Wavelets Understand Fractals

Michiel Hazewinkel

Abstract. In this paper I discuss and describe the ideas of analysing fractal
structures by means of wavelets as they are presented in [1-6, 8, 29, 30, 35
and elsewhere. The wavelet transform can serve as a kind of mathemati
microscope to see the fractal nature of various objects at a point and to measure
the local scaling symmetry parameters at points.

§1 Fractals (as modeling tools)

Practically everyone, nowadays, knows what a fractal is; more precisely a fractal set.
In one of the more general, rough, definitions it is a set whose Hausdorff-Besicovic
dimension is a nonintegral number; whence the name. Examples are the Cantor set
of dimension }—g—g and the Koch type curve shown in Figure 1 of dimension 1.5.
Both these examples also show “scaling symmetry”: a suitable small part of the
whole picture, when magnified, is just like the original. In Figure 2 that is illustrated
by the first four generations of the Koch type curve shown in Figure 1. On the
left is the so called ‘generator’; the first generation is the boundary of the square
(second from the left); succeeding generations are obtained from the previous ones
by replacing each straight line segment with the generator appropriately scaled
down. In Figure 2 the first four generations thus obtained are shown. The limit
curve as this process is repeated indefinitely is the fractal set itself; the drawings
are of course only crude approximations.

In the following we shall use the word fractal in the sense of something — a
set, a function, a measure, ...— that exhibits local scaling symmetry. This is both
narrower and wider than the rough first indication definition above: narrower in
the sense that scaling symmetry is required; wider in the sense that a figure with
scaling symmetry may well have integral dimension.
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Figure 1. A Koch type curve.
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Figure 2. The first four generations of the Koch type curve.

Thus one says that a function f(z) has local scaling symmetry with local scaling
exponent a at a point zg if (in a suitable sense)

flzo + ax) = a® f(zo + z) as a—0.

A measure p is said to have local scaling symmetry at zo with exponent o if

W)= [ dut)~er
I(zo,e

where I(zo,€) is the interval of length € centered at zo. Note that if a function with
local scaling symmetry at o is used to define a measure, du(y) = f(y)dy, then the
scaling exponent shifts by one. As we shall see below the local scaling exponent of
a measure is like a dimension.

Here is an example: a so-called two-scale Cantor set (see Figure 3): One starts
with the unit interval and uses as a generator the disjoint union of the two subinter-
vals [0,11] and [1—Is, 1], which are given relative weights p; and py (with py+p2 = 1).
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Figure 3. A two-scale Cantor set.
In the illustration above l; = § and Iy = 2. Ifonetakesl; =l = tandp =p = 3

the standard Cantor measure is obtained.

Fractals (fractal sets, fractal measures, fractal functions, ...) have their use as
building blocks to model various phenomena. For instance they are used in computer
graphics to apply “textures” to graphics models; they are used in image compression
schemes, etc.. The most important characteristics of these fractal objects are their
local scaling exponents and local dimensions.

Thus it becomes important to take a natural fractal and try to measure these
local characteristics. It is here that wavelets can play an important role; they can
function as a kind of mathematical microscope to scrutinize the local structure of a
fractal. This should not come as a surprise: wavelets already have a well deserved
reputation as detectors of singularities or patterns (such as edges in images, or
the characteristic sound patterns of submarines (their sound signatures)) also when
these are displaced and/or scaled, and thus wavelets should really be particularly
good at picking up scaling symmetry structures. And so they are as we shall see

below.
§2 Wavelet transform of a multifractal measure (or function)

Define a (slightly generalized) wavelet transform by means of the analyzing wavelet
g(z) of a measure p by the formula

T —

Boua,d) = My(a,0) = [ 9 (232 duta).

Here the exponent n is chosen so as to best reveal the scaling structure of the
measure under consideration. Now suppose that the measure exhibits a scaling
symmetry of exponent a(zo) at the point zo:

p(I(zo, Ae)) ~ X"("’)u(I(xo, €))-
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Then one has [1-6]:

I—.’I:o—/\b

20 =20 dua)

(

— 00~ [o(* ) dute + a0
(:r
(

%IZ) A2 dyy(z + zo)

- (o)™ / g (f—_?_:_b) 2(=0) ()
= A=) "ML (a, 70 +b).

Thus a singularity of the fractal measure p will manifest itself in terms of a cone
like structure in the wavelet transform pointing to the location where the measure
has that particular singularity; moreover the scaling exponent can be measured by
the corresponding power law divergence in the wavelet transform.

The local nature of the wavelet transform is very essential here. Even so the
derivation above is not particularly rigorous; but there are, fortunately, also rigorous
results; (see [20-23]).

This is the essential idea in the wavelet analysis of fractal structures.

§3 Various fractal dimensions

Let a(z) be the local scaling exponent of the measure p at the point z; it is also
called the ‘crowding index’. Let the number of balls of size € that have crowding

index a be proportional to
e—f(@)

as € — 0. It has been shown that f(a) is the Hausdorff-Besicovitch dimension of
the subset of points that have local scaling exponent « [26,39]. The f(c) are closely
related to the Renyi information dimensions Dy, [24]. These are defined as follows:

[_1_1LX_(‘12], X(@) =,

D,=1
9 51—% qg—1 Ine

where p; is the measure of the i-th box when the whole set is chopped up into boxes
of size . The f(a) and D, are related by a Legendre transform, [26]

f(e) =ag—(g—1)D,
olg) = diq[@ ~1)D,]
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In order to calculate or estimate the D, the authors of [26] argue as follows. Divide
up a containing set of the support of the fractal measure into subsets of sizes [;
of measure p; where the l; are constrained to be smaller than I. Write down the
partition function

q
rg,n)=Y %

— [T
It can then be argued that as [ — 0 this sum will remain of order unity if and only
if
7= (g—1)D,.
(For the case [; = € this follows immediately from the definition of the Dj.)
In the case of a set with a well defined recursive structure, such as a multiscale
Cantor set, this can be used to calculate the D;. Indeed let the multiscale Cantor

measure be defined by the lengths I3, ...,l,, and the probabilities p;,...,pm, then
the “level 1” partition function is equal to

p?
P(q’ T) =T (Qa T) = 'l?t'§
the level 2 partition function is equal to
1. )9
Pagr) = S BB _pig 2
i,

(L))"
and more generally
Tn(g,7) =T(g, 7)™
This sequence of numbers will remain of order unity if and only if
L(g,7)=1
and from this 7(g) and hence D, can be calculated.

In the case of the standard Cantor measure, I} = la = %; P =p = %, this
gives the equation
92—
2 =1
3—-1‘
and hence D, = [22 and the same constant value for o and f. The Legendre

transformation equations linking these quantities can here be checked directly.
In the case of the 2-scale Cantor measure defined by

h=% L=% p=% p=%
the equation to be solved is
pi , P}
Tt =1
13

which can be done numerically to yield something like the graph in Figure 4 for D,
as a function of q. Here D_, =1, and D, = 1‘:3‘265 = 0.3684.
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Figure 4. The graph for Dy as a function of g.

§4 Wavelet analysis of multiscale Cantor measures

According to the scaling relation for the wavelet transform M, (a,b) derived in
Section 2 above, the strength a(b) of the singularity of the measure p at the point
b should be reflected in the slope of a log-log plot of |[My(a,b)| versus a. Taking
n = 2 in the wavelet transform, this slope should be i::—a — 2 for the case of the
homogeneous Cantor measure [; =l = %; p1 = p2 = 5. And indeed it is, as can
be seen from the Figure 5. More precisely the plot is the wavy continuously drawn
line which has the predicted average slope (the dotted line) but oscillates around it
with a period of In(2). This corresponds to the fact that the scaling relation

p(I(z0, Ae)) = X*Ep(I(z0,€))

does not hold for all ) but only for a discrete set of values 3™™; n = 1,2,.... This
has been termed lacunarity. (See [11, 12, 25, 36] for discussions of this topic.)

The wavelet transform itself of the homogeneous Cantor measure is depicted in
Figure 6. In this homogeneous case the singularities are everywhere equally strong.

This is no longer the case when we consider an inhomogeneous Cantor measure

such as the one defined by l; = Iz = 3, and py = 3, p = 1. In this case the

strengths of the singularities vary between amin = —%%1—, the strongest singularity
at the left most point, and amax = —%’-;2, the weakest singularity at the right most
point. All this follows readily from the same calculations as above for the 2-scale
Cantor measure defined by l; = %, I = %, and p; = %, po = % , combined with
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Figure 6

direct calculations or use of the Legendre transform formulas to find the local scaling
exponents a(z).

Figure 7 shows the log-log plot of the wavelet transform at the point b that is
characterized by the labeling sequence (kneading sequence)

RRRRRRRRLL...LL....
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Figure 8

For larger a (on the right in the figure) the average slope is indeed that of the
weakest singularity while for small enough a (on the left in the figure) the slope is
that of the strongest singularity corresponding to the persistent choice of L in the
labeling of the point b after the initial eight R’s.

The period of oscillation in the one but last figure is (of course) In 3.

The wavelet transform itself of this inhomogeneous Cantor measure is depicted
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in Figure 8. It very clearly shows the differences in the scaling exponents of the
measure at the different points of the underlying fractal set.
These last four figures come from (the preprint versions of) [4,5].

§5 Wavelet analysis of turbulence and various routes to chaos

Wavelets, more precisely the wavelet transform have also been applied to various
routes to chaos such as the period doubling bifurcation cascade, the transition from
quasi-periodicity, etc. These analyses, (see e.g. [5,6] for more detail), confirm the
fractal nature of these phenomena. Still more interestingly wavelet analysis has
been applied to fully developed turbulence (the Richardson cascade) using real life
windtunnel data, [3], and the results do point to the fractal nature of fully developed
turbulence.

Acknowledgments. Figures 5-8 were reproduced from Figures 3, 4, 6, 7 in [5]. I
thank Springer-Verlag for the permission.
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