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Introduction
During the past decades, there has been a growing interest for Schroedinger operators

H = − ~2

2m∆ + V (r) with an associated fractal spectrum. In fact, while the dynamics and the
transport properties of quantum systems having a continuous or discrete spectrum are well un-
derstood, little is known about singular continuous spectra (like fractals), which are ubiquitous
(quasi-crystals, quasi-periodic potentials, some glasses).

Some recent experiments [1], pursued at the Laboratoire de Photonique et Nanostructure
(CNRS, Marcoussis, France) in partnership with my group at the Technion, on cavity polari-
tons placed in a quasi-periodic potential (which we will now refer to as "Fibonacci potential") with
an associated Cantor like spectrum, have evidenced a log-periodic behaviour for some dynamical
quantities of the system. Although expected theoretically in the case of a fractal spectrum, such
log-periodic oscillations had never been observed experimentally before.

Objectives
Our goal is to understand, for various cases, how the fractal feature of the spectrum affects

the dynamics and the propagation properties of the system, to determine which relevant physical
quantities carry its signature, and to derive the analytical expression of those quantities. This study
should then allow us to conduct further experiments. My initial project contains three main topics,
but so far I have focused on two of them :
1 - Analytical and numerical study of a wave packet for a triadic Cantor spectrum ; this study was
initiated by the experimental results obtained with the cavity polaritons, and was the subject of
my master’s research internship pursued between April and July 2014.
2 - Spontaneous emission and superradiance for atoms coupled to a fractal spectrum.

First results
Dynamics of a wave packet for a triadic Cantor spectrum

Consider a 1D quantum system, described by a Hamiltonian H = − d2

dx2 +V (x) on L2(R), with
associated triadic Cantor set spectrum K. The density of states is degenerate, but can be described
by an appropriate measure dµ on K such that, for any function f defined on K, one has :∫

K

f(x)dµ(x) = 1
2

∫
K

f(x3 )dµ(x) + 1
2

∫
K

f(x+ 2
3 )dµ(x)

This scaling property is very important and has deep consequences in the dynamics of the system,
as we saw it through the numerical, experimental and theoretical study of a few relevant physical
quantities : the return probability, the root mean square displacement and the participation ratio.
It also explains the unusual behaviour of the Thouless coefficient associated to the system.

Return probability

As suggested by a numerical study for the Fibonacci potential, the time-averaged return pro-
bability

C(t) = 1
t

∫ t

0
|〈ψ(0)|ψ(t′)〉|2dt′
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Figure 1 – Time-averaged return probability of a wave packet in a Fibonacci potential.
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Figure 2 – Time-averaged return probability for a triadic Cantor spectrum.

displays a log-periodic feature. The derivation of the analytical expression of C(t) was part of my
master’s internship project, but it has been completed since and a numerical analysis was pursued.
We find that C(t) has a power law behaviour modulated by log-periodic oscillations :

C(t) = t−d

ln(3)
∑
n

εnt
− 2iπn

ln(3) sin
(π

2 (dn − 1)
)

Γ(dn − 1)

with d = ln(2)
ln(3) (the fractal dimension of the triadic Cantor set), dn = d+ 2iπn

ln 3 , εn =
∫
K×K

dµ(x)dµ(y)

|x−y+2|
d+ 2iπn

ln(3)

and Γ the Euler gamma function.

Furthermore, the method used to derive this expression shows that such a behaviour (power
law and log-periodic oscillation) is in fact the signature of a fractal feature, and should be observed
in other dynamical quantities. In fig. 1 and 2, we compare the return probability for the Fibonacci
cavity and for the triadic Cantor set. The two curves display the same behaviour. The differences
between these graphs come from two facts : first, in the case of the Fibonacci potential, C(t)
was calculated numerically whereas the expression is exact for the triadic Cantor set ; second, the
spectrum associated to the Fibonacci potential is in fact a superposition of Cantor sets, not a pure
triadic Cantor set.

Root mean displacement (RMS)

A numerical study of the Fibonacci potential also indicates that the RMS carries the signature
of the fractal feature of the spectrum. However, the methods used for the return probability did
not apply well for the study of the RMS. To understand is behaviour, it was useful to make a
connection with dynamical systems and iterated function systems (IFS) ([2]). We use the tight-
binding formalism : take a 1D lattice of N sites, and consider the following discrete Schroedinger
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Figure 3 – Thouless coefficient for a triadic Cantor spectrum.

equation :
−φn(k + 1)− φn(k − 1) + 2φn(k) + V (k)φn(k) = Enφn(k)

with φn = (φn(0), φn(1), ..., φn(N)) an eigenfunction associated to the eigenvalue En. One can
relate φn(k) to a set of orthogonal polynomials with respect to the measure µ :∫

K

pm(x)pn(x)dµ(x) = δn,m

The study of the polynomials led to the conclusion that the RMS too has a power law behaviour
modulated by log-periodic oscillations. A numerical study is now in process.

Thouless coefficient

The Thouless coefficient (see [3],[4]) associated to the system is defined by :

γ(E) =
∫
spectrum

ln |y − E|dµ(y)

for E ∈ spectrum In the case of a Cantor spectrum, we find that γ(E) displays a self-similarity,
which translates the presence of a self-similar fractal spectrum (see fig. 3), and verifies the following
functional equation :

γ(x) = − ln 3 + 1
2γ(3x) + 1

2γ(3x+ 2)

We studied more deeply the connection between γ(E) and the dynamics of the system in the
case of the tight-binding formalism.
Following [5], we established the following formula :

1
N

ln |φn(1)φn(N)| = − 1
N

∑
k 6=n

ln |Ek − En| ≈ γ(En)

We now wish to obtain a generalization of the Thouless formula and use it to obtain further
information about some dynamical quantities such as the RMS.

Spontaneous emission and superradiance
We consider here a system of one or two two-level atoms coupled to a fractal spectrum, and

are interested in two phenomena : spontaneous emission (1 atom) and superradiance (two atoms).
Previous work led by my group [6] showed that, in the case of a fractal spectrum, the decay pro-
bability does not follow a Wigner-Weisskopf exponential decrease but has a power law behaviour,
modulated by log-periodic oscillations. We therefore suspect to observe some anomalous behaviour
for the case of two atoms as well.
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Perspectives
Regarding the quantum dynamics for a Cantor spectrum, the connection with dynamical sys-

tems and IFS formalism opened new perspectives and should give further information on the RMS
and the participation ratio (I did not give further details on the later since we only have nume-
rical results so far). Furthermore, we will explore more deeply how the Thouless formula could
be connected to those relevant dynamical quantities. The results which this approach will lead to
should be added to an ongoing paper on quantum dynamics for a Cantor spectrum, so far focusing
on the return probability.

We also wish to apply the methods developed to the study of superradiance. In fact, the
techniques used to study the dynamics of a wave packet for a fractal spectrum rely essentially on
the scaling symmetry of the spectrum, and should easily be translated to study analytically the
resolvent of any Hamiltonian, which, in the case of spontaneous emission and superradiance, gives
precious informations on the evolution of the system.
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