
Notes du 1 juin 2015 - quantum dynamics for a
Cantor spectrum, tight-binding model

Introduction
This is a summary of the discussion of June 1, on quantum dynamics for the

tight-binding model, with some complementary results obtained since. After the
discussion, we decided that the following questions should be examined :
- the dynamics of the wave packet depends on the functions : hk(t) =

∫
K e
−iεtεkdµ(ε),

which are not scaling functions, but do have a certain structure ; can we approximate
the hk(t) by scaling functions, thus implying that the RMS is, in first approximation,
a scaling function ?
- if not, how does the characteristics of the hk(t) affect the dynamics ?

After further numerical study, I found that the hk(t) can not easily be approxi-
mated by scaling functions. However, a numerical study shows that there is clearly
an almost-proportional relation between hk(t) and hk−1(t/3), which can be justified
theoretically by the relations between the zeroes and maxima of the hk(t) ; I have
no better theoretical explanation so far.
If the hk(t) were scaling functions, so would be the RMS. That is, if we assume
that :hk(t) ∝ hk−1(t/3), we deduce that the RMS is of the form : ∆x(t) = t− ln 2/ ln 3G( ln t

ln 3).
However, since the hk(t) are not scaling functions, we do not expect ∆x(t) to have
this exact behaviour, and in fact a numerical study of ∆x(t) shows that this quantity
is not of that form. Nevertheless, the structure of the hk(t) (scaling relations between
zeroes and maxima) does translate to the RMS. In fact, I found numerically that the
RMS is a power-law modulated by oscillations, which appear to have a log-periodic
envelope.

I give first a reminder of the framework and of previous results, then I discuss
and give a partial answer to the questions above. I also did a complementary study
of the Fibonacci potential, to compare the behaviour of the hk(t) in the case of a
triadic Cantor spectrum and in the case of a Fibonacci potential.

Reminder of previous results
We consider an infinite 1D lattice, with sites k labelled from 0 to ∞. We define

a potential V on this system such that the discrete Schrodinger operator : H =
−∆ +V , which acts on l2(Z), has a triadic Cantor set spectrum. The eigenfunctions
of H verify :

Hφε = εφε

Using transfer matrices, the above equation becomes :(
φε(k)

φE(k − 1)

)
=
(

2 + Vk − ε −1
1 0

)(
φε(k)

φε(k − 1)

)
Imposing φε(0) = 0, we find that the eigenfunctions {φε}ε∈K , evaluated on the sites
k, can be seen as polynomials in ε :

φε(k) = φε(1)pk(ε) (1)
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with (
pk(E) qk(E)
pk−1(E) qk−1(E)

)
=

1∏
j=k

(
2 + Vj − E −1

1 0

)
We are interested of the evolution of a wave packet, described by the normalized
wave function ψ(t), evolving according to Schrodinger’s equation :

i
dψ(t)
dt

= Hψ(t)

The wave function is initially localized at the site 1 : 〈k|ψ(t = 0)〉 = δ(k − 1). At
time t, the system is in the state : |ψ(t)〉 = e−iHt|ψ(0)〉, and the value of the wave
function at site k is given by :

|ψ(k, t)| =
∫
K
φε(1)∗φε(k)e−iεtdµ

Using (1), we obtain :

ψ(k, t) =
∫
K
φε(1)∗φε(k)e−iεtdµ

=
∫
K
p1(ε)pk(ε)e−iεtdµ

=
∑
jk≤k

cjk

∫
K
εjke−iεtdµ

with pk(x) = ∑
0≤jk≤k cjkx

jk Thus, the dynamical behaviour of the system depends
essentially on the functions :

hk(t) =
∫
K
e−iεtεkdµ(ε)

aka the Fourier transforms on K of the moments xk.
Expending the exponential in hk(t), we obtain :

hk(t) =
∑
n≤0

(−it)n
n! µn+k

with µn =
∫
K x

ndµ.
The fingerprint of the scaling symmetry of the spectrum is carried by the µn =∫

K x
ndµ. It can be shown that, for n→∞ (see [1])

µn = n− ln 2/ ln 3F (lnn/ ln 3)(1 +O( 1
n

))

where F is a log-periodic function of period 1.
The hk(t) do not verify a scaling property (of the form f(x) = bf(ax)) ; however,

there is a structure and there are some scaling invariance.
First, there is a recurrence relation verified by the hk(t) :

hk(t) =
∫
K
e−iεtεkdµ

= 3−k
2

∫
K
e−iεt/3εkdµ+ 3−ke−i2t/3

2

∫
K
e−iεt/3(ε+ 2)kdµ

= 3−k
2 hk(t/3) + 3−k

2 e−i2t/3
k∑
j=0

(
k

j

)
hj(t/3)2k−j
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Figure 1 – Numerical curves of |h0(t/9)| (blue), |h1(t/3)| (red) and |h2(t)| (yellow).

From this relation, we can show by recurrence that the zeroes of hk(t) is the set :

Zk = {tm,k = π

2 (2m+ 1)3k+1,m ∈ Z}

Thus, the zeroes of hk(t) are those of hk−1(t/3), as illustrated in fig. 1.

Moreover, the hk(t) all have local maxima at points of the form mn,l = nπ3l. I
did not manage to prove this rigorously for k > 0 (the case k = 0 is straightforward,
the detail is given in annexe), but the numerics support this assumption and one
can intuitively understand why it is so from the definition of hk(t) :

hk(t) =
∫
K
xke−ixtdµ = lim

n→∞

3n
2n

∑
ajn∈Kn

∫ ajn +3−n

ajn

xke−ixtdx

|hk(t)| is maximal at points t such that the phase e−ixt varies as little as possible
as x goes through K. K is composed of real numbers which have only 0 and 2 in
there decomposition in base 3, e.g. x = ∑

k≤1
βk

3k with βk ∈ {0, 2}. Now, for t = nπ3l,
we see that for any x ∈ K whose decomposition in base 3 has only 0 after the l first
terms, we have e−ixt = 1 : the phase does not change.

At these local maxima, the amplitude of the functions hk(t) decreases with k (as
a consequence of Riemann-Lebesgue theorem).

We wish now to examine how this structure translates in terms of physical dy-
namical quantities.

Numerical study
The relation between the zeroes of the hk(t) is very well verified numerically (fig.

1).
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We observe that the amplitude of hk decreases with k (see fig. 2), thus we wish
to make the assumption : hk(t) ∝ hk−1(t/3).

Approximation of hk(t) by a scaling function
Using

hk(t) =
∫
K
e−iεtεkdµ

= 3−k
2

∫
K
e−iεt/3εkdµ+ 3−ke−i2t/3

2

∫
K
e−iεt/3(ε+ 2)kdµ

= 3−k
2 hk(t/3) + 3−k

2 e−i2t/3
k∑
j=0

(
k

j

)
hj(t/3)2k−j

we wish to keep only the dominant terms of the sum on the right side to ap-
proximate hk(t).

Let us test the validity of the approximation : hk(t) = 3−ke−2it/3

2 2kh0(t/3). We
find (see fig. 3) that this is quite accurate for small k, but falls for k ≤ 4.

I have tried a few other approximation by scaling functions, which did not work
well. So far, it seems that the relations between the zeroes of hk and the behaviour
at the local maxima alone can justify the numerical observation that "from afar"
hk(t) ∝ hk−1(t/3).

This almost re-scaling relation translates to the RMS. The details of how the
wave packet is constructed is given in the annexe. The wave packet is initially loca-
lized on the first site k = 1. Figure 4 shows the graphs of ∆x(t) and ∆x(t/3). We
find that ∆x(t) displays a log-periodic structure. ∆x(t) is a power-law modulated by
oscillations, which have a log-periodic envelope of period log 3 ; inside the envelope,
the period of the oscillations increases with time, which is consistent with the beha-
viour of hk(t) under the transformation t→ t/3. I also find that : ∆x(t) ≈ 3

2∆x(t/3)
(see fig. 5), but I have no explanation for the value of this coefficient so far.

Application to the Fibonacci potential
We study numerically the case of a Fibonacci potential. The potential is defined

with the Fibonacci algorithm. For the numerics we choose V (k) = ±0.6 (note : for
|V (k)| > 2, the spectrum is continuous and not singular continuous). The fig. 6 is
the spectrum associated to this potential.

The spectrum in this case is not a pure Cantor set, but a superposition of Cantor
sets ; however, we can use the following approximate scaling symmetry : N(ε) =
3N(ε/5) where N(ε) is the IDOS (see fig. 7).

We find, in this case, that, as for the triadic Cantor set, the functions hk(t) seem
almost proportional to one another for k ≥ 1. The function h0(t) has a very different
behaviour. We find that h1(t) ≈ h0(t/5) (see fig. 8).
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Figure 2 – h1(t), h2(t), h10(t), h20(t) for a triadic Cantor set spectrum.
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Figure 3 – h1(t) and 1
3h0(t/3) for a Cantor spectrum.
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Figure 4 – RMS for a triadic Cantor spectrum ; blue : ∆x(t), green : ∆x(t/3).

7



100 101 102 103 104
100

101

102

Figure 5 – RMS for a triadic Cantor spectrum as a function of time, in loglog
scale ; blue : ∆x(t), green : 3

2∆x(t/3).
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Figure 6 – Spectrum for a Fibonacci potential, V (k) = ±0.6 .
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Figure 7 –
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Assuming the pure scaling symmetry for this spectrum (N(ε) = 3N(ε/5)), we
find the following theoretical expression for h0(t) :

hth0 (t) =
∞∏
k=1

1 + e−2it/5k + e−4it/5k

3

However, this expression does not fit well with the numerical graph ; this is due
to the fact that the spectrum does not have such a simple scaling relation (see
fig. 7). Nevertheless, we observe, as for the Cantor set case, that for t < 100, the
zeroes of h0 do seem to be stable under the transform t→ t/5 (see fig. 9). We thus
expect the RMS to be stable under the transform t→ t/5. We find numerically that
∆x(t) is a power-law modulated by log-periodic oscillations of very small amplitude
for 0 < t < 300. For larger t, the function starts to decay and has a very wild
behaviour, probably due to numerical approximations.

Annexe

Maxima of h0(t) for the triadic Cantor set
Using the sclaing symmetry of the spectrum :∫

k
f(x)dµ(x) = 1

2

∫
k
f
(
x

3

)
dµ(x) + 1

2

∫
k
f
(
x+ 2

3

)
dµ(x) (2)

we find that :

h0(t) =
∫
K
e−iεtdµ

= 1
2

∫
K
e−iεt/3dµ+ e−i2t/3

2

∫
K
e−iεt/3dµ

= 1 + e−i2t/3

2 h0(t/3)

By repeating this process, and using h0(0) =
∫
K 1dµ = 1, we find the exact

expression of h0(t) :

h0(t) =
∏
k≥1

1 + e−i2t/3k

2 (3)

thus :

|h0(t)| =
∏
k≥1

cos t/3k (4)

The derivative :

|h0(t)|′ = −
∑
k≥1

3−k sin t/3k
∏
j 6=k

cos t/3j (5)

is null for t of the form : t = mn,l = πn3l, with n ∈ Z and l ∈ N∗.
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Figure 8 –
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Figure 9 –
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Construction of the wave packet for the triadic Cantor set
spectrum

I first tried to build a potential V whose associated spectrum would be a triadic
Cantor set, but it was difficult to obtain something close enough so that the proper-
ties of the hk(t) would still be verified. Therefore, I considered the case of V = 0,
with an associated continuous spectrum, and I built a wave packet using only ei-
genfunctions associated to energies belonging to the triadic Cantor set embedded in
the spectrum.

I used a finite lattice of size 28 = 256, and an associated finite Cantor set of
size 256. The Hamiltonian is a 256x256 matrix H of diagonal elements equal to 2,
off-diagonal elements Hi,i+1 = Hi+1,i = −1 and the other elements equal to zero.
The theoretical eigenfunctions are constructed using :

φε(k) = φε(1)pk(ε)

with pk(x) constructed as explained earlier. The boundary values φε(1) are obtained
numerically from the eigenvectors of the matrix H.
The wave packet is constructed so as to be initially located on the site k = 1 (see
fig. 10 for the evolution in time).
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