Quantum dynamics for a Cantor spectrum, tight-
binding model - log-periodic behaviour as a conse-
quence of time-averaging

This note is about the signature of the fractal structure of the spectrum in time-
averaged dynamical quantities. The model studied is the same as in the notes of
June 1 (tight-binding model and Cantor spectrum).

As showed in the notes of 1 June, the wave function is given by :
Wik t) = [ 0d1) o (k) d
[ 16x(e)Ppute)e dy

We define |1 (€)|?dp as the local measure associated to ¢ ; for simplicity we write
now ’¢1(6)’2dﬂ = d,u USing : pk( ) EO<]k<k Cjkl' , We have :

Z C]k/ ejk ZEtd:u

Jk<k

Since the RMS (and many other dynamical quantities) can be expressed in terms
of the amplitude of ¢ at the sites of the lattice, namely |i(k,t)[?, the dynamics of
the system depends essentially on the cumulants :

ha(t) = /K etk dyy(e)

The hy(t) are not scaling functions, and therefore neither is the RMS. However,
we showed that there is a structure and some invariant properties, with dynamical
implications which were discussed in the notes of June 1.

We discuss here the influence of time-averaging : instead of studying instan-
taneous dynamical quantities, we are interested in their time average, given by the
transformation % J3. Thus, we study %W(k‘, t')]2dt’, which narrows down to the study
of the quantities :

1 t
- / B ()t
tJo

Since [¢(k, t)|? is real, we need only to consider the real part of 1 f§ hj(¢')hy(t')dt’,
which we note f,(t). A standard calculation leads to :

Fua(®) (/h Viu(t dt>

//KXKx o sinc((x' — x)t)dp(z)dp(x")

Note that foo(t) is the time-averaged return probability C(t) = 1 [§ [(1:(0)]y(¢))|*dt’,

which we calculated exactly and which we know to have the following asymptotic
expression :

t—dx 2imn

m
C(t) ~t—oo 111( Z%t @) sin (2(dK,n - 1)) F(dK,n - 1)
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FIGURE 1 — 2 dimensional Cantor dust (represented here at the second step of
construction) ; the infinitesimal surface dS(l, u) corresponds to the surface of the
Cantor dust, in the sense of du, contained in the two red strips.

with dg = ln2 . The asymptotic behaviour of C(t) can be intuited by the following
observation : usmg the scaling property of the measure, we find that :

C(t) = —C’ (t/3) + 5 //KXKsmc ’ _:;, 2 t)dp(z)du(x")

When t — oo, the second term of the sum on the right tends to zero, since for all
z,x' in K, 1<z —2a' 42 < 3. Thus, C(t) is asymptotically a scaling function :

C1) e 5C(13)

This is due to the sinc in the expression of C(t) : C(t) is a wavelet transform of the
spectrum. For the same reason, we expect [[ z*a" sinc((x’ — z)t)du(x)du(z’) to be,
asymptotically, a scaling function.

For the calculation of C(t), we used the change of variable | = |z — 2’| and
reduced the problem to calculating the area dS(I, 1) (see fig. 1). The log-periodic
behaviour comes from the expression of dS(I, ).

If we make the approximation that : sinc(at) = 1 for |xt| < 7 and sinc(at) =0
elsewhere, we get the following approximate expression for C(t) :

/t ,
C(t) — / dS(l,,u) — t—ln2/1n3zdnt—2mn/ln3
! n

=0

which accounts for the typical asymptotic behaviour, although the coefficients
d,, are a little bit different from the coefficients in the exact expression.

If we apply the same reasoning for fi;(t) = [[ z*a" sinc((a’ — z)t)dp(z)du(z’),
we find :
Sl = [f - dtadpta)due)
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Using a similar method as for C'(¢), we can show that (see detail in the next section) :

//Iw—$’|<’§ a* o dp(x)dp(a) = ¢~ n2/m3 [G(ln t)+ 0O (1)}

See a graph of fi,(t) fig. 2

Note that this implies that the wave function has the following asymptotic beha-
viour : 1 [ [0(k,')|?dt’ ~ ¢t~™%/1"3 which is consistent with the results of Guarneri

[1].

Now, since

fra(t) // a* 2 sine((2) — 2)t)dp(z)dp(x') ~ioo t~ P M3G(Int/ In 3)

we deduce, adapting the argument of Guarneri in [1], the following lower-bound for
the time-averaged RMS :

/A:c )dt' > 1

which is consistent with the numerics (fig. 3).

Calculation of f; ;(t)

We give the analytical expression of the approximated function for fy;(¢), which

we call
ra®) = [ e adu@)dn(a)
-/ |[<F

We show that : )
Tk,l(t> — t71n2/1n3 [G(ln t) +0 (t)]

We follow a similar method as for C'(t).
First, we calculate the infinitesimal area dSy;(u, u1), which is the integral of z*y'
for the measure dyu, on the two strips y = z +u and y = x — u (red strips on fig. 1) :

dSk(u, p) = /K(xk(m +w)'0(1 —u— )+ 2@ —uw)'o(x —u))du(z)

To derive d Sk (u, i), we study the poles of its Mellin transform and apply the residue
theorem. The Mellin transform is :

1
mi(s) = /0 u¥rdSy (u, 1) = //KXkayl|x —y[¥tdudu

We now show by recurrence that the poles of my;(s) is the set :

In2 o 2imn

{1—— It 3,jE[|0 k+1|],ne€Z}

Initialization :
moo(s) = [[ixr |t — y|*~' has been calculated for C'(t) and has poles at Sp =
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FIGURE 2 — Loglog scale graphs of fi(t) (green) and ¢~"2/n3 (blue)



107 T T T T T T T T

10 — —
10 10 10

FIGURE 3 — Loglog scale graphs of %f(f Ax(t")dt" (blue) and tats (green)
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Inductive step :
using the symmetry of the measure, we find :

muals) = [[ ay'le =yl dpdy

gl—s— (k+l) X
= // 2yl |z — y|* dudp
KxK
31 s— (k-i-l) ) N ) l sfld i .
+ — //MW (y+ 2w = gl dudp + Ria(s)
with
31 s—(k+1) —(k+1)
Ryoa(s) //K (42) g eyt 2y //K E(y2)! [z —y—2" dpdp
x K x K

has no poles. Expanding the second term :
31 s—(k+1)
my(s) = // 2yl — y[* dudp

31 s— (k-‘rl) ko k l ft i .. 1
S 2 *w// iile — yl*dudp + R
+ eI <Z> (j) T =y dpdp+ Riy(s)

=0 j=0

gl=s—(k+]) gl=s—(k+l) Kk ! k l o
= ———my(s) + ———— D> < ) ( > 2K m, i(8) + Rya(s)

2 4 i=1j=1 \*/ \J
(4,5)#(k,0)
Thus, the poles of my(s) is the set of the poles of all the m; ;(s) with ¢ < k and
j < I, plus the set of complex points {1 — iﬁ—?,} —(k+10)+ %;”g;n € Z}. Using the

induction hypothesis, we conclude that the poles of my;(s) is the set :

In2 2mn

Skl {1—7—j+13,j€[|0]€+l|]n62}

which completes the proof.
Now, we apply the inverse Mellin transform and use the residue formula to find

dSkJ(u, u) .

1 .
dSa(u, ) = 5— [ 7 = 100 U my, 1 (s)ds
k41
Z Z ne ch nuj+a7172i7r/ In3
j=0
with o = 22 and

In3

In2 227m In2 2imn

n=Rp(1—— —j+ R H=imim, (1 — — —

=g =t 22()() miill =35 I+ )
i+ £



By integrating, we obtain r () :

1/t
ra®) = [ dS(u,)
k+1

1/t j 1-2iw/In3
= X nez [ gttt
§=0 0

k+1 t—j+2i7rn/ In3
= t¢ n € Zc;, : :
jgoz a4 j — 2imn/1In3

Thus :
rat) =[Gt + 0 (m

t2imn/In3

with G(ln t) = ZHEZ mCOW.
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