K

xiyj|x− y|s−1dµdµ+Rk,l(s)

= 31−s−(k+l)

2 mk,l(s) + 31−s−(k+l)

4

k∑
i=1

l∑
j=1

(i,j)6=(k,l)

(
k

i

)(
l

j

)
2k+l−i−jmi,j(s) +Rk,l(s)

Thus, the poles of mk,l(s) is the set of the poles of all the mi,j(s) with i ≤ k and
j ≤ l, plus the set of complex points {1 − ln 2

ln 3 − (k + l) + 2iπn
ln 3 ;n ∈ Z}. Using the

induction hypothesis, we conclude that the poles of mk,l(s) is the set :

Sk,l = {1− ln 2
ln 3 − j + 2iπn

ln 3 ; j ∈ [|0, k + l|], n ∈ Z}

which completes the proof.
Now, we apply the inverse Mellin transform and use the residue formula to find

dSk,l(u, µ) :

dSk,l(u, µ) = 1
2iπ

∫
γ − i∞γ+i∞us−1mk,l(s)ds

=
k+l∑
j=0

∑
n ∈ Zcj,nuj+α−1−2iπ/ ln 3

with α = ln 2
ln 3 and

cj,n = Rk,l(1−
ln 2
ln 3 − j + 2iπn

ln 3 ) +
k∑
i=1

l∑
i′=1

i+i′ 6=j

(
k

i

)(
l

i′

)
2k+l−i−jmi,j(1−

ln 2
ln 3 − j + 2iπn

ln 3 )
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By integrating, we obtain rk,l(t) :

rk,l(t) =
∫ 1/t

0
dS(u, µ)

=
k+l∑
j=0

∑
n ∈ Z

∫ 1/t

0
cj,nu

j+α−1−2iπ/ ln 3

= t−α
k+l∑
j=0

∑
n ∈ Zcj,n

t−j+2iπn/ ln 3

α + j − 2iπn/ ln 3

Thus :
rk,l(t) = t−α

[
G(ln t) +O

(1
t

)]
with G(ln t) = ∑

n∈Z
t2iπn/ ln 3

α−2iπn/ ln 3c0,n.
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