Notes du 1 juin 2015 - quantum dynamics for a Cantor spectrum, tight-binding model

Introduction

This is a summary of the discussion of June 1, on quantum dynamics for the tight-binding model, with some complementary results obtained since. After the discussion, we decided that the following questions should be examined :

- the dynamics of the wave packet depends on the functions : $h_{k}(t)=\int_{K} e^{-i \epsilon t} \epsilon^{k} d \mu(\epsilon)$, which are not scaling functions, but do have a certain structure ; can we approximate the $h_{k}(t)$ by scaling functions, thus implying that the RMS is, in first approximation, a scaling function?
- if not, how does the characteristics of the $h_{k}(t)$ affect the dynamics?

After further numerical study, I found that the $h_{k}(t)$ can not easily be approximated by scaling functions. However, a numerical study shows that there is clearly an almost-proportional relation between $h_{k}(t)$ and $h_{k-1}(t / 3)$, which can be justified theoretically by the relations between the zeroes and maxima of the $h_{k}(t)$; I have no better theoretical explanation so far.
If the $h_{k}(t)$ were scaling functions, so would be the RMS. That is, if we assume
 However, since the $h_{k}(t)$ are not scaling functions, we do not expect $\Delta x(t)$ to have this exact behaviour, and in fact a numerical study of $\Delta x(t)$ shows that this quantity is not of that form. Nevertheless, the structure of the $h_{k}(t)$ (scaling relations between zeroes and maxima) does translate to the RMS. In fact, I found numerically that the RMS is a power-law modulated by oscillations, which appear to have a log-periodic envelope.

I give first a reminder of the framework and of previous results, then I discuss and give a partial answer to the questions above. I also did a complementary study of the Fibonacci potential, to compare the behaviour of the $h_{k}(t)$ in the case of a triadic Cantor spectrum and in the case of a Fibonacci potential.

Reminder of previous results

We consider an infinite 1D lattice, with sites k labelled from 0 to ∞. We define a potential V on this system such that the discrete Schrodinger operator : $H=$ $-\Delta+V$, which acts on $l_{2}(\mathbb{Z})$, has a triadic Cantor set spectrum. The eigenfunctions of H verify :

$$
H \phi_{\epsilon}=\epsilon \phi_{\epsilon}
$$

Using transfer matrices, the above equation becomes :

$$
\binom{\phi_{\epsilon}(k)}{\phi_{E}(k-1)}=\left(\begin{array}{cc}
2+V_{k}-\epsilon & -1 \\
1 & 0
\end{array}\right)\binom{\phi_{\epsilon}(k)}{\phi_{\epsilon}(k-1)}
$$

Imposing $\phi_{\epsilon}(0)=0$, we find that the eigenfunctions $\left\{\phi_{\epsilon}\right\}_{\epsilon \in K}$, evaluated on the sites k, can be seen as polynomials in ϵ :

$$
\begin{equation*}
\phi_{\epsilon}(k)=\phi_{\epsilon}(1) p_{k}(\epsilon) \tag{1}
\end{equation*}
$$

with

$$
\left(\begin{array}{cc}
p_{k}(E) & q_{k}(E) \\
p_{k-1}(E) & q_{k-1}(E)
\end{array}\right)=\prod_{j=k}^{1}\left(\begin{array}{cc}
2+V_{j}-E & -1 \\
1 & 0
\end{array}\right)
$$

We are interested of the evolution of a wave packet, described by the normalized wave function $\psi(t)$, evolving according to Schrodinger's equation :

$$
i \frac{d \psi(t)}{d t}=H \psi(t)
$$

The wave function is initially localized at the site $1:\langle k \mid \psi(t=0)\rangle=\delta(k-1)$. At time t, the system is in the state : $|\psi(t)\rangle=e^{-i H t}|\psi(0)\rangle$, and the value of the wave function at site k is given by :

$$
|\psi(k, t)|=\int_{K} \phi_{\epsilon}(1)^{*} \phi_{\epsilon}(k) e^{-i \epsilon t} d \mu
$$

Using (1), we obtain :

$$
\begin{aligned}
& \psi(k, t)=\int_{K} \phi_{\epsilon}(1)^{*} \phi_{\epsilon}(k) e^{-i \epsilon t} d \mu \\
& =\int_{K} p_{1}(\epsilon) p_{k}(\epsilon) e^{-i \epsilon t} d \mu \\
& =\sum_{j_{k} \leq k} c_{j_{k}} \int_{K} \epsilon^{j_{k}} e^{-i \epsilon t} d \mu
\end{aligned}
$$

with $p_{k}(x)=\sum_{0 \leq j_{k} \leq k} c_{j_{k}} x^{j_{k}}$ Thus, the dynamical behaviour of the system depends essentially on the functions :

$$
h_{k}(t)=\int_{K} e^{-i \epsilon t} \epsilon^{k} d \mu(\epsilon)
$$

aka the Fourier transforms on K of the moments x^{k}.
Expending the exponential in $h_{k}(t)$, we obtain :

$$
h_{k}(t)=\sum_{n \leq 0} \frac{(-i t)^{n}}{n!} \mu_{n+k}
$$

with $\mu_{n}=\int_{K} x^{n} d \mu$.
The fingerprint of the scaling symmetry of the spectrum is carried by the $\mu_{n}=$ $\int_{K} x^{n} d \mu$. It can be shown that, for $n \rightarrow \infty$ (see [1])

$$
\mu_{n}=n^{-\ln 2 / \ln 3} F(\ln n / \ln 3)\left(1+O\left(\frac{1}{n}\right)\right)
$$

where F is a log-periodic function of period 1 .
The $h_{k}(t)$ do not verify a scaling property (of the form $f(x)=b f(a x)$) ; however, there is a structure and there are some scaling invariance.
First, there is a recurrence relation verified by the $h_{k}(t)$:

$$
\begin{aligned}
& h_{k}(t)=\int_{K} e^{-i \epsilon t} \epsilon^{k} d \mu \\
& \quad=\frac{3^{-k}}{2} \int_{K} e^{-i \epsilon t / 3} \epsilon^{k} d \mu+\frac{3^{-k} e^{-i 2 t / 3}}{2} \int_{K} e^{-i \epsilon t / 3}(\epsilon+2)^{k} d \mu \\
& \quad=\frac{3^{-k}}{2} h_{k}(t / 3)+\frac{3^{-k}}{2} e^{-i 2 t / 3} \sum_{j=0}^{k}\binom{k}{j} h_{j}(t / 3) 2^{k-j}
\end{aligned}
$$

Figure 1 - Numerical curves of $\left|h_{0}(t / 9)\right|$ (blue), $\left|h_{1}(t / 3)\right|$ (red) and $\left|h_{2}(t)\right|$ (yellow).
From this relation, we can show by recurrence that the zeroes of $h_{k}(t)$ is the set :

$$
Z_{k}=\left\{t_{m, k}=\frac{\pi}{2}(2 m+1) 3^{k+1}, m \in \mathbb{Z}\right\}
$$

Thus, the zeroes of $h_{k}(t)$ are those of $h_{k-1}(t / 3)$, as illustrated in fig. 1 .
Moreover, the $h_{k}(t)$ all have local maxima at points of the form $m_{n, l}=n \pi 3^{l}$. I did not manage to prove this rigorously for $k>0$ (the case $k=0$ is straightforward, the detail is given in annexe), but the numerics support this assumption and one can intuitively understand why it is so from the definition of $h_{k}(t)$:

$$
h_{k}(t)=\int_{K} x^{k} e^{-i x t} d \mu=\lim _{n \rightarrow \infty} \frac{3^{n}}{2^{n}} \sum_{a_{j_{n}} \in K_{n}} \int_{a_{j_{n}}}^{a_{j_{n}}+3^{-n}} x^{k} e^{-i x t} d x
$$

$\left|h_{k}(t)\right|$ is maximal at points t such that the phase $e^{-i x t}$ varies as little as possible as x goes through $K . K$ is composed of real numbers which have only 0 and 2 in there decomposition in base 3, e.g. $x=\sum_{k \leq 1} \frac{\beta_{k}}{3^{k}}$ with $\beta_{k} \in\{0,2\}$. Now, for $t=n \pi 3^{l}$, we see that for any $x \in K$ whose decomposition in base 3 has only 0 after the l first terms, we have $e^{-i x t}=1$: the phase does not change.

At these local maxima, the amplitude of the functions $h_{k}(t)$ decreases with k (as a consequence of Riemann-Lebesgue theorem).

We wish now to examine how this structure translates in terms of physical dynamical quantities.

Numerical study

The relation between the zeroes of the $h_{k}(t)$ is very well verified numerically (fig. 1).

We observe that the amplitude of h_{k} decreases with k (see fig. 2), thus we wish to make the assumption : $h_{k}(t) \propto h_{k-1}(t / 3)$.

Approximation of $h_{k}(t)$ by a scaling function

Using

$$
\begin{aligned}
& h_{k}(t)=\int_{K} e^{-i \epsilon t} \epsilon^{k} d \mu \\
& \quad=\frac{3^{-k}}{2} \int_{K} e^{-i \epsilon t / 3} \epsilon^{k} d \mu+\frac{3^{-k} e^{-i 2 t / 3}}{2} \int_{K} e^{-i \epsilon t / 3}(\epsilon+2)^{k} d \mu \\
& \quad=\frac{3^{-k}}{2} h_{k}(t / 3)+\frac{3^{-k}}{2} e^{-i 2 t / 3} \sum_{j=0}^{k}\binom{k}{j} h_{j}(t / 3) 2^{k-j}
\end{aligned}
$$

we wish to keep only the dominant terms of the sum on the right side to approximate $h_{k}(t)$.

Let us test the validity of the approximation : $h_{k}(t)=\frac{3^{-k} e^{-2 i t / 3}}{2} 2^{k} h_{0}(t / 3)$. We find (see fig. 3) that this is quite accurate for small k, but falls for $k \leq 4$.

I have tried a few other approximation by scaling functions, which did not work well. So far, it seems that the relations between the zeroes of h_{k} and the behaviour at the local maxima alone can justify the numerical observation that "from afar" $h_{k}(t) \propto h_{k-1}(t / 3)$.

This almost re-scaling relation translates to the RMS. The details of how the wave packet is constructed is given in the annexe. The wave packet is initially localized on the first site $k=1$. Figure 4 shows the graphs of $\Delta x(t)$ and $\Delta x(t / 3)$. We find that $\Delta x(t)$ displays a log-periodic structure. $\Delta x(t)$ is a power-law modulated by oscillations, which have a \log-periodic envelope of period $\log 3$; inside the envelope, the period of the oscillations increases with time, which is consistent with the behaviour of $h_{k}(t)$ under the transformation $t \rightarrow t / 3$. I also find that : $\Delta x(t) \approx \frac{3}{2} \Delta x(t / 3)$ (see fig. 5), but I have no explanation for the value of this coefficient so far.

Application to the Fibonacci potential

We study numerically the case of a Fibonacci potential. The potential is defined with the Fibonacci algorithm. For the numerics we choose $V(k)= \pm 0.6$ (note : for $|V(k)|>2$, the spectrum is continuous and not singular continuous). The fig. 6 is the spectrum associated to this potential.

The spectrum in this case is not a pure Cantor set, but a superposition of Cantor sets; however, we can use the following approximate scaling symmetry : $N(\epsilon)=$ $3 N(\epsilon / 5)$ where $N(\epsilon)$ is the IDOS (see fig. 7).

We find, in this case, that, as for the triadic Cantor set, the functions $h_{k}(t)$ seem almost proportional to one another for $k \geq 1$. The function $h_{0}(t)$ has a very different behaviour. We find that $h_{1}(t) \approx h_{0}(t / 5)$ (see fig. 8).

Figure $2-h_{1}(t), h_{2}(t), h_{10}(t), h_{20}(t)$ for a triadic Cantor set spectrum.

Figure $3-h_{1}(t)$ and $\frac{1}{3} h_{0}(t / 3)$ for a Cantor spectrum.

Figure $4-$ RMS for a triadic Cantor spectrum ; blue : $\Delta x(t)$, green : $\Delta x(t / 3)$.

Figure 5 - RMS for a triadic Cantor spectrum as a function of time, in loglog scale; blue : $\Delta x(t)$, green : $\frac{3}{2} \Delta x(t / 3)$.

Figure 6 - Spectrum for a Fibonacci potential, $V(k)= \pm 0.6$.

Figure 7 -

Assuming the pure scaling symmetry for this spectrum $(N(\epsilon)=3 N(\epsilon / 5))$, we find the following theoretical expression for $h_{0}(t)$:

$$
h_{0}^{t h}(t)=\prod_{k=1}^{\infty} \frac{1+e^{-2 i t / 5^{k}}+e^{-4 i t / 5^{k}}}{3}
$$

However, this expression does not fit well with the numerical graph; this is due to the fact that the spectrum does not have such a simple scaling relation (see fig. 7). Nevertheless, we observe, as for the Cantor set case, that for $t<100$, the zeroes of h_{0} do seem to be stable under the transform $t \rightarrow t / 5$ (see fig. 9). We thus expect the RMS to be stable under the transform $t \rightarrow t / 5$. We find numerically that $\Delta x(t)$ is a power-law modulated by log-periodic oscillations of very small amplitude for $0<t<300$. For larger t, the function starts to decay and has a very wild behaviour, probably due to numerical approximations.

Annexe

Maxima of $h_{0}(t)$ for the triadic Cantor set

Using the sclaing symmetry of the spectrum :

$$
\begin{equation*}
\int_{k} f(x) d \mu(x)=\frac{1}{2} \int_{k} f\left(\frac{x}{3}\right) d \mu(x)+\frac{1}{2} \int_{k} f\left(\frac{x+2}{3}\right) d \mu(x) \tag{2}
\end{equation*}
$$

we find that:

$$
\begin{aligned}
h_{0}(t) & =\int_{K} e^{-i \epsilon t} d \mu \\
= & \frac{1}{2} \int_{K} e^{-i \epsilon t / 3} d \mu+\frac{e^{-i 2 t / 3}}{2} \int_{K} e^{-i \epsilon t / 3} d \mu \\
& =\frac{1+e^{-i 2 t / 3}}{2} h_{0}(t / 3)
\end{aligned}
$$

By repeating this process, and using $h_{0}(0)=\int_{K} 1 d \mu=1$, we find the exact expression of $h_{0}(t)$:

$$
\begin{equation*}
h_{0}(t)=\prod_{k \geq 1} \frac{1+e^{-i 2 t / 3^{k}}}{2} \tag{3}
\end{equation*}
$$

thus:

$$
\begin{equation*}
\left|h_{0}(t)\right|=\prod_{k \geq 1} \cos t / 3^{k} \tag{4}
\end{equation*}
$$

The derivative :

$$
\begin{equation*}
\left|h_{0}(t)\right|^{\prime}=-\sum_{k \geq 1} 3^{-k} \sin t / 3^{k} \prod_{j \neq k} \cos t / 3^{j} \tag{5}
\end{equation*}
$$

is null for t of the form : $t=m_{n, l}=\pi n 3^{l}$, with $n \in \mathbb{Z}$ and $l \in \mathbb{N}^{*}$.

Figure 8 -

Figure 9 -

Construction of the wave packet for the triadic Cantor set spectrum

I first tried to build a potential V whose associated spectrum would be a triadic Cantor set, but it was difficult to obtain something close enough so that the properties of the $h_{k}(t)$ would still be verified. Therefore, I considered the case of $V=0$, with an associated continuous spectrum, and I built a wave packet using only eigenfunctions associated to energies belonging to the triadic Cantor set embedded in the spectrum.

I used a finite lattice of size $2^{8}=256$, and an associated finite Cantor set of size 256. The Hamiltonian is a $256 x 256$ matrix H of diagonal elements equal to 2 , off-diagonal elements $H_{i, i+1}=H_{i+1, i}=-1$ and the other elements equal to zero. The theoretical eigenfunctions are constructed using :

$$
\phi_{\epsilon}(k)=\phi_{\epsilon}(1) p_{k}(\epsilon)
$$

with $p_{k}(x)$ constructed as explained earlier. The boundary values $\phi_{\epsilon}(1)$ are obtained numerically from the eigenvectors of the matrix H.
The wave packet is constructed so as to be initially located on the site $k=1$ (see fig. 10 for the evolution in time).

References

[1] P.J. Grabner, H. Prodinger, Statistics \& Probability Letters 26 (1996) 243248

Figure 10 -

