Étude numérique : RMS pour un potentiel de Fibonacci, modèle tight-binding

Vérification de la formule $\phi_E(k) = p_k(E)\phi_E(1)$ pour les fonctions propres

Les résulats numériques confirment que, dans le modèle du tight-binding, on peut écrire les fonctions propres sous la forme suivante : $\phi_E(k) = p_k(E)\phi_E(1)$, la suite de polynômes $\{p_k\}_k$ vérifiant la relation de récurrence :

$$p_{k+1}(E) = (2 + V_{k+1} - E)p_k(E) - p_{k-1}(E)$$

avec conditions initiales : $\begin{cases} p_1(E) = 2 + V_1 - E \\ p_0(E) = 1 \end{cases}$ Le figure 1 compare les graphes de $\phi_E(k)$ et $p_k(E)\phi_E(1)$, comme fonctions de E,

pour un site donné. Les deux courbes se superposent.

RMS pour un potentiel de Fibonacci

J'ai retracé la RMS (directement et avec la formule utilisant les polynômes) pour un potentiel de Fibonacci; la formule théorique est donc :

$$\Delta x(t)^2 = \sum_{k=1}^{\infty} k^2 |\psi(k,t)|^2$$

= $\sum_{k=1}^{\infty} k^2 \left| \int_K e^{i\epsilon t} \phi_{\epsilon}^*(k_0) \phi_{\epsilon}(k) d\mu(\epsilon) \right|^2$
= $\sum_{k=1}^{\infty} k^2 \left| \int_K e^{i\epsilon t} |\phi_{\epsilon}(1)|^2 p_k(\epsilon) p_{k_0}(\epsilon) \right|^2 d\mu(\epsilon)$
= $\sum_{k=1}^{\infty} k^2 |j_{k+k_0}(t)|^2$

On retrouve bien un comportement globalement croissant pour $\Delta x(t)$, et les graphes théoriques et numériques coincident (cf figures 2,3).

Comparaison avec les résultats de Hiramoto

Ces résultats ne correspondent pas à ceux de l'article de Hiramoto, mais il est possible que ce soit en raison des unités (j'ai posé $\hbar = 1$ pour les calculs, je vais comparer avec ce que j'obtiendrai avec des unités correctes).

RMS pour un spectre de Cantor

La formule

$$h_k(t) = t^{-k - \ln 2/\ln 3} \sum_{m \in \mathbb{Z}} t^{-2i\pi m/\ln 3} e^{-i\pi s_{m,k}/2} r_{k,m} \Gamma(s_{m,k})$$
(1)

avec $h_k(t) = \int_K e^{i\epsilon t} |\phi_{\epsilon}(1)|^2 \epsilon^k d\mu(\epsilon), k \in \mathbb{N}$ se vérifie bien numériquement. Il s'agissait de la formule centrale pour montrer que le RMS, pour un spectre de Cantor triadique, est de la forme :

$$\Delta x(t) = \sqrt{t^{-2\ln 2/\ln 3} \sum_{k \in \mathbb{Z}} k^2 \sum_{0 \le l_k \le k} d_{l_k} t^{-l_k} G_{l_k}(\ln t)}$$

La figure 4 compare les graphes de la formule théorique et du calcul direct de la fonction $h_k(t) = \int_K e^{i\epsilon t} \epsilon^k d\mu(\epsilon)$ pour k = 2; la figure 5 montre les mêmes graphes en échelle log.

Enfin, j'ai vérifié la formule donnée dans les notes (synthese-dynq.pdf, sur dropbox) pour Δx :

$$\Delta x(t) = \sqrt{t^{-2\ln 2/\ln 3} \sum_{k \in \mathbb{Z}} k^2 \sum_{0 \le l_k \le k} d_{l_k} t^{-l_k} G_{l_k}(\ln t)}$$

On considère l'équation de Schrodinger sans potentiel, dans le modèle du tightbinding, que l'on résoud dans $l_2(\mathbb{N})$; les fonctions propres sont des suites $(\phi_{\lambda}(n))_n$ vérifiant :

$$-\phi_{\lambda}(n+1) - \phi_{\lambda}(n-1) + 2u_{\lambda}(n) = \lambda \phi_{\lambda}(n)$$

Pour reproduire un système régit dont le spectre est un ensemble de Cantor triadique K, on se restreint à l'espace des fonctions engendré par les les fonctions propres associées aux valeurs propres $\lambda \in K$. On vérifie que ces fonctions sont bien orthonormales.

Suivant le même raisonnement que dans les notes, on peut voir les valeurs prises par fonctions propres ϕ_{λ} en les sites *n* comme des polynômes en λ :

$$\phi_{\lambda}(n) = p_n(\lambda)$$

avec

$$p_n(x) = \sum_{j_n \le n} d_{j_n,k} x^{j_n}$$

Les d_{j_n} sont calculés numériquement grâce à la relation de récurrence qui définit les polynômes $p_n(x)$ (cf synthese-dynq.pdf).

On construit un paquet d'onde simple :

$$\psi(k,t) = \sum_{\lambda \in K} \phi_{\lambda}(n) e^{-i\lambda t}$$

On compare maintenant numériquement les graphes du RMS calculé directment :

$$\Delta x_{dir}(t) = \sqrt{\sum k^2 |\psi(k,t)|^2}$$

et théorique :

$$\Delta xth(t) = t^{-\ln 2/\ln 3} \sqrt{\sum_{k \in \mathbb{Z}} k^2 \sum_{0 \le l_k \le k} c_{l_k} t^{-l_k} G_{l_k}(\ln t)}$$

où les c_{l_k} , issus du réarrangement des termes en monômes de même degré, sont déterminés numériquement. Les figures 6,7 montrent les graphes issus du calcul direct (échelle normale et échelle log); les figures 8,9 montrent les graphes théoriques.

FIGURE 1 -

FIGURE 2 – RMS théorique pour un potentiel de Fibonacci, paquet d'onde initialement sur le site 1 (au bord)

FIGURE 3 – RMS pour un potentiel de Fibonacci, paquet d'onde initialement sur le site 1 (au bord)

FIGURE 4 – Graphes théorique et numérique de $h_k(t)$

FIGURE 5 – Graphes théorique et numérique de $h_k(t)$, échelle log

FIGURE 6 – RMS pour un spectre de Cantor triadique, calculé directement

FIGURE 7 – RMS pour un spectre de Cantor triadique, calculé directement, échelle \log

FIGURE 8 – RMS théorique pour un spectre de Cantor triadique

FIGURE 9 – RMS théorique pour un spectre de Cantor triadique, échelle log