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Abstract

For a regular harmonic structure on a post-critically finite (p.c.f.) self-similar fractal, the
Dirichlet problem for the Laplacian can be solved by integrating against an explicitly given
Green’s function. We give a recursive formula for computing the values of the Green’s function
near the diagonal, and use it to give sharp estimates for the decay of the Green’s function
near the boundary. We present data from computer experiments searching for the absolute
maximum of the Green’s function for two different examples, and we formulate two radically
different conjectures for where the maximum occurs. We also investigate a local Green’s function
that can be used to solve an initial value problem for the Laplacian, giving an explicit formula
for the case of the Sierpinski gasket. The local Green’s function turns out to be unbounded,
and in fact not even integrable, but because of cancelation, it is still possible to form a singular
integral to solve the initial value problem if the given function satisfies a Hölder condition.
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1. INTRODUCTION

At the same time that scientists have been using
fractals to model objects in the real world, mathe-
maticians have been developing a theory of analysis
on a special class of fractals, to provide a frame-
work in which to describe the fractal analogs of the
differential equations of mathematical physics. The
self-similar fractals considered in this mathematical
theory are too regular to serve as models for natural
objects, but they provide a first step in the direc-
tion of understanding more realistic examples. In
addition, it has been recently suggested by Hohlfeld
and Cohen (1992)1 that it might be advantageous to
construct antennae in the shape of these self-similar
fractals. Thus the mathematical theory may prove
useful in understanding the physical properties of
man-made objects. In this paper we will deal only
with mathematical developments, presenting both
theoretical and experimental results.

For a large class of self-similar fractals K, called
post-critically finite (p.c.f.), the first author has de-
veloped a theory of Laplacians.2–9 The essential
ingredients are a harmonic structure, which gives
rise to a Dirichlet form E(u, v), and a measure
µ. The existence of harmonic structures on p.c.f.
self-similar fractals is still an open question (see
Refs. 10–12 for some partial results). In the follow-
ing discussion, we assume that a harmonic structure
is given. The Laplacian ∆µ may then be defined by
the identity

−E(u, v) =

∫
K
v∆µudµ (1.1)

for v in the domain of E and vanishing on the
boundary of K (denoted V0). The theory of these
Laplacians has been extensively developed. The
references give a sampling of some papers in this
area.2–25

One of the key results in Kigami (1993)3 is the
existence of an explicit Green’s function G(x, y),
depending only on the harmonic structure, that can
be used to solve the Poisson’s problem with Dirich-
let boundary conditions

−∆µu = f on K (1.2)

u|V0
= 0 (1.3)

for continuous f via the integral

u(x) =

∫
K
G(x, y)f(y)dµ(y). (1.4)

For a regular harmonic structure, which is the case

we will be concerned with, G is a bounded con-
tinuous function and points have positive capacity,
so the theory is more akin to the second derivative
on an interval than a Laplacian on a manifold of
dimension greater than one. The unit interval is
the simplest example of a p.c.f. fractal, generated
by the contractions F1x = 1

2x and F2x = 1
2x + 1

2 .
For a general p.c.f. self-similar fractal K, we have
contractions F1, . . . , FN such that the images FjK
have only finite intersections. The boundary of K
is V0, the set of all pre-images of these intersec-
tion points, also assumed to be finite. We form
a sequence of graphs {Γj} with vertices {Vj} where
each Vj is the union of the images of Vj−1 with edges
that describe the connectivity of the images of K.
From a single Dirichlet form E0 on V0 and positive
constants r1, . . . , rN with each rj < 1 (this is the
regularity assumption), we generate a sequence of
Dirichlet forms Ej on Vj which satisfy a compata-
bility condition (this is a hypothesis), and in the
limit generate a Dirichlet form E on K which is
self-similar:

E(u, v) =
N∑
j=1

r−1
j E(u ◦ Fj , v ◦ Fj) . (1.5)

In the case of the unit interval for the choice r1 =
r2 = 1/2, we obtain the usual Dirichlet form∫ 1

0
u′(x)v′(x) dx .

The reader should consult Refs. 3, 9, 13 or 14 for
the details of the construction.

The construction of the Green’s function in Ref. 3
goes as follows. We take the Dirichlet form E1 on V1

and restrict it to the new points V1\V0 to obtain a
matrix X1 which turns out to be invertible, and we
define a matrix G by G = −X−1

1 . The entries of G
are denoted Gp,q for p, q ∈ V1\V0, and it turns out
that they are nonnegative. For any particular har-
monic structure it is not difficult to compute these
entries explicitly. We use these entries to construct
a function

Ψ(x, y) =
∑
p,q

Gp,q ψp(x)ψq(y) (1.6)

where ψp(x) denotes the continuous function on K
whose restrictions to Fj(K\V0) are harmonic satis-
fying ψp(q) = δpq for all q ∈ V1 (in particular ψp
vanishes on all points in V0). The Green’s func-
tion will be a weighted sum of scaled copies of the
function Ψ(x, y).



Green’s Functions on Fractals 387

It is convenient to use notation for iterated prod-
ucts of the mappings {Fj} based on words w on the
letters {1, . . . , N}. If w = (w1, . . . , wm) is a word
of length m, we write Fw = Fw1 ◦ Fw2 ◦ · · · ◦ Fwm
and rw = rw1rw2 · · · rwm . We also write Kw =
FwK. The Green’s function is given by

G(x, y) =
∑

rwΨ(F−1
w x, F−1

w y) (1.7)

where the sum extends over all words (including the
empty word) such that x and y both belong to Kw.
Note that for x 6= y the sum is finite. It is also finite
on the diagonal if x = y is a point in Vm for some
m, for then F−1

w x is a boundary point where Ψ van-
ishes, when the length of w exceeds m. In any case,
the regularity assumption implies that the sum con-
verges uniformly to a continuous function.

The main purpose of this paper is to extract as
much information as possible from the representa-
tion (1.7). We note that this is a completely ex-
plicit algorithmic formula. We use it to generate
numerical data for two basic examples, the Sierpin-
ski gasket and the pentagasket (or pentakun). We
use this data to expermentally explore the question
of finding the absolute maximum value of G(x, x)
(the maximum of G(x, y) is easily seen to lie on the
diagonal) and the location of the points where it is
attained. We formulate two conjectures of radically
different content: for the pentagasket the maximum
appears to occur at points in V1, while for the Sier-
pinski gasket it appears to occur at points not in
any Vm, but which have periodic addresses. The
data and these conjectures are reported in Sec. 3.

We also obtain a different representation of
G(x, y) for x and y in Vm which are nearby (be-
longing to the same Kw for a word w of length
m). We call this the near diagonal formula. This
is a recursive algorithm similar in spirit to some
of the algorithms in Dalrymple et al. (1999)15 for
computing harmonic and biharmonic functions and
eigenfunctions of the Laplacians, although it is a
bilinear rather than linear algorithm. We use this
result to obtain sharp estimates on the decay of the
Green’s function in a neighborhood of a boundary
point. These results are in Sec. 2.

Section 4 is devoted to a related function, the
local Green’s function Gz(x, y), that can be used
to solve (1.2) with vanishing “initial conditions”
at x = z. The local Green’s function was intro-
duced in Strichartz (2000)16. Here we compute
Gz(x, y) explicitly for the Sierpinski gasket with
z as the boundary point, and we discover that it
becomes unbounded as y approaches z. In fact it

is not even integrable as a function of y, but it
does have cancelation properties that enable us to
define the analog of (1.4) as a singular integral
when f is assumed to be Hölder continuous of any
order. We then prove that this integral does provide
a solution (the uniqueness was proved in Ref. 16) to
the initial value problem.

One of the basic results of the theory is that
a harmonic function on K is determined from its
values on the boundary by a recursive algorithm
that is local in nature. There exist matrices Ai for
i = 1, . . . , N , easily determined from the harmonic
structure, such that

h|FiV0
= Aih|V0

(1.8)

for any harmonic function h, and more generally,

h|FwFiV0
= Aih|FwV0

(1.9)

for any word w. Of course (1.9) is an abbreviation
for

h(FwFivj) =
∑
k

(Ai)jkh(Fwvk) . (1.10)

The matrix Ai has non-negative entries and row
sums equal to 1 (since constants are harmonic
functions). We need more specific information in
the case when vi is the fixed point of Fi (we arrange
the labeling so the fixed point and the mapping have
the same index). In that case the i-th row of Ai is
δji, and we denote by Ãi the submatrix obtained by
deleting row and column i. We assume that K\V0

is connected which implies that harmonic functions
satisfy the strong maximum principle. It follows
that Ãi is irreducible. The argument is simply that
the k-th row of Ãmi just gives the values of a certain
harmonic function (the one with h(vj) = δjk) on
Fmi V0, and for large enough m the only boundary
point in Fmi V0 is vi.

The matrix Ai has the trivial eigenvalue 1, and all
other eigenvalues of Ai are eigenvalues of Ãi. The
following result was used in Ref. 16, but we give a
brief proof here since it does not appear explicitly
in the literature.

Lemma 1.1. If Fivi = vi, then the largest eigen-
value of Ãi (hence the second largest eigenvalue of
Ai) is ri.

Proof. Let h be the harmonic function such that
{h(vj)} is the eigenvector associated to the second
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largest eigenvalue λ of Ai. Then h(vi) = 0 and
h(vj) > 0 for j 6= i. Now the normal derivative of h
at vi exists:3

∂nh(vi) = lim
m→∞

r−mi
∑
j 6=i

cj(h(vi)− h(Fmi vj))

(1.11)

for certain positive coefficients cj , and for harmonic
functions it is not necessary to take the limit. Now
h(vi) − h(Fmi vj)) = λm(h(vi) − h(vj)) so if λ > ri
the limit cannot exist, while if λ < ri the limit is
0. But the individual terms are all negative, so the
limit cannot be 0. �

Aside from the trivial example of the unit inter-
val, the simplest example of a harmonic structure on
a p.c.f. fractal is the standard harmonic structure
on the Sierpinski gasket. We take V0 = {v1, v2, v3}
to be the vertices of an equilateral triangle in the
plane, and Fix = 1

2(x+vi), i = 1, 2, 3, and the Sier-
pinski gasket is the fractal they generate. To get
the standard harmonic stucture we take E0(u, u) =∑
j<k(u(vj)−u(vk))2 and r1 = r2 = r3 = 5/3. Then

E(u, u) = lim
m→∞

(
5

3

)m ∑
x∼my

(u(x) − u(y))2 (1.12)

where x ∼m y means there is an edge joining x and
y in Γm. In this example,

A1 =


1 0 0

2

5

2

5

1

5

2

5

1

5

2

5


and the other Ai’s are obtained by permutation
from A1. Also,

Gp,q =


9

50
p = q

3

50
p 6= q

for p, q ∈ V1\V0. The standard Laplacian is ob-
tained by using the standard harmonic structure
and the normalized Hausdorff measure. It may be
given by the pointwise formula2

∆u(x) =
3

2
lim
m→∞

5m
∑
y∼mx

(u(y) − u(x)) (1.13)

for any vertex point x (if x is not a boundary point
there are exactly four neighbors in each Γm for m

large enough). This example is studied in detail in
Refs. 2, 15 and 17

In the trivial case of the unit interval, the Green’s
function is well-known:

G(x, y) =

{
x(1− y) if x ≤ y
y(1− x) if y ≤ x.

(1.14)

But even in this case, (1.7) gives a new perspec-
tive. Let H(t) denote the “hat function” H(t) =
(1

2 − |t −
1
2 |)+ that is piecewise linear and contin-

uous with H(1/2) = 1/2, H(0) = H(1) = 0 and
support in the unit interval. Then (1.7) takes the
form

G(x, y) =
∞∑

n=−∞

∞∑
k=0

2−kH(2kx− n)H(2ky − n)

=
∑

k∈A(x,y)

2−kH(〈2kx〉)H(〈2ky〉)
(1.15)

where A(x, y) = {k ≥ 0 : [2kx] = [2ky]}. Fix a
value of y, say with y ≥ 1

2 . Then H(x)H(y) =

G(x, y) when x ≤ 1
2 , so G(x, y) − H(x)H(y) is

supported on [1
2 , 1]. In particular, (1.15) holds for

x ≤ 1
2 with just one term in the sum. For x > 1

2 ,
we rescale and iterate the argument.

On the diagonal we have G(x, x) = x(1 − x), a
smooth parabolic arch. There are now an infinite
number of terms in (1.15) for nondyadic x, but each
of them has nondifferentiable corner points;

H(x)2 = x2 − x+
1

2
− 2

∣∣∣x− 1

2

∣∣∣ on [0, 1] .

We have somewhat similar behavior on the Sierpin-
ski gasket.

2. THE NEAR DIAGONAL
FORMULA

In this section, we derive a formula for G(x, y) when
x and y are vertices on the boundary of a cell FwK.
Since this requires x and y to be close together, we
call it the near diagonal formula. For each word w,
we let Gw denote the N0 ×N0 matrix

(Gw)jk = G(Fwvj , Fwvk) . (2.1)

Note that for the empty word the corresponding
matrix is zero. The near diagonal formula gives
an inductive scheme for computing Gw. For this it
suffices to show how to compute Gwi in terms of
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Gw. For this we will need two N0×N0 matrices, Ai
already defined by (1.8) and Bi defined by

(Bi)jk = GFivj , Fivk (2.2)

for 1 ≤ i ≤ N .

Theorem 2.1. (Near diagonal formula) For every
word w and every i, 1 ≤ i ≤ N,

Gwi = AiGw
tAi + rwBi . (2.3)

Proof. By (1.7) we have

G(FwmFwm−1 · · · Fw1vj , FwmFwm−1 · · · Fw1vk)

= Ψ(FwmFwm−1 · · · Fw1vj, FwmFwm−1 · · · Fw1vk)

+ rwmΨ(Fwm−1 · · · Fw1vj , Fwm−1 · · · Fw1vk)

+ · · ·+ rwm · · · rw2Ψ(Fw1vj, Fw1vk) (2.4)

and similarly

G(FwmFwm−1 · · · Fw1Fivj , FwmFwm−1 · · · Fw1Fivk)

= Ψ(FwmFwm−1 · · · Fw1Fivj , FwmFwm−1 · · · Fw1Fivk)

+ · · ·+ rwm · · · rw2Ψ(Fw1Fivj , Fw1Fivk)

+ rwm · · · rw1Ψ(Fivj , Fivk) . (2.5)

Now we claim the last summand in (2.5) is rwBi,
and for this it suffices to show that

Ψ(Fivj , Fivk) = GFivj , Fivk . (2.6)

But by (1.6)

Ψ(Fivj , Fivk) =
∑

Gpqψp(Fivj)ψq(Fivk) (2.7)

where p, q range over V1. But ψp(q) = δpq for
p, q ∈ V1, so the only nonzero summand in (2.7)
corresponds to the choice p = Fivj and q = Fivk,
and this establishes (2.6). Comparing the remain-
ing terms in (2.4) and (2.5), the only difference is
the occurrence of Fi before vj and vk in (2.5). Thus
to complete the proof of (2.3) it suffices to show
that for any word w,

Ψ(FwFivj, FwFivk)

=
∑
`

∑
n

(Ai)j`(Ai)knΨ(Fwv`, Fwvn) . (2.8)

However, from (1.6)

Ψ(Fwx, Fwy) =
∑
p,q

Gpqψp(Fwx)ψp(Fwy) (2.9)

and ψp(Fwx) is a harmonic function of x for x in
FiK. Thus

ψp(FwFivj) =
∑
`

(Ai)j`ψp(Fwv`) and

ψp(FwFivk) =
∑
n

(Ai)knψp(Fwvn)
(2.10)

by (1.10). Now substitute (2.10) in (2.9) with
x = Fivj and y = Fivk to obtain (2.8). �

We can iterate (2.3) to obtain the explicit formula

Gw =
m∑
k=1

rw1 · · · rwk−1
Awm

· · · Awk+1
Bwk

t(Awm · · · Awk+1
) (2.11)

for w = (w1, . . . , wm), where it is understood in
(2.11) that the k = 1 term has no r factors, and
the k = m term has no A factors. A special case is
when w = (j, . . . , j); then

Gw =
m∑
k=1

rk−1
j Am−kj Bj(

tAj)
m−k. (2.12)

We can use (2.12) to understand the boundary be-
havior of the Green’s function.

We first make the mild assumption that every
boundary point is the fixed point of one of the map-
pings Fj (see Remark 2.4 for the general case). Let
us label the mappings so that Fjvj = vj for 1 ≤
j ≤ N0. For simplicity of notation we take j = 1.
Then the matrix A1 has first row (1, 0, . . . , 0), and
B1 has zeros in the first row and column since F1v1

is a boundary point. Let Ã1 and B̃1 denote the
(N0 − 1)× (N0 − 1) submatrices obtained by delet-
ing the first row and column. Similarly, let G̃m
denote the matrix (Gw)jk with w = (1, . . . , 1) (m
ones) and 2 ≤ j, k ≤ N0. Then (2.12) becomes

G̃m =
m∑
k=1

rk−1
1 Ãm−k1 B̃1(tÃ1)m−k. (2.13)

Theorem 2.2. For 1 ≤ j ≤ N0, we have

G|Fmj K×Fmj k = O(rmj ) as m→∞ . (2.14)

Proof. Without loss of generality we may take
j = 1. First we prove the estimate G̃m = O(rm1 ),
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which is (2.14) for boundary points on Fmj K. This
follows easily from (2.13) if we have the estimate

‖Ãk1‖l ≤ crk1 (2.15)

for then each summand is bounded by a multiple
of r2m−k

1 . Now Ã1 is a matrix with strictly posi-
tive entries by the maximal theorem for harmonic
functions. By Lemma 1.1, the largest eigenvalue is
exactly r1. By the Perron-Frobenius theorem, this
is a simple eigenvalue and all other eigenvalues have
strictly smaller modulus; this implies (2.15).

To obtain the estimate (2.14) at interior points,
it suffices to estimate G(x, x) for x any vertex point
in Fmj K. That means we need an O(rm1 ) bound for
the matrices Gw for all words w with wj = 1 for
1 ≤ j ≤ m. This is an easy consequence of re-
peated use of (2.3) together with the observation
that there is a uniform bound on the norms of all
products of the Aj matrices (every entry in such a
product lies in [0, 1] by the maximal theorem for
harmonic functions). Thus

‖Gw‖ ≤ crm1 (1 + rwm+1 + rwm+1rwm+2 + · · · )

and the expression in parenthesis is bounded by a
convergent geometric series. �

It is easy to see that the estimate (2.14) is sharp.
For the case of the standard harmonic structure on
the Sierpinski gasket, we can give a more precise
statement.

Theorem 2.3. For the standard harmonic struc-
ture on the Sierpinski gasket,

G(Fm1 v2, F
m
1 v2)

= G(Fm1 v3, F
m
1 v3)

= c1
(3

5

)m
− c2

(3

5

)2m
− c3

(1

5

)2m
(2.16)

and

G(Fm1 v2, F
m
1 v3) = c4

(3

5

)m
− c2

(3

5

)2m
+ c3

(1

5

)2m

(2.17)

for c1 = 51
140 , c2 = 3

10 , c3 = 9
140 and c4 = 33

140 .

Proof. In this case r1 = 3/5,

Ã1 =
1

5

(
2 1

1 2

)
and B̃1 =


9

50

3

50
3

50

9

50

 .

We easily compute

Ãk1 =
1

2
5−n

(
3k + 1 3k − 1

3k − 1 3k + 1

)

hence

Ãk1B̃1
tÃk1 =

3

50
5−2k

(
2 · 32k + 1 2 · 32k − 1

2 · 32k − 1 2 · 32k + 1

)
.

Thus (2.13) yields

3

50

(
2

m∑
k=1

(3

5

)2m−k
±

m∑
k=1

3k

52m−k

)
(2.18)

for the left sides of (2.16) and (2.17), respectively.
By evaluating these geometric progressions, we ob-
tain the right sides of (2.16) and (2.17). �

Remark 2.4. We can also obtain a version of The-
orem 2.2 without the assumption that every vertex
is a fixed point of a mapping. Under the p.c.f. as-
sumption, the most general situation would be a
boundary point, call it v1, such that there exist
words w and w′ and another boundary point, call it
v2, with v1 = Fw′v2 and v2 = Fwv2. Then Fw′F

m
w K

gives a system of neighborhoods of v1, and in place
of (2.14) we have

G|Fw′Fmw K×Fw′Fmw K = O(rmw ) . (2.19)

The proof is essentially the same, so we omit the
details.

3. MAXIMUM VALUES
(EXPERIMENTAL RESULTS)

We have calculated the Green’s function for two ex-
amples using a computer implementation of (1.7).
In this section we present some of this data in graph-
ical form, and we address the problem: for which
points x does G(x, x) attain its maximum value?
The first example is the standard harmonic struc-
ture on the Sierpinski gasket. In Fig. 3.1, we show
the graph of G(·, y) for two different points y. The
first is y = F 2

1 v2, a point in V2, while the second is a
point in V8 (y = F3F2F1F2F3F1F2F3v1) but not in
V7. We know that G(·, y) is harmonic in the com-
plement of y and assumes its maximum value at the
point y. This is evident from the graphs. We notice
a sharper peak in the first case. The second case
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(a)

(b)

Fig. 3.1 The graph of G(·, y) on the Sierpinski gasket.
(a) y = F 2

1 v1 (in V2) (b) y = F3F2F1F2F3F1F2F3v1

(in V8).

is close to the behavior for y equal to a nonvertex
point, and we do expect a qualitative difference for
nonvertex as opposed to vertex points.

Figure 3.2 shows the graph of G(x, x) calculated
for all points in V9 [this requires the sum over words
of length up to nine in (1.7)]. In Fig. 3.3, we
show the first 4 partial sums of (1.7) over words of
length ≤ k. It is quite striking that the sharp cusps

Fig. 3.2 The graph of G(x, x) on the Sierpinski gasket
(calculated at all points in V9).

that appear in the partial sums become masked in
the infinite sum (of course our “infinity” is only
nine). Figure 3.4 shows the restriction of G(x, x) to
the line segment joining two boundary points. This
suggests that all the upward pointing cusps have
been smoothed out, but there are many downward
pointing cusps. At present we have no explanation
for this observed behavior.

To find the maximum of G(x, x), we compute
the locations of the maxima when x is restricted to
Vm for values m = 1, 2, . . . , 10. The results show
a striking pattern. For m ≥ 3, there are exactly
six maxima, obtained from any one of them by the
dihedral-3 symmetry group. The location of each
maximum follows a spiral pattern, as m varies, one
being the sequence

F3F2F1v2 , F3F2F1F2v3 ,

F3F2F1F2F3v1 , F3F2F1F2F3F1v2 ,

F3F2F1F2F3F1F2v3 , F3F2F1F2F3F1F2F3v1 ,

F3F2F1F2F3F1F2F3F1v2 ,

F3F2F1F2F3F1F2F3F1F2v3 ,

the others being obtained by a permutation of the
indices. Note that after the mappings F3F2, the re-
maining indices follow the sequence 1, 2, 3 repeat-
edly. This leads to the following conjecture.

Conjecture 3.1. The maximum value of G(x, x)
on the Sierpinski gasket is attained at the point
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Fig. 3.3 The first four partial sums of the series (1.7) for the Sierpinski gasket.

x = F3F2x0, where x0 is the fixed point of the map
F1F2F3, at points symmetric to x, and at no other
points.

In Table 3.1, we present the maximum values
Mm of G(x, x) over Vm, along with the differences
∆Mm = Mm−Mm−1 and the ratio ∆Mm/∆Mm−1,
suggesting the possibility that this ratio approaches
3/5 as m→∞.

We are able to compute exactly the value G(x, x)
at the point x described in Conjecture 3.1. Because
of the eventual periodicity of the points F−1

w x, the

expression (1.7) is simply

G(x, x) = Ψ(F3F2x0, F3F2x0) +
3

5
Ψ(F2x0, F2x0)

+
∞∑
n=0

(3

5

)3n(( 3

n

)2
Ψ(x0, x0)

+
(3

5

)3
Ψ(F2F3x0, F2F3x0)

+
(3

5

)4
Ψ(F3x0, F3x0)

)
(3.1)
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Fig. 3.4 The restriction of G(x, x) to the line segment join-
ing two boundary points of the Sierpinski gasket.

Table 3.1

m Mm ∆Mm ∆Mm/∆Mm−1

1 0.18 — —
2 0.1848 0.0048 —
3 0.188448 0.003648 0.76
4 0.1927053 0.0042573 1.167023
5 0.1948998 0.002945 0.6917529
6 0.1916376 0.0012378 0.4203056
7 0.1969737 0.0008361 0.6754726
8 0.197445 0.0004713 0.5636885
9 0.1977288 0.0002838 0.6021642
10 0.1979022 0.0001734 0.6109936

and
∑∞
n=0

(
3
5

)3n
= 125/98. Also, (1.6) on the diag-

onal is

Ψ(y, y) =
3∑
j=1

( 9

50

)
ψj(y)2

+
3∑
j=1

( 3

25

)
ψj(y)ψj+1(y) (3.2)

(interpreting ψ4 = ψ1). Thus we need to evalu-
ate ψj(y) for each of the five values of y that oc-
cur in (3.1). It turns out that we can do this
exactly. For the point x0 we note that x0 =
limn→∞ (F1F2F3)nvj for any j, so by repeated use
of (1.9) limn→∞(A3A2A1)nh|V0 will be the constant

vector with entries equal to h(x0), for any harmonic
function h. But

A3A2A1 =

 68/125 32/125 1/5

62/125 37/125 26/125

13/25 6/25 6/25


which has right eigenvector (1, 1, 1) and left eigen-
vector (10/19, 5/19, 4/19) with eigenvalue 1, so by
the Perron-Frobenius theorem we have

lim
n→∞

(A3A2A1)n =
1

19

 10 5 4

10 5 4

10 5 4

 .

This means h(x0) = (10h(v1) + 5h(v2) + 4h(v3))/19
for any harmonic function. A simple computation
then shows

Ψ(x0, x0) = Ψ(F3x0, F3x0)

= Ψ(F2F3x0, F2F3x0) = 3/38

Ψ(F2x0, F2x0) = 642/9025

and

Ψ(F3F2x0, F3F2x0) = 38097/451250 .

From (3.1,) we find

G(x, x) =
178839

902500
≈ 0.1981595 . . . .

The other example we consider is the penta-
gasket (Fig. 3.5), generated by five similarities with
contraction ratio ρ = τ−2 (τ is the golden ratio√

5+1
2 ), and fixed points the five vertices of a regu-

lar pentagon. The value of ρ is chosen so that the
images FjK intersect at vertices of the correspond-
ing pentagons. To get a Dirichlet form with the full
dihedral-5 symmetry group, we must take

E0(u, u) =
5∑
j=1

p1(u(vj)− u(vj+1))2

+
5∑
j=1

p2(u(vj)− u(vj+2))2

(using mod 5 notation for indices), and all rj are
equal. In fact, it is known18 that the values

p1 =

√
161− 7

16
, p2 =

15−
√

161

16
,

r =

√
161− 9

8
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Fig. 3.5 The pentagasket.

Fig. 3.6 A portion of the graph of G(x, x) on one-fifth of
the pentagasket (computed on V6).

yield a unique harmonic structure with these
symmetries.

We computed G(x, x) using (1.7). Figure 3.6
shows a portion of the graph on V6 restricted to
F1K. By symmetry the graph looks like the same
on each FjK. A search for the maximum value on
Vm for m ≤ 6 shows that it occurs at ten points in
V1 of the form Fj+1vj and Fj−1vj that lie along the
outer edges of the pentagon.

Conjecture 3.2. For the pentagasket, the max-
imum value of G(x, x) occurs at x = Fj+1vj or
Fj−1vj and no other points.

To test this conjecture we did a spot check of
points in Vm for m ≤ 18, looking at all points within
FwV0 for |w| = m−1 where FwV0 contains the max-
imum for Vm−1.

4. LOCAL GREEN’S FUNCTIONS

On the unit interval we can solve the equation
−u′′ = f subject to the initial conditions u(z) =
u′(z) = 0 at a given point z via the integral

u(x) =

∫ x

z
(y − x)f(y)dy .

Thus the function

Gz(x, y) =


y − x if z < y < x

x− y if x < y < z

0 otherwise

(4.1)

serves as a local Green’s function for this problem.
We would like to have an analogous local Green’s
function for all harmonic structures. We can avoid
defining the precise local vanishing conditions by
considering the problem −∆µu = f where f van-
ishes in a neighborhood of z, and u is also required
to vanish in a neighborhood of z. Of course we al-
ready have a solution to −∆µv = f , namely

v(x) =

∫
G(x, y)f(y)dµ(y)

so u = v−h will solve our problem if h is a harmonic
function and h = v on a neighborhood of z. But v
is already harmonic on the neighborhood of z where
f vanishes, so the question is one of extendability
of harmonic functions from neighborhoods of z. In
general, this problem may only have a local solu-
tion, so the local Green’s function is only locally
defined.

Here we will examine the simplest situation, in
which the local Green’s function is in fact globally
defined. Assume z is a boundary point that is a
fixed point of a mapping Fi, and assume that the
matrix Ai is invertible. This gives us a system of
neighborhoods Fmi K of z with the property that
harmonic functions on Fmi K are uniquely extend-
able to harmonic functions on K. Then the unique
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solution to our problem can be represented as an
integral

u(x) =

∫
Gz(x, y)f(y)dµ(y) (4.2)

against a local Green’s function Gz(x, y) that can
be written

Gz(x, y) = G(x, y) +Hz(x, y) (4.3)

where Hz(x, y) is characterized by the condition
that for y 6= z, Hz(·, y) is the harmonic function
satisfying

Hz(x, y) = −G(x, y) (4.4)

for x in a neighborhood of z (specifically for x ∈
Fmi K when m is chosen large enough that y /∈
Fmi K). In particular, Gz(·, y) vanishes in a neigh-
borhood of z. Note that this neighborhood varies
with y. Hz(x, y) is not defined for y = z, but in
the integral (4.2) it is assumed that f vanishes near
z. Also Hz and Gz depend only on the harmonic
structure, and not on the choice of measure.

In contrast to the tame behavior of Gz in (4.1),
we will see that Gz(x, y) can be unbounded as
y → z. We do this for the standard harmonic
structure on the Sierpinski gasket, but it seems
likely that this behavior is typical. For simplicity of
notation we take z = v1. The space of har-
monic functions on Fmi K is 3-D, as these are
just the restrictions to Fm1 K of global harmonic
functions. However, on the closure of comple-
ment of Fm1 K there is a 4-D space of harmonic
functions. The boundary of this set consists of
the four points v2, v3, Fm1 v2, Fm1 v3, and a har-
monic function is uniquely determined by speci-
fying its values at these boundary points. It is
easy to say exactly what this space of harmonic
functions is: in addition to restrictions of the 3-D
space of global harmonic functions, it is spanned
by a harmonic function on K\{v1} that has a
pole at v1. This function, which was described in
Ref. 15, is illustrated in Fig. 4.1. We denote it
by h4.

In terms of these functions, we can give the ex-
plicit solution to (4.4). Take m = 1 for simplic-
ity. For any y in the complement of F1K, we know
that Hz(·, y) is harmonic in F1K, hence can be
expressed as a linear combination of the standard
basis {hj(x)}j=1,2,3 of global harmonic functions
characterized by hj(vk) = δjk. The coefficients

Fig. 4.1 The values of the harmonic function h4 with a
pole at v1.

depend on y, so

Hz(x, y) =
3∑
j=1

aj(y)hj(x) . (4.5)

But from (4.4), we know Hz(x, ·) is harmonic on
the complement of F1K for each fixed x ∈ F1K.
This implies aj(y) is harmonic in the complement
of F1K. Thus we must have

Hz(x, y) =
3∑
j=1

4∑
k=1

ajkhj(x)hk(y) (4.6)

for certain coefficients ajk. However, if we impose
vanishing conditions and symmetry, we can reduce
the number of coefficients from 12 down to 2. In-
deed we know that G(x, y) vanishes if x = v1 or
y = v2, v3, so the same is true for Hz(x, y). Also
G(x, y) is preserved if x and y are both reflected
in the line through v1 and the midpoint between
v2 and v3. The vanishing requires that we use only
h2(x) and h3(x), and h1(y) and h4(y)−h2(y)+h3(y).
The reflection symmetry requires that

Hz(x, y) = A(h2(x) + h3(x))h1(y)

+B(h2(x)− h3(x))(h4(y)

− h2(y) + h3(y)) (4.7)

for some constants A and B. The determination
of the constants requires a computation. The un-
boundedness of Gz hinges on the constant B not
vanishing.
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Theorem 4.1. (4.7) holds for all y 6= z for A =
−1

2 and B = −3/28. In particular, Hz and Gz are
unbounded.

Proof. If y 6= z then y is in the complement
of Fm1 K for some m. The same argument as
above shows that we must have (4.7) holding for
x ∈ Fm1 K. But Hz(·, y) is a global harmonic func-
tion, so (4.7) holds for all x. It is clear that by
consistency the constants must be independent of
m. So we take m = 1 and use the values

G(qj , qk) =


9

50
j = k

3

50
j 6= k

(4.8)

where q1 = F2v3 = F3v2, q2 = F1v3 = F3v1,
q3 = F1v2 = F2v1 are the vertices in V1\V0 (in
our notation qj is opposite vj). Note that we may
take x = q2 or q3 but not q1 since q1 is not in F1K.
Combining (4.4), (4.7) and (4.8) yields six equa-
tions, but by symmetry there are three identical
pairs. Since

h1(q1) = h2(q2) = h3(q3) = 1/5

h1(q2) = h1(q3) = h2(q3) = h3(q2) = 2/5

h4(q1) = 0, h4(q2) = −3, h4(q3) = 3

we end up with the three equations

3

25
A = − 3

50
,

6

25
A+

14

25
B = − 9

50
,

6

25
A− 14

25
B = − 3

50
.

These equations are consistent and yield the desired
values. �

We have much more precise information about
the singularity of Hz. We see that it is contained en-
tirely in the odd part in y (with respect to the reflec-
tion symmetry). If we consider the points y = Fm1 q1

along the symmetry line, then Gz(x, y) will remain
uniformly bounded. Taking y = Fm1 q2, Gz(x, y)
will grow at the rate 3m for any x not on the sym-
metry line. This is illustrated in Figs. 4.2 and 4.3.

It is easy to see that∫
Fm+1

1 K\Fm1 K
|h4(y)|dµ(y)

is constant, since h4 is multiplied by three and µ
is divided by three as we change m. Thus Gz(x, ·)

Fig. 4.2 The graphs of Gz(·, y) for z = v1 and y = Fm1 q1
for m = 1, 2, 3.
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Fig. 4.3 The graphs of Gz(·, y) for z = v1 and y = Fm1 q2
for m = 0, 1, 2.

is not integrable. However, if we assume that f is
Hölder continuous of any order, then the integral
(4.2) exists as a singular integral

u(x) = lim
k→∞

∫
K\F k1 K

Gz(x, y)f(y)dµ(y) (4.9)

without requiring f to vanish in a neighborhood of
z. We can then interpret the behavior of u in a
neighborhood of z as vanishing to first order as de-
fined in Ref. 16. This means u(z) = 0, the normal
derivative vanishes at z,

lim
k→∞

(5

3

)k
(2u(v1)− u(F k1 v2)− u(F k1 v3)) = 0

(4.10)
and the transverse derivative vanishes at z

lim
k→∞

5k(u(F k1 v2)− u(F k1 v3)) = 0 . (4.11)

Theorem 4.2. Let f satisfy a Hölder condition of
any order on the Sierpinski gasket with the standard
harmonic structure and normalized Hausdorff mea-
sure µ. Then (4.9) defines a continuous solution of
−∆µu = f with first order vanishing at z.

Proof. Write

hm(x) =

∫
K\Fm1 K

Hz(x, y)f(y)dµ(y) . (4.12)

Then (4.9) is just

u = v + lim
m→∞

hm . (4.13)

We claim hm converges uniformly. To see this we
may assume that f is odd with respect to the re-
flection symmetry, since the even part of Hz(x, ·) is
uniformly bounded. Then

hm+1(x)− hm(x) =
1

2

∫
Fm1 K\Fm+1

1 K
Hz(x, y)(f(y)

− f(ỹ))dµ(y)

where ỹ is the reflection of y. Using the Hölder
estimate

|f(y)− f(ỹ)| ≤ cβm for y ∈ Fm1 K (4.14)

for some β < 1, we obtain

‖hm+1 − hm‖∞ = O(βm)
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since the measure of Fm1 K contributes a factor of
(1/3)m to cancel the 3m estimate for Hz(x, ·) on
Fm1 K\Fm+1

1 K. Thus u is continuous, and more-
over −∆µu = f since −∆µv = f and the uniform
limit of harmonic functions is harmonic.

We now prove the vanishing to first order con-
ditions. We get u(z) = 0 easily since v(z) = 0
and hm(z) = 0 for each m. It remains to show
the more precise statements (4.10) and (4.11) (note
that u(v1) = 0 in (4.10), so that together (4.10) and
(4.11) describe a rate of vanishing as we approach
z). In fact, we will show

u(x) = o((3/5)m) on Fm1 K (4.15)

and

u(x)− u(x̃) = o(5−m) on Fm1 K (4.16)

which imply (4.10) and (4.11).

For x ∈ Fm1 K, the integral in (4.9) can be re-
stricted to Fm1 K by (4.4). We write

u(x) =
∞∑
k=0

uk(x) (4.17)

with

uk(x) =

∫
Fm+k

1 K\Fm+k+1
1 K

Gz(x, y)f(y)dµ(y) .

(4.18)

We study the contribution to (4.17) from the
three terms that make up Gz(x, y). First, for
G(x, y), we use the estimate O(3/5)m from
Theorem 2.2 and the fact that µ(Fm1 K) = 1/3m

to estimate∣∣∣ ∫
Fm1 K

G(x, y)f(y)dµ(y)
∣∣∣ ≤ c5−m .

Since G is symmetric, G(x̃, y) = G(x, ỹ) so

∫
Fm1 K

(G(x, y)−G(x̃ y))f(y)dµ(y)

=

∫
Fm1 K

G(x, y)(f(y)− f(ỹ))dµ(y)

and so we can improve the estimate to o(5−m).

The estimates for the contribution due to (h2(x) +
h3(x))h1(y) is similar, except that this function is
even in x alone and so contributes zero to the odd
part estimate.

It remains to estimate∫
Fm+k

1 F\Fm+k+1
1 K

(h2(x)− h3(x))(h4(y)

− h2(y) + h3(y))f(y)dµ(y) .

Here we may replace f by its odd part and use the
Hölder estimate to pick up a factor of βm+k, be-
cause h4(y) − h2(y) + h3(y) is odd. We have an
estimate of 3m+k for |h4(y)− h2(y) + h3(y)|, an es-
timate of 3−m−k for the measure, and an estimate
of 5−m−k for |h2(x) − h3(x)|. Combining all these
estimates yields O((β/5)m+k) and summing over k
in (4.17) yields o(5−m). �

Remark. The proof actually yields slightly
stronger estimates, with O(5−m) in (4.15) and
O((β/5)m) in (4.16), where β is the Hölder con-
stant in (4.14). Also, we only needed the Hölder
continuity in the form (4.14).

We can also study local Green’s functions Gz
when z is any vertex point. However, these func-
tions will only be locally defined (the vanishing
to order one at z includes conditions analogous to
(4.10) and (4.11) on both sides of z). See Ref. 16
for details.

We indicate briefly the analogous results for two
other examples. Both are examples with #V0 = 3
and dihedral-3 symmetry for the harmonic struc-
ture and the self-similar measure. Under these as-
sumptions the matrix A1 must have the form 1 0 0

1− a− b a b

1− a− b b a


for some constants satisfying a > 0, b > 0, a+b < 1
(the matrices A2 and A3 are just permutations of
A1), with eigenvalues 1, a + b = r, and a − b. As
long as a 6= b, these matrices are invertible. In that
case, just as for the Sierpinski gasket, we have the
basis h1, h2, h3 for global harmonic functions, and
their restrictions give a basis for harmonic functions
on Fm1 K. The space of harmonic functions on the
closure of the complement of Fm1 K is 4-D, and the
problem is to find explicitly the fourth basis element
h4, that will extend to K\v1 with a pole at v1. It
is easy to see that this function must be odd, since
1 and h2 + h3 give a basis for the even functions,
and h2 − h3 gives a single odd function. The same
reasoning as before gives (4.7), and assuming that
the coefficient B is nonzero, the growth rate of h4

governs the unboundedness of Gz.
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Fig. 4.4 The values of the harmonic function h1 on the hexagasket.

Example 4.3. The hexagasket, or fractal Star of
David, is shown in Fig. 4.4 with the values of
h1. Here a = 2/7, b = 1/7 and so r = 3/7.
Since there are six contractions, the measure is
reduced by a factor of 1/6 in each contraction.
In Fig. 4.5, we show the values of h4. The ex-
pansion factor is again three. In this case h4 is
integrable, so that (4.2) makes sense for any con-
tinuous function f . The analogs of (4.15) and (4.16)
that we need are u(x) = o((3/7)m) on Fm1 K, and
u(x)− u(x̃) = o((1/7)m) on Fm1 K, and these follow
easily, actually improving to O((1/14)m).

Example 4.4. The level three Sierpinski gasket
is shown in Fig. 4.6 with the values of h1. Here

a = 4/15, and b = 3/15 so r = 7/15. There are
again six contractions so the measure is reduced by
1/6 in each contraction. In Fig. 4.7, we show the

values of h4. The expansion factor is seven, so in
this case h4 is not integrable, and in fact we need

the Hölder estimate (4.14) to hold for β < 6/7 in
order to make (4.9) converge. The analogs of (4.15)

and (4.16) that we need are u(x) = o((7/15)m)
on Fm1 K and u(x) − u(x̃) = o((1/15)m) on Fm1 K.

These again follow by the same reasoning provided
β < 6/7, and we in fact get the improvements

O((7/90)m) for the first and O((7β/90)m) for the
second. The requirement that f satisfy such a
Hölder estimate is fairly reasonable: it is shown in
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Fig. 4.5 The values of the harmonic function h4 on the hexagasket.

Fig. 4.6 The values of the harmonic function h1 on the
level three Sierpinski gasket.

Ref. 16 that if f ∈ dom(∆µ), then it will satisfy
such an estimate for β = 7/15.

In all three cases we have looked at, the growth
factor for h4 was equal to (a + b)/(a − b). In
each case this was the result of a lengthy and un-
enlightening computation (we did not present the
details), but it seems unlikely that this is just a
coincidence.

Conjecture 4.5. For a harmonic structure with
dihedral-3 symmetry and #V0 = 3, there exists a
nontrivial odd harmonic function h4 on K\v1 with
a pole at v1 satisfying

h4(F1x) =
(a+ b

a− b
)
h4(x) .
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Fig. 4.7 The values of the harmonic function h4 on the level three Sierpinski gasket.
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