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We study the dynamics of a wave packet for a triadic Cantor spectrum K. The scaling symmetry
of the spectrum translates into the characteristic log-periodic feature of relevant physical quantities.
Using Mellin transform, we derive the analytical expression of the time-averaged return probability,
which is universal for any system with a Cantor spectrum. This result is supported by numerical
results obtained recently for polaritons in a Fibonacci potential. We give a more thorough analysis
in the case of the tight-binding model, in which case the dynamics of the system depend essentially
on the Fourier transform on a Cantor set of monomes xk, namely : hk(t) =

∫
K
e−ixtxkdµ, k ∈ Z,

which carry the fingerprint of the spectral fractal feature.

I. INTRODUCTION

During the past decades, there has been a growing in-

terest for Schroedinger operators H = − ~2

2m∆ + V (r)
with a Cantor set like spectrum, e.g. a perfect, nowhere
dense set (for a review, see [1], and more recently [2]). In
the context of quantum dynamics for systems verifying
such a Hamiltonian, a typical behaviour for some physi-
cal quantities, such as the time-averaged return probabil-
ity (auto-correlation function), has been identified. More
precisely, it has been shown ([3],[4]) that, in the case of
a Cantor set spectrum, the time-averaged return prob-

ability C(t), defined as : C(t) = 1
t

∫ t
0
|〈ψ(0)|ψ(t′)〉|2dt′

decreases as : t−D
µ
2 , where Dµ

2 is a correlation dimen-
sion with respect to the measure µ of the spectrum,
although a full analytical expression had not been de-
rived so far. The spatial correlation function Cs(l, µ) =∫
K×K

θ(l− |x− y|)dµ(x)dµ(y), with θ the Heaviside func-

tion, has been derived more precisely for a Cantor set
spectrum ([5]), showing that this quantity is a power law
tdK (dK being the fractal dimension of the Cantor set)
modulated by log-periodic oscillations.

In this paper, we study the dynamics of a quantum
system whose energy spectrum is a triadic Cantor set
K. In section I, we describe the scaling symetry of the
spectrum and analyze how it translates in terms of mea-
surable physical quantities ; we show, using Mellin trans-
form, that the return probability has the form :

C(t) =

(
t

τ

)−dK
g(ln(t/τ))

where dK = ln(2)
ln(3) is the fractal dimension [7] of the tri-

adic Cantor set, τ a time scale a g a periodic function,
which is typical for a fractal spectrum, and we derive
its analytical expression. We also present numerical re-
sults obtained with polaritons in a Fibonacci cavity [6],
which support the theory. In section II, we narrow our
study to the tight-binding model ; we show that in this
case, the eigenfunctions can be seen as polynomials of
the energy, and that the dynamics depend essentially on
the Fourier transform (on a Cantor set) of monomes :

hk(t) =
∫
K
e−ixtxkdµ, k ∈ Z. In fact, the time depen-

dent Green function is a linear combination of the hk(t).
As examples we consider two relevant quantities to char-
acterize the dynamics of the system, the root mean dis-
placement (RMS), ∆x(t) =

√∑
k k

2|ψ(k, t)|2, and the

participation ratio, ¶r(t) = 1∑
k |ψ(k,t)|4

.

II. I

The triadic Cantor set, denoted K in this paper, is
constructed as follows : start with the segment [0,1], di-
vide it in three equal parts, and remove the central one,
e.g. the segment [1/3, 2/3], then repeat the process with
the two remaining segments, and so on. After an infinite
number of iterations, we are left with a set of separated
points, of zero Lebesgue measure.

We now consider a one dimensional quantum system
described by the state vector |ψ(t)〉 and evolving with the

Hamiltonian H = − ~2

2m
d2

dx2 + V (x). We assume that the
energy spectrum of H is a triadic Cantor set. Note that,
since all Cantor sets are homeomorphic to the triadic
Cantor set ([17]), the results and methods can be adapted
to any Cantor set spectrum.

The system is initially in a state described by |ψ(t =
0)〉 = |ψ0〉. After a time t, the state vector |ψ(t)〉 is given
by :

|ψ(t)〉 = e−iĤt/~|ψ0〉

We shall also use the spectral decomposition of |ψ(t)〉
over an orthonormal basis of eigenfunctions {|φ(ε)〉} of
H,|φ(ε)〉 being the eigenfunction associated with the en-
ergy ε :

|ψ(t)〉 =

∫
spectrum

g(ε)e−iεt/~|φ(ε)〉dµ̃(ε)

where g(ε) is the projection of |ψ0〉 on |φ(ε)〉, and dµ̃ a
measure defined on the spectrum.

To go further, we need to define an appropriate mea-
sure on the spectrum. The triadic Cantor set K has a
zero Lebesgue measure. However, in our case, the inte-
grated density of states, e.g. the integral of ρ(ε) over the
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spectrum K (we shall generalize to the case of an infinite
Cantor set later), is non zero. Thus, ρ(ε) must be infinite
in every point of K.

We define a measure dµ on K, such that the integrated
density of states N (ε) is given by :

N (ε) =

∫
K

θ(ε− ε′)dµ(ε′)

with θ the Heaviside function. We furthermore suppose
that the density of states is uniform.

Without the loss of generality, we suppose that the
integral of dµ over K equals 1 :

∫
K
dµ = 1. We then

proceed iteratively : starting from a segment [0, 1], we set
ρ(ε) = 1 everywhere ; the integral thus equals 1. Now,
divide the segment in three, remove the central part and
define ρ(ε) to be equal to 3

2 on [0, 13 ] and [23 , 1], and null

on [ 13 ,
2
3 ]. We still have :

∫ 1

0
ρ(x)dx = 1. We repeat this

process infinitely, and thus define dµ as a limit : for any
function f defined on [0, 1], the integral of f over K is :∫

K

f(x)dµ(x) = lim
n→∞

(
3

2

)n ∑
ajn∈Pn

∫ ajn+3−n

ajn

f(x)dx

where {Pn} is the set of the left edges of the remain-
ing segments after n iterations in the construction of the
Cantor set.

One can show (see annexe) that dµ verifies the follow-
ing important property :∫
K

f(x)dµ(x) =
1

2

∫
K

f
(x

3

)
dµ(x)+

1

2

∫
K

f

(
x+ 2

3

)
dµ(x)

(1)
This property still holds for multiple integrals ; it be-

comes, for a double integral :

∫
K×K

f(x, y)dµ(x)dµ(y)

=
1

4

∫
K×K

f
(x

3
,
y

3

)
dµ(x)dµ(y)

+
1

4

∫
K×K

f

(
x+ 2

3
,
y

3

)
dµ(x)dµ(y)

+
1

4

∫
K×K

f

(
x

3
,
y + 2

3

)
dµ(x)dµ(y)

+
1

4

∫
K×K

f

(
x+ 2

3
,
y + 2

3

)
dµ(x)dµ(y)

Note that the measure µ is a special case of a self-
similar measures m, e.g. such that there exists a set of
contractive similarities {φj} and probability weights {πj}
such that for any continuous function f , one has :∫

f(x)dm(x) =
∑
j

πj

∫
f(φj(x))dm(x)
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FIG. 1: Integrated density of states (IDOS) in the case of
a triadic Cantor set energy spectrum. The energies are ex-
pressed in arbitrary unit and the IDOS has been normalised.

Cantor sets correspond to the case of two linear similar-
ities, with π1 = π2 = 1

2 :∫
f(x)dm(x) =

1

2

∫
f(a1x)dm(x)+

1

2

∫
f(a2x+b)dm(x)

The methods developed hereafter can easily be translated
for any self-similar measure.

III.

Let us now study the dynamics of the system described
in the previous paragraph. There are several physical
quantities which are useful to characterize the evolution
of the system, such as the RMS displacement, the par-
ticipation ratio or the auto-correlation function.

We will focus here on the auto-correlation function, as
it is a very instructive example to understand how the
scaling symmetry of the spectrum affects the dynamics
of the system.

The auto-correlation function, or time averaged return
probability, C(t), is by definition the time average of the
probability p(t) = |〈ψ(0)|ψ(t)〉|2 to find the system in its
initial state after a time t :

C(t) =
1

t

∫ t

0

|〈ψ(0)|ψ(t′)〉|2dt′

We could directly try to calculate p(t) to study the evo-
lution in time of the system ; however this quantity often
exhibits fast local oscillations, which could hide the ef-
fects of the fractal feature. Its time average, on the other
hand, yields interesting results, as we shall see.

We start with the spectral decomposition of |ψ(t)〉 :

|ψ(t)〉 =

∫
spectrum

g(ε)e−iεt/~|φ(ε)〉dµ̃(ε)
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The first step is to obtain an integral over K, with a
dimensionless variable, in order to use the measure intro-
duced earlier.

We impose that |ψ(t)〉 is normalized to unity :

〈ψ(t)|ψ(t)〉 =

∫
spectrum

|g(ε)|2dµ̃(ε) = 1

We shall assume that |g(ε)| is non-zero and uniform on
a bounded subset of the spectrum, and that this sub-
set is triadic Cantor set. We therefore consider that
|g(ε)|2dµ̃(ε) (the spectral measure of the initial state) is
the measure dµ introduced in the previous paragraph.

Thus :

C(t) = 1
t

∫ t
0
|〈ψ(0)|ψ(t′)〉|2dt′

= 1
t

∫ t
0
|
∫
Kεmax

|g(ε)|2e−iεt′/~dµεmax(ε)|2dt′

A standard calculation then leads to :

C(t) =

∫
K×K

sinc((λ′ − λ)εmaxt/~)dµ(λ)dµ(λ′)

We now make the change of variables : u = εmaxt
~ :

C(t) = C(u) =

∫
K×K

sinc((λ′ − λ)u)dµ(λ)dµ(λ′)

The idea is now to transform this double integral into
a one variable integral, and then to use Mellin transform
and the scaling property (1) of dµ.

Let us do the change of variables : l = |λ′ − λ|, 0 ≤
l ≤ 1, and let dS(l, µ) be the surface (in the sense of dµ)
of the 2 dimensional Cantor dust1 contained in the two
strips of infinitesimal width located at λ = λ′ + l and
λ = λ′ − l (fig. 1).

Since sinc((λ′ − λ)t) can be considered constant on
these strips, we obtain :

C(u) =

∫ 1

0

sinc(lu)dS(l, µ) (2)

We now have to determine dS(l, µ). For this we shall use
Mellin transforms.

Let : MdS(s) =
∫ 1

0
ls−1dS(l, µ) ≡

∫ 1

0
ls−1 dS(l,µ)dl dl be

the Mellin transform of dS(l, µ), which is sometimes re-
ferred to in the literature as the energy integral ([5], [8])

(note that we wrote
∫ 1

0
and not

∫∞
0

: dS(l, µ) is defined
on [0, 1], but can be extended on [0,∞[ if we define it as
equal to 0 outside [0, 1]).

Now, using the definition of dS(l, µ) and the property

FIG. 2: 2 dimensional Cantor dust (represented here at the
second step of construction) ; the infinitesimal surface dS(l, µ)
corresponds to the surface of the Cantor dust, in the sense of
dµ, contained in the two red strips.

(1) :

MdS(s) =

∫ 1

0

ls−1dS(l, µ)

=

∫
K×K

|x− y|s−1dµ(x)dµ(y)

=
1

4

∫
K×K

(
|x
3
− y

3
|s−1 + |x+ 2

3
− y + 2

3
|s−1

)
dµ(x)dµ(y)

+
1

4

∫
K×K

(
|x
3
− y + 2

3
|s−1 + |x+ 2

3
− y

3
|s−1

)
dµ(x)dµ(y)

MdS(s) =
31−s

2

∫
K×K

|x− y|s−1dµ(x)dµ(y)

+
31−s

2

∫
K×K

|x− y + 2|s−1dµ(x)dµ(y)︸ ︷︷ ︸
γ(s)

Thus :

MdS(s) =
γ(s)

1− 31−s/2

with γ(s) = 31−s

2

∫
K×K |x− y + 2|s−1dµ(x)dµ(y).

The inverse Mellin transform then gives dS(l,µ)
dl :

dS(l, µ)

dl
=

1

2iπ

∫ γ+i∞

γ−i∞
MdS(s)l−sds

=
1

2iπ

∫ γ+i∞

γ−i∞

γ(s)

1− 31−s

2

l−sds
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It is important to note that γ(s) has no poles. It is clear
from its definition :

γ(s) =
31−s

2

∫
K×K

|x− y + 2|s−1dµ(x)dµ(y)

Since for all x, y ∈ [0, 1], the inequality 1 ≤ 2−x+ y ≤ 3
holds, |x−y+2|s−1 is well defined and bounded on K×K
for any s ∈ C, and thus γ(s) is well defined and has no

poles. The only poles of γ(s)

1− 31−s
2

l−s are the {sn}n∈Z such

that : 1 − sn = ln(2)
ln(3) + 2iπn

ln(3) . We now apply the residue

theorem :

dS(l, µ)

dl
=
∑
n

[
s− sn

1− 31−s

2

l−sγ(s)

]
s=sn

=
ldK−1

ln(3)

∑
n

l
2iπn
ln(3) γ

(
1− dK −

2iπn

ln(3)

)
︸ ︷︷ ︸

γn

where we used :

lim
s→sn

s− sn
1− 31−s

2

=
1

ln(3)

and with dK = ln(2)
ln(3) and

γn =

∫
K×K

|x− y + 2|−dK−
2iπn
ln(3) dµ(x)dµ(y)

Inserting this expression in (2), we get :

C(u) =
1

ln(3)

∑
n∈Z

γn

∫ 1

0

ldK−1l2iπn/ ln(3)γnsinc(lu)dl

=
u−dK

ln(3)

∑
n∈Z

γnu
−2iπn/ ln(3)

∫ u

0

vdK−1+2iπn/ ln(3)sinc(v)dv

with the change of variable : v = ul. Since∫ u
0
vd+

2iπn
ln(3)
−1sinc(v)dv quickly converges to∫∞

0
vdK+ 2iπn

ln(3)
−1sinc(v)dv, one can replace

∫ u
0

by∫∞
0

.

(More precisely : |
∫ u
0
vdK+ 2iπn

ln(3)
−1sinc(v)dv −∫∞

0
vdK+ 2iπn

ln(3)
−1sinc(v)dv| = O(udK−1))

Using :∫ ∞
0

vdKn+
2iπn
ln(3)
−1sinc(v)dv

= sin
(π

2
(dK,n − 1)

)
Γ

(
dK,n +

2iπn

ln(3)
− 1

)
with Γ the Euler gamma function, and dK,n = dK + 2iπn

ln(3)

one finally finds, for u >> 1 (see fig. (3)):

C(u) =
u−dK

ln(3)

∑
n

γnu
− 2iπn

ln(3) sin
(π

2
(dK,n − 1)

)
Γ(dK,n−1)
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FIG. 3: Auto-correlation function in the case of a triadic Can-
tor set spectrum, in log-scale (log base 10).
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FIG. 4: Auto-correlation function multiplied by ud in the case
of a triadic Cantor set spectrum, in log-scale (log base 10).
This function is log-periodic in u, of period ln(3).

We can prove (see annexe) that the coefficients in the
expression (3) decay at least like 1

n3/2−d :

|γn sin

(
π

2
(d+

2iπn

ln(3)
− 1)

)
Γ(d+

2iπn

ln(3)
−1)| = O

(
1

n3/2−d

)

IV.

Let us now discuss the expression of C(u).
We find that C(u) is of the form : C(u) = u−dKg(u),

with dK = ln(2)
ln(3) the fractal dimension of the triadic Can-

tor set K and

g(u) =
∑
n∈Z

γnu
− 2iπn

ln(3) sin
(π

2
(dn − 1)

)
Γ (dn − 1)

with dn = d+ 2iπn
ln(3) , a log-periodic function. The presence

of the fractal dimension dK in the exponent is consistent
with previous work on the asymptotic behaviour of the
time-averaged return probability for a Cantor spectrum
: C(t) ≈t→∞ t−dk([3], [4]).

The log-periodicity is the signature of the scaling sym-
metry of the spectrum. To see this, note that C(t)



5

is in fact the spectral average, for the measure dµ, of
the wavelet transform sinc : C(t) =

∫
K×K sinc((λ′ −

λ)εmaxt/~)dµ(λ)dµ(λ′). Since the spectrum has a scal-
ing symmetry, one would have expected to find a log-
periodic behaviour for the sinc-wavelet transform, at
least locally (e.g. for the quantity : Clocal(t, λ) =∫
K

sinc((λ′ − λ)εmaxt/~)dµ(λ)). It was less obvious that
the log-periodicity would remain after averaging over the
spectrum ; this is due to the fact that we chose the den-
sity of modes and the distribution |g(ε)|2 to be uniform,
and that the set has a unique scaling factor. In other
words, in the case of a superposition of triadic Cantor
sets for example, it is not certain that these oscillations
would survive the averaging.

Let us now highlight the similarity between the theo-
retical graph of C(t) for a triadic Cantor set spectrum
(fig. (3), (4)) and the numerical results obtained with
the Fibonacci cavity (more details are available in [6]) fig.
(5). In this experiment, cavity polaritons are confined in
wire cavities, consisting of λ/2 layers, using Bragg mir-
rors for the confinement in the vertical direction. The
lateral dimension of the 200µm long wires are modulated
quasi-periodically : the modulation consists in two wire
sections (letters) A and B, of equal length but different
width ; these letters are arranged in a finite sequence, Sj ,
obtained recursively using the following Fibonacci like
algorithm : Sj>2 = [Sj−1Sj−2] and S1 = B, S2 = A
where [Sj−1Sj−2] is the concatenation of the sequences
Sj−1 and Sj−2. The sequence S∞ becomes rigorously
quasi-periodic as j tends to infinity. We used a fi-
nite sized cavity, however, we observed the features of
the fractal spectrum predicted by the theory : namely,
gaps densely distributed and an integrated density of
states N(ε) well described by a scaling form of the type
N(ε) = εln a/ ln bF ( ln ε

ln b ) and which follows the gap la-
belling theorem. The photon modes are described by
a 2D scalar wave equation with vanishing boundary con-
ditions on the boundary of the wire. This 2D problem is
then reduced to a 1D Schroedinger equation with an ef-
fective quasi-periodic potential, translating the geometry
of the cavity. The equation was then solved numerically
(using the transfer matrix formalism) and some useful
quantities were plotted : the IDOS, the participation ra-
tion, the RMS displacement and the time-averaged re-
turn probability. The latter is given fig. (5).

We found that the participation ratio and the return
probability evidence a log-periodicity, which would be
expected as a signature of the fractal spectrum.

V.

Let us now discuss the method used in a more general
way, to highlight the connection between the presence of
a scaling symmetry in a physical system and the typical
form of certain quantities. We see from the calculation
that the scaling property of the spectrum leads naturally
to a specific behaviour of some physical quantities defined

FIG. 5: Auto-correlation function of the wave paquet in the
Fibonacci cavity ; numerical results for an initial gaussian

wave paquet : ψ(x, t = 0) ∼ e−2(x−x0)
2/w2

0 . The graphs cor-
respond to different values of w0, with identical x0.

as integrals over the spectrum - power law modulated by
log-periodic oscillations.

Consider a system having a fractal spectrum, charac-
terized by a scaling property, which is expressed through
a condition of the kind (1) verified by the measure.

One can show (see annexe) that a function f verifying
a functional equation of the type :

f(x) =
1

b
f(ax) + g(x)

is (under some conditions on g) of the form :

f(x) = xln(b)/ ln(a)G

(
lnx

ln a

)
(3)

with G a 1-periodic function.

Now, in the case of a fractal F described by a measure
µ such that :

∫
F

f(x)dµ(x) =
∑
n∈N

1

bn
f(anx)dµ(x)

for some an ∈ R, bn ∈ R∗, then any function Ψ(t) defined
by an integral : Ψ(t) =

∫
F
h(x, t)dµ(x) will satisfy :

Ψ(t) =
∑
n∈N

1

bn

∫
F

h(anx, t)dµ(x)

If furthermore h(x, t) can be expressed as a function of
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xαtβ , α, β ∈ C, β 6= 0 : h(x, t) = ψ(xαtβ), then :

Ψ(t) =
∑
n∈N

1

bn

∫
F

ψ(anx
αtβ)dµ(x)

=
∑
n∈N

1

bn

∫
F

h(x, a1/βn t)dµ(x)

=
∑
n∈N

1

bn
Ψ(a1/βn t)

=
1

bj
Ψ(a

1/β
j t) + Φ(t)

with Φ(t) =
∑
n∈N−j

1
bn

Ψ(a
1/β
n t). Thus, if the Mellin

transforms of Φ(t) and Ψ(t) exist and have overlapping
domains of definition, and if the Mellin transform of Φ(t)
has no poles, then Ψ(t) will be of the form :

Ψ(t) = tln(bj)/ ln(a
1/β
j )G

(
ln t

ln a
1/β
j

)

with G 1-periodic.
More generally, this also occurs whenever we can rear-

range the integral in order to have :
∫
F
h(αx, t)dµ(x) ∝∫

F
h(x, βt)dµ(x).

Thus, we see in the case of quantum dynamics that,
since the energy ε and the time t are conjugate variables,
it is likely that a time dependant quantity defined as
an integral over the spectrum (through the spectral de-
composition for instance) of a function defined using the
evolution operator eiHt/~ or of any function which cou-
ples ε and t, will be of the form (5). This is well verified
for C(t).

Other dynamical quantities should also display this
typical behavior ; we shall briefly discuss them.

We discuss first the time-averaged participation ratio,
usually studied to get information on the dynamics of a
quantum system. Moreover, this quantity was studied
numerically for the Fibonacci cavity and the results sup-
port the idea of a log-periodic feature. By definition, the
participation ratio is :

Pψ =
1∫

espace
|〈x|ψ〉|4dx

This quantity reflects the localization in space of the wave
function ψ(x, t) : if the state is localized, then Pψ ' 0 ; if
it is extended, then Pψ ' 1 [9]. Taking its time-average,
to have a time-dependent quantity, we define :

Pψ(t) =
1

t

∫ t

0

dt′∫
espace

|〈x|ψ(t′)〉|4dx

Now, using Green functions, we can show [10] that :

|ψ(x, t)| =

∣∣∣∣∣∣
∫

space

∫
spectrum

e−iεtφ(x, ε)∗φ(x′, ε)ψ(x′, 0)dx′dµ(ε)

∣∣∣∣∣∣

|φ(ε)〉 being the eigenfunction of the Hamiltonian asso-
ciated with the energy ε. The calculation has not yet
completely been carried through, since sufficient infor-
mation on the behaviour of the space correlation term
φ(x, ε)∗φ(x′, ε) is still missing.

We shall now briefly discuss the RMS displacement,
another quantity commonly studied both in quantum dy-
namics - spreading of the wave packet - and in diffusive
processes. First note that, since the above method (which
led to the expression of the auto-correlation function),
uses the linearity of the integral, it is obvious that it is
unlikely to work for the RMS

∆x =
√
〈(x(t)− x0)2〉 =

√∫
space

(x(t)− x0)2|ψ(t, x)|2dx

because of the square root. However, we should obtain
interesting results for the moment of order 2 :

(∆x)2 = 〈(x(t)− x0)2〉 =

∫
space

(x(t)− x0)2|ψ(t, x)|2dx

Although a numerical study, in the case of the Fibonacci
cavity, did not give encouraging results, note that this
quantity is very close to∫
space

(x(t)− x0)2|ψ(t, x)|2dx

=

∣∣∣∣∣∣
∫

space

∫
spectrum

e−iεtφ(x, ε)∗φ(x′, ε)ψ(x′, 0)dx′dµ(ε)

∣∣∣∣∣∣
2

and that using the assumptions discussed for the partici-
pation ratio about the behaviour of φ(r, ε)∗φ(r’, ε) should
also lead to interesting results.

Furthermore, the case of a Hamiltonian with a one-
scale Cantor set spectrum has been solved numerically
in the tight-binding approximation [14], and it was found
that the moments 〈(x(t)− x0)α〉 have a log-periodic be-
haviour.

VI. II

In order to have a better understanding of the dy-
namics of our system, we consider the case of the tight-
binding model. We shall use a different approach than
previously, in the framework of dynamical systems.

We consider an infinite 1D lattice, with sites k la-
belled from 0 to ∞. We define a potential V on this
system such that the discrete Schrodinger operator :
H = −∆ + V , which acts on l2(Z), has a triadic Cantor
set spectrum. As in the previous paragraph, the eigen-
functions {φε}ε∈K , evaluated on the sites k, can be seen
as polynomials in ε :

φε(k) = pk(ε) (4)
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We are interested of the evolution of a wave packet, de-
scribed by the normalized wave function ψ(t), evolving
according to Schrodinger’s equation :

i
dψ(t)

dt
= Hψ(t)

The wave function is initially localized at the site 1 :
〈k|ψ(t = 0)〉 = δ(k − 1). At time t, the system is in the
state : |ψ(t)〉 = e−iHt|ψ(0)〉, and the value of the wave
function at site k is given by :

|ψ(k, t)| =
∫
K

φε(1)∗φε(k)e−iεtdµ

Using (2), we obtain :

ψ(k, t) =

∫
K

φε(1)∗φε(k)e−iεtdµ (5)

=

∫
K

p1(ε)pk(ε)e−iεtdµ (6)

=
∑
jk≤k

cjk

∫
K

εjke−iεtdµ (7)

with pk(x) =
∑

0≤jk≤k cjkx
jk Thus, the dynamical be-

haviour of the system depends essentially on the func-
tions :

hk(t) =

∫
K

e−iεtεkdµ(ε)

aka the Fourier transforms on K of the moments xk.

Study of hk(t)

Using the Mellin transform (see annexe), we may ex-
press hk(t) as a series :

hk(t) =
∑
n6=0

(−it)n

n!
µn+k

with µn =
∫
K
xndµ. (Note that we obtain the same

expression by writing e−iεt =
∑
n≤0

(−iεt)n
n! and reversing

the signs sum and integral).
It is not clear, from this expression, whether or not

hk(t) has a log-periodic feature, which is expected as a
fingerprint of the scaling symmetry of the spectrum ex-
pressed in (1). We shall now show that there is, however,
such a behaviour. We will do so by calculating the zeroes
of hk(t) and the maxima of |hk(t)|.

First note that h0(t) verifies the following functional
equation, derived by direct application of (1) :

h0(t) =

∫
K

e−iεtdµ

=
1

2

∫
K

e−iεt/3dµ+
e−i2t/3

2

∫
K

e−iεt/3dµ

=
1 + e−i2t/3

2
h0(t/3)

By repeating this process, and using h0(0) =
∫
K

1dµ =
1, we find the exact expression of h0(t) :

h0(t) =
∏
k≥1

1 + e−i2t/3
k

2
(8)

This is consistent with the expression derived in [18].
Furthermore, there is a perfect fit between the graph of
the theoretical expression (2) and the one obtained from
the direct calculation of h0(t) using :

h0(t) = lim
n→∞

(
3

2

)n ∑
ajn∈Kn

∫ ajn+3−n

ajn

e−ixtdx

with Kn the set of the left edges of the remaining
segments after n iterations in the construction of the
Cantor set from the segment [0, 1].

From (2), we easily deduce the zeroes of h0(t) : it is
the set :

Z0 = {tm =
3π

2
(2m+ 1),m ∈ Z}

We also get the local maxima of |h0(t)| :

M0 = {vn,m = πm3n,m ∈ Z, n ∈ N∗}

with the property :

h0(vn,m) =
∏

k≥n+1

1 + e−i2t/3

k′︷ ︸︸ ︷
k − n

2
=
∏
k′≥1

1 + e−i2t/3
k′

2
= h0(v0,m)

Furthermore, the product
∏
k′≥1

1+e−i2t/3
k′

2 is convergent
and consists of nonzero terms, therefore it is nonzero.
Taking n→∞, we can therefore deduce that h0(t) does
not converge to zero when t→∞ (as also found in [18]).

Now, using (1) again, we derive the following recur-
rence formula for hk(t) :

hk(t) =

∫
K

e−iεtεkdµ

=
3−k

2

∫
K

e−iεt/3εkdµ+
3−ke−i2t/3

2

∫
K

e−iεt/3(ε+ 2)kdµ

=
3−k

2
hk(t/3) +

3−k

2
e−i2t/3

k∑
j=0

(
k

j

)
hj(t/3)2k−j

We will use this relation to show, by recurrence, that
the set Zk of zeroes of hk, k 6= 0 contains the set :

{tm,n =
π

2
(2m+ 1)3k+1,m ∈ Z}
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First, we deduce that, if tn,m = π
2 (2m+ 1)32, m ∈ Z},

then :

h1(tn,m) =
3−1

2
h1(tn,m/3)−3−1

2
(h1(tn,m/3)+h0(tn,m/3)︸ ︷︷ ︸

0

)

since tn,m/3 ∈ Z0. Thus : {tm,n = π
2 (2m + 1)32,m ∈

Z} ⊂ Z1. The generalization to higher k is trivially
derived using the recurrence relation above.

It seems that there are no other zeroes for hk(t), e.g.
that

Zk = {tm,n =
π

2
(2m+ 1)3k+1,m ∈ Z}

but it is not rigorously proven ; the numerics however
seem to support this hypothesis (see fig. 1).

We therefore deduce that hk(t) has the same zeroes
than hk−1(t/3).

Using a similar reasoning, we can study the points at
which the module |hk(t)| has a local maximum. The
maxima of |h0(t)| are reached at the points : tm,n =
3nmπ. Using the recurrence relation between the hk,
one can see that

hk(tm,n) ≈ 3−kh0(tm,n−1)

Thus, we may infer, with a good approximation, that
:

hk(t) ∝ hk−1(t/3)

This is confirmed by the numerics (see fig. 2).

To summarize, the functions hk(t) themselves are not
log-periodic, and have periodically spaced zeroes of the
form tm,n = π

2 (2m+ 1)3n. The fingerprint of the fractal
spectrum lies in the recurrence relation :

hk(t) =
3−k

2
hk(t/3) +

3−k

2
e−i2t/3

k∑
j=0

(
k

j

)
hj(t/3)2k−j

which, up to a good approximation, can be simplified
into :

hk(t) ∝ hk−1(t/3)

Note however that it is not a rigorous proportionality
relation.

Application to the RMS and the participation ratio

In order to study how the fractal feature of the spec-
trum affects the dynamics of the system, we will now
consider the RMS :

∆x(t)2 =

∞∑
k=1

k2|ψ(k, t)|2

50 100 150 200 250 300

0.2

0.4

0.6

0.8

1.0

FIG. 6: Numerical curves of |h0(t/9)| (blue), |h1(t/3)| (red)
and |h2(t)| (yellow).

and the participation ratio :

Pψ =
1∫

espace
|〈x|ψ〉|4dx

Injecting (3) in the definition of the RMS, we obtain :

∆x(t) =

∞∑
k=1

k2|ψ(k, t)|2

=

∞∑
k=1

k2|
∑
jk≤k

cjk

∫
K

εjke−iεtdµ|2

=

∞∑
k=1

k2|
∑
jk≤k

cjkhjk(t)|2

Note that, even if the hk(t) have periodically spaced
zeroes, this does not imply that ∆x(t) cancels for some t
: in fact, since the zeroes of hk are odd multiples of 3k+1,
the infinite sum in the expression of ∆x insures that, for
any time t, we are always before the first zero of infinitely
many hk.

Using hk(t) ∝ hk−1(t/3), we obtain in first approxima-
tion :

∆x(t) ∝ ∆x(t/3)

which leads to :

∆x(t) = tαG(ln t)

with G periodic.
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We can make a more precise calculation by using

directly the recurrence relation hk(t) = 3−k

2 hk(t/3) +
3−k

2 e−i2t/3
∑k
j=0

(
k
j

)
hj(t/3)2k−j :

∆x(t) =

∞∑
k=1

k2|
∑
jk≤k

cjkhjk(t)|2

=

∞∑
k=1

k2|
∑
jk≤k

cjk
3−jk

2
hjk(t/3) +

3−jk

2
e−i2t/3

jk∑
l=0

(
jk
l

)
hl(t/3)2jk−l(t)|2

≈ 1

b
∆x(t/3) +R(t)

where b can be approximated numerically (there does
not seem to be a simple theoretical value for b) and R(t)
is a sum of terms of the form k2hj(t)

∗hj′(t).

A similar reasoning seems to indicate that the partici-
pation ratio also has a log-periodic feature, however the
calculation is more complicated and I have not yet fin-
ished it.

Study of the Green function

Knowing explicitely the eigenfunctions φε(k) = pk(ε)
allows us to study the static and time dependent Green
functions of the system. In fact, the Green functions
can be expressed in terms of the functions hk(t) and the
moments µk =

∫
K
xkdµ.

The time dependent Green function, defined as
G(k, k′, t) = 〈k|e−iHt|k′〉, is a linear combination of the
hk(t) :

G(k, k′, t) = 〈k|e−iHt|k′〉

=

∫
K

e−iεtφε(k)∗φε(k
′)dµ(ε)

=

∫
K

e−iεtpk(ε)∗pk′(ε)dµ(ε)

=

∫
K

e−iεt
∑
jk≤k

∑
j′k≤k′

cjkcj′kε
jk+jk′dµ(ε)

=
∑
jk≤k

∑
j′k≤k′

hjk+jk′ (t)

The stationary Green function, aka the Fourier
transform of the propagator, defined by G(k, k′, ε) =∫∞
0
dtG(k, k′, t)eiεt, is given by :

G(k, k′, ε) =

∫ ∞
0

dtG(k, k′, t)eiεt

=

∫
K

φε(k)∗φε(k
′)

ε− ε′
dµ(ε′)

=

∫
K

pk(ε)∗pk′(ε)

ε− ε′
dµ(ε′)

=
∑
jk≤k

∑
j′k≤k′

cjkcj′k

∫
K

εjk+jk′

ε− ε′
dµ(ε′)

For ε = 0, we get :

G(k, k′, 0) =
∑
jk≤k

∑
j′k≤k′

cjkcj′k

∫
K

εjk+jk′

ε′
dµ(ε′)

=
∑
jk≤k

∑
j′k≤k′

cjkcj′kµjk+jk′

It can be shown (see [19]) that :

µn ≈ n− ln 2/ ln 3F (lnn/ ln 3)(1 +O(
1

n
))

with F periodic of period one. Therefore :

G(k, k′, 0) ≈
∑
jk≤k

∑
j′k≤k′

cjkcj′k(jk+jk′)
− ln 2/ ln 3F (ln(jk+jk′)/ ln 3)

VII. CONCLUSION

In summary, we derived the analytical expression of
the auto-correlation function C(t) in the case of a triadic
Cantor set energy spectrum, and found that it is of the

form : C(t) =
(
t
τ

)−dK
g(ln(t/τ)) where dK = ln(2)

ln(3) is

the fractal dimension of the triadic Cantor set, τ a time
scale a g a periodic function. We generalize the method
and discuss the connection between the presence of self-
similar structures or features in a physical system and
the typical log-periodic behaviour of certain quantities.

One can also use this method to derive the decay prob-
ability of a two level atom coupled to a fractal spectrum
([15]). We show in this case that Fermi’s golden rule does
not hold, and that the decay probability of the atom from
an energy level Ei to an energy Ef ±∆E is of the form
(5). In this case, the log-periodic oscillations coud be
interpretated as a signature of the topological properties
of the spectrum : a closed, nowhere dense set with no
isolated point.

To finish, let us discuss briefly the question of turbu-
lent diffusion, which was found to be related to fractals.
A powerful tool for the study of turbulent diffusion is
the method of breakdown coefficients, bdc, (see [16] and
references therein). If a turbulent system happens to
have a physically distinguished scale factor (for instance,
unstable eddies breaking up in typically always the same
number of smaller eddies), then the moments of the bdc’s
have a log-periodic behaviour (namelly, a power law mod-
ulated by log periodic oscillations) [16]. It is interesting
to note that these log-periodic oscillations were derived
with a very different approach - starting from a function-
nal relation obtained in the frame of statistical physics.
Thus, two very different physical problems (turbulence
and quantum dynamics) led to a similar observation :
there is a deep connection between the topological prop-
erties of self-similar sets and the occurence of anomalous
log-periodic behaviour of statistical and dynamical quan-
tities.
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Annexe

Scaling property of the measure dµ

Let f be an integrable function defined on [0, 1], with
real or complex values.

We derive here the following property :∫
K

f(x)dµ(x) =
1

2

∫
K

f
(x

3

)
dµ(x)+

1

2

∫
K

f

(
x+ 2

3

)
dµ(x)

By definition :∫
K

f(x)dµ(x) = lim
n→∞

(
2

3

)n ∑
ajn∈Pn

∫ ajn+3−n

ajn

f(x)dx

︸ ︷︷ ︸
In(f(x))

with Pn the set of the left edges of the remaining seg-
ments at the nth step of the construction of the triadic
Cantor set. One can directly check that the sequence
(Pn)n follows the recurrence property :

Pn =
1

3
Pn−1 ∪ {

2

3
+

1

3
Pn−1}

Therefore :

In(f(x)) =

(
2

3

)n ∑
ajn∈Pn

∫ ajn+3−n

ajn

f(x)dx

=

(
2

3

)n ∑
ajn−1

∈Pn−1

∫ ajn−1
/3+3−n

ajn−1
/3

f(x)dx

+

(
2

3

)n ∑
ajn−1

∈Pn−1

∫ 2
3+ajn−1

/3+3−n

2
3+ajn−1

/3

f(x)dx

=

(
2

3

)n ∑
ajn−1

∈Pn−1

∫ ajn−1
+3−n+1

ajn−1

f
(u

3

) du
3

+

(
2

3

)n ∑
ajn−1

∈Pn−1

∫ ajn−1
+3−n+1

ajn−1

f

(
v + 2

3

)
dv

3

=
3

2

1

3

[
In−1

(
f
(u

3

))
+ In−1

(
f

(
2 + v

3

))]

But : limn→∞ In−1
(
f
(
u
3

))
=
∫
K
f
(
u
3

)
dµ(u) and

limn→∞ In−1
(
f
(
2+v
3

))
=
∫
K
f
(
2+v
3

)
dµ(u), so finally :∫

K

f(x)dµ(x) =
1

2

∫
K

f
(x

3

)
dµ(x)+

1

2

∫
K

f

(
x+ 2

3

)
dµ(x)

This completes the proof.

Log-periodicity of functions verifying : f(x) =
1
bf(ax) + g(x)

Let f : R → C verifying a functional equality of the
kind :

f(x) =
1

b
f(ax) + g(x) (9)
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Let’s show that f is of the form :

f(x) = xln(b)/ ln(a)G

(
lnx

ln a

)
with G 1-periodic.

We begin by taking the Mellin transform of (3) (assum-
ing that the domain of definition of the Mellin transforms
of f and g have a non empty intersection) :

Mf =

∫ ∞
0

f(x)xs−1dx

=
1

b

∫ ∞
0

f(ax)xs−1dx+

∫ ∞
0

g(x)xs−1dx

=
1

b

∫ ∞
0

f(u)
(u
a

)s−1 du
a

+Mg(s)

So :

Mf (s) =
Mg(s)

1− a−s

b

and by taking the inverse Mellin transform :

f(x) = 1
2iπ

∫ c+i∞
c−i∞ Mf (s)x−sds

= 1
2iπ

∫ c+i∞
c−i∞

Mg(s)

1− a−sb
x−sds

Assuming now that Mg has no poles, the residue for-
mula finally yields :

f(x) =
∑
n∈Z

[
(s− sn)Mg(s)x

−s

1− a−s

b

]
s=sn

( sn = − ln a
ln b −

2iπn
ln b , poles of

Mg(s)

1− a−sb
)

= xln(b)/ ln(a)
∑
n∈Z

cnx
2iπn/ ln b

︸ ︷︷ ︸
G(x)

which is what we wanted to prove.

Asymptotic behaviour of the coefficients

We prove here that the coefficients in the expression
(??) decay at least like 1

n3/2−d :

|γn sin

(
π

2
(d+

2iπn

ln(3)
− 1)

)
Γ(d+

2iπn

ln(3)
−1)| = O

(
1

n3/2−d

)

To see this, let us start with

| sin(π2

(
d+ 2iπn

ln(3) − 1)
)

Γ(d + 2iπn
ln(3) − 1)| ; we have

([14]) :

lim
n→∞

|Γ(d+
2iπn

ln(3)
−1)| =

√
2πe−(d−1)e−

2π2n
2ln(3)

(
2πn

ln(3)

)d− 3
2

Furthermore, since | sin(π2 (d + 2iπn
ln(3) − 1))| ∼n→∞

e
2π2n
2 ln(3) e1−d/2, one has :

| sin(
π

2
(d+

2iπn

ln(3)
− 1))Γ(d+

2iπn

ln(3)
− 1)| = O

(
1

n3/2−d

)

Let us now study γn. By definition :

γn =

∫
K×K

dµ(x)dµ(y)

|2− x+ y|dn

= lim
k→∞

(
3

2

)2k ∑
ajk ,aj′k∈Pk

∫ ajk+3−k

ajk

∫ aj′
k
+3−k

aj′
k

dxdy

|2− x+ y|dn

with dn = ln 2
ln 3 + 2iπn

ln 3 and Pk = {ajk} the set of the
left edges of the remaining segments after k iterations in
the construction of the triadic Cantor set K. Since K
is embedded in [0, 1], and since for all x, y ∈ [0, 1] the
inequality 2 > x−y holds, one can suppress the absolute
value in the integral. Now, for all x, y ∈ [0, 1], one has :
1 ≤ 2− x+ y ≤ 3, so | 1

|2−x+y|dn | =
1

|2−x+y|d < 1.

Thus :

|γn| <
∫
K×K

dµ(x)dµ(y)

|(2− x+ y)dn |
<

∫
K×K

dµ(x)dµ(y) = 1

and so : |γn| = O(1). Numerically, it seems that we
even have : |γn| = O

(
1
n

)
, but this has not been proven

rigorously.

We therefore obtain finally that, at least :

|γn sin

(
π

2
(d+

2iπn

ln(3)
− 1)

)
Γ(d+

2iπn

ln(3)
−1)| = O

(
1

n3/2−d

)

1 obtained by iteration of the following process : start with
a full square, divide it in 9 equal squares and keep only the

four at the corners of the initial square ; see fig.(2)


