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Preface

In the summer of 1982, I gave a course of lectures in a castle in the small town
of Thurnau outside of Bayreuth, West Germany, whose university hosted the
lecture series. The Summer School was supported by the Volkswagen founda-
tion and organized by Professor C. Simader, assisted by Dr. H. Leinfelder. 1
am grateful to these institutions and individuals for making the school, and
thus this monograph, possible.

About 40 students took part in a grueling schedule involving about 45 hours .
of lectures spread over eight days! My goal was to survey the theory of
Schroédinger operators emphasizing recent results. While I would emphasize .
that one was not supposed to know all of Volumes 1 -4 of Reed and Simon (as
some of the students feared!), a strong grounding in basic functional analysis
and some previous exposure to Schrodinger operators was useful to the
students, and will be useful to the reader of this monograph.

Loosely speaking, Chaps. 1 —11 of this monograph represent “notes” of |
those lectures taken by three of the “students” who were there. While the gener-
al organization does follow mine, I would emphasize that what follows is far
from a transcription of my lectures. Even with 45 hours, many details had to be .
skipped, and quite often Cycon, Froese and Kirsch have had to flesh out some
rather dry bones. Moreover, they have occasionally rearranged my arguments,
replaced them with better ones and even corrected some mistakes!

Some results such as Lieb’s theorem (Theorem 3.17) that were relevant to
the material of the lectures but appeared during the preparation of the mono-
graph have been included.

Chapter 11 of the lectures concerns some beautiful ideas of Witten reducing
the Morse inequalities to the calculation of the asymptotics of eigenvalues of
cleverly chosen Schrédinger operators (on manifolds) in the semiclassical limit.
When [ understood the supersymmetric proof of the Gauss-Bonnet-Chern
theorem (essentially due to Patodi) in the summer of 1984, and, in particular,
using Schrédinger operator ideas found a transparent approach to its analytic
part, it seemed natural to combine it with Chap. 11, and so I wrote a twelfth
chapter. Since I was aware that Chaps. 11 and 12 would likely be of interest to a

wider class of readers with less of an analytic background, I have included in .

Chap. 12 some elementary material (mainly on Sobolev estimates) that have
been freely used in earlier chapters.

Los Angeles, Fall 1986 Barry Simon
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1. Self-Adjointness

Self-adjointness of Schrodinger operators has been a fundamental mathematical
problem since the beginning of quantum mechanics. It is equivalent to the unique
solvability of the time-dependent Schrodinger equation, and it plays a basic role
in the foundations of quantum mechanics, since only self-adjoint operators can
ben understood as quantum mechanical observables (in the sense of von Neumann
[361]).

It is an extensive subject with a large literature (see e.g. [293, 107, 196]) and
the references given there), and it has been considerably overworked. There are
only a few open problems, the most famous being Jorgens’ conjecture (see [293,
p. 339; 71, 317)).

We will not go into an exhaustive overview, but rather pick out some subjects
which seen to us to be worth emphasizing. We will begin with a short review of
the basic perturbation theorems and then discuss two typical classes of pertur-
bations. Then we will discuss Kato’s inequality. Finally, using an idea of Kato,
we give some details of the proof of the theorem of Leinfelder and Simader on
singular magnetic fields.

1.1 Basic Perturbation Theorems

First, we give some definitions (see [293, p. 162] for a more detailed discussion).
We denote by A and B, densely-defined linear operators in a Hilbert space H,
and by D(A) and Q(A), the operator domain and form domain of A respectively.

Definition 1.1. Let A be self-adjoint. Then B is said to be A-bounded if and only
if

(i) D(A) < D(B)
(i) there are constants a, b > 0 such that

Byl < al|lAoll + bllell for ¢@eD(A) . (L.1)

The infimum of all such a is called the A-bound (or relative-bound) of B.
There is an analogous notion for quadratic forms:

Definition 1.2. Let A be self-adjoint and bounded from below. Then a symmetric
operator B is said to be A-form bounded if and only if
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(i) 0(4) < Q(B)

(i) there are constants a, b > 0 such that

<@, Bp)| < alp,Ap) + b{p,0) for @eQ(A) .

The infimum of all such a is called the A-form-bound (relative form-bound)
of B.

Note that the operators in the above definitions do not need to be self-adjoint
or symmetric [196, p. 190, p. 319]. We require it here because later propositions
will be easier to state or prove for the self-adjoint case.

A subspace in H is called a core for A if it is dense in D(A) in the graph norm.
It is called a form core if it is dense in Q(A) in the form norm.

There is an elementary criterion for relative boundedness.

Proposition 1.3. (i) Assume A to be self-adjoint and D(A) = D(B). Then B is
A-bounded if and only if B(4 + i)™! is bounded. The A-bound of B is equal to

lim |B(A +iy)7Y) .

Iyl=x

(i) (form version). Assume A to be self-adjoint, bounded from below and
Q(A) < Q(B). Then B is A-form-bounded if and only if (4 + i) V2B(A4 + i)™'? is
bounded. The A-form-bound of B is equal to

lim ||(A + iy)"'2B(A + iy) 2] .

[#]=x

The assertion (i) can easily be seen by replacing ¢ by (A + iy)™'¢ in(1.1) and
observing that | B(A + iy)™! || < [a + (b/|y])]. (ii) follows analogously. Note that
there is an extension of this notion which we use occasionally: We say that B is
A-compact if and only if B(A + i)™! is compact. Here i can be replaced by any
point of the resolvent set.

Now we will state the basic perturbation theorem which was proven by Kato
over 30 years ago, and which works for most perturbations of practical interest.

Theorem 1.4 (Kato-Rellich). Suppose that A is self-adjoint, B is symmetric and
A-bounded with A-bound a < 1. Then A + B [which is defined on D(A)] is self
adjoint, and any core for A is also a core for A + B.

We give a sketch of the proof. Note that self-adjointness of A is equivalent
to Ran(A + iu) = H for some u > 0 [292, Theorem VII1.3]. Then, as above, we
conclude from (1.1) that

. b
IB(A+ip) ' <a+ y

Thus, for u large enough C := B(A4 + ip)™! has norm less than 1, and this implies
that Ran(1 + C) = H. This, together with the equation
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(1+C)(Axipo=(A+Btine @eD(A)

and the self-adjointness of 4, implies that Ran(4 + B + iu) = H. The second part
of the theorem is a simple consequence of (1.1).

There are various improvements due to Kato [196] and Wiist [371] for the
case a = 1, but in fact all the perturbations one usually deals with in the theory
of Schrodinger operators have relative bound 0.

There is also a form version of Theorem 1.4 (due to Kato, Lax, Lions,
Milgram and Nelson):

Theorem 1.5 (KLMN). Suppose that A4 is self-adjoint and bounded from below
and that B is symmetric and A-bounded with form-bound a < 1. Then

(i) the sum of the quadratic forms of A and B is a closed symmetric form on
Q(A) which is bounded from below.

(i) There exists a unique self-adjoint operator associated with this form which
we call the form sum of 4 and B.

(iii) Any form core for A is also a form core for A + B.

For a proof, see [293, Theorem X.17]. We will denote the form sumby 4 + B
when we want to emphasize the form character of the sum, otherwise we will
write A + B.

Note that in spite of the parallelism between operators and forms, there is a
fundamental asymmetry. There are symmetric operators which are closed but
not self-adjoint. But a closed form which is bounded from below is automatically
the form of a unique, self-adjoint operator [196, Theorem VI.2.1]. The form
analog of essential self-adjointness, however, does exist: a suitable set being a
form core. If one defines something to be a closed quadratic form, it is automatic
that the associated operator is self-adjoint—one knows nothing, however, about
the operator domain or the form domain. It is therefore a nontrivial fact that a
convenient set (e.g. C&) is a form core.

1.2 The Classes S, and K,

In this book, we will study the sum —4 + V in virtually all cases. But occasion-
ally we will also study (—i¥ + a)?® + V as operators or forms in the Hilbert space
L*(R*). Here V is a real-valued function on R* describing the electrostatic
potential, and a is a vector-valued function which describes the magnetic poten-
tial. We denote by H, the self-adjoint representation of —4 in L3(R*). In
reasonable cases, one can think of V as a perturbation of H,. Physically, this
1S motivated by the uncertainty principle which allows the kinetic energy to
control some singularities of V if they are not too severe. This phenomenon
has no classical analog. This is also practical since the Laplacian has an explicit
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eigenfunction expansion and integral kernel, and one knows everything about
operator cores, etc.

There are two classes of perturbations we will discuss here. The class §,,
which is an (almost maximal) class of operator perturbations of H, and the class
K, which is the form analog of S,. S, was introduced originally by Stummel [352],
and has been discussed by several authors (see e.g. [308]).

Definition 1.6. Let V be a real-valued, measurable function on R*. We say that
VeS, if and only if

a) Iim[sup  Ix- yl""lV(y)lzd"y:I =0 if v>4

al0 x |x-y|<a
b) Iim[sup [ In(x - yl)"lV(y)Izd'y]=0 if v=4
alol x x-y<a

¢ sup | |V)PPd'y<oo if v<3.

x |x-yl<1
For the reader who is disturbed by the lack of symmetry in the above definition,
we remark that forv < 3,

sup | [V(yIPd’y <

x |x-y|<1
is equivalent to
Iim[sup f Ix- y|“"|V(y)|2d'y] =0.
alo| x |x-y<a
We define a S,-norm on §, by
IVis,;=sup [ K(x,yw)lV(ylFdy,
x |x-yi<1

where K is the kernel in the above definition of S,. We now state (and prove) a
theorem which shows how these quantities arise naturally. We denote, by || - | o
the operator norm for operators from LP(R") to LY(R"), and by |- || , the norm in
LP(R").

Theorem 1.7. VS, if and only if
le ”(HO + E)-ZIVIZ “co.m = 0 . (1.2)
Proof. As with all functions of Hy, (H, + E)~2 is a convolution operator with an

explicit kernel Q(x — y, E) [293, Theorem 1X.29]. It has the following properties
(see [308, Theorem 3.1, Chap. 6]).
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1. Q(x—-y,E)=0,

o(lx—yI*™") if v>4
2. Qx—=y,E)=<0(n|x —y|™") if v=4 as |x—y/ =0,
C if v<3

3. sup e*7VQ(x —y,E)»0 as E— oo, forany 6>0.

|x=y|>8
Using the elementary fact that

sup [ [V(y)IPdy< oo

x |x-yl<1

for any VeS,, it is not hard to see that VeS, if and only if
sup,IQ(x - y,E)|V(y)|?d"y -0 as E—oo. This gives the result, since
Q0(- =y, E)|V(y)|? is a positive integral kernel and ||4]| ., = | 41|, holds for
any A with positive integral kernel. O

The above result has an L2 consequence by a standard “duality and inter-
polation” argument:

Corollary 1.8. If V€S, then
I(Ho + E)'V|,,—0 as E- o0 . (1.3)

Proof. Let Ve8,. Then it is enough to show that
[(Ho + EY*1VIII3.2 < |(Ho + E) 21V 5.0 (1.4)

since (1.3) follows then by Theorem 1.7. Assume for a moment that V is bounded,
and consider the function

F(z):= |V|**(Hy + E) 2|V|*"% :zeC .

F(z) is an operator-valued function which is L! and L*-bounded and analytic in
the interior of the strip {ze C|Rez€e[0,1]}. Thus, by the Stein interpolation
theorem [293, Theorem 1X.21] and, using that (by duality)

[(Ho + EY 21V | e = [IVI*(Ho + E) 2|1,
we get

[1VI(Ho + E) 2 V[l 2.2 < [(Ho + EY VIl 0. -
Since

I1VI(Ho + E)2|VI|ll2.2 = l[(Ho + EY' V3.2 o

(1.4) follows for bounded Vs, and by an approximation argument, also for all
Ves,. O
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Remark. Note that Corollary 1.8 implies that if V€ S,, then it is H,-bounded with
H,-bound 0 by Proposition 1.3 (Proposition 1.3 has to be slightly modified for
the semibounded case we are considering here).

One might think that since S, is telling us something about L*-bounds and
L* is “stronger” than L2, there would be no way going from L?-bounds to S,.
So the following theorem is interesting.

Theorem 1.9. Suppose there are a, b > 0 and a é with 0 < é < 1 such that, for all
0 <e¢ < 1andall pe D(Hy)

IVol3 < elHooll3 + aexpbe™?) ol .
Then VeS,.

Proof. We just have to pick the right ¢'s. Fix yeR", te R*, and consider the
integral kernel

@(x):= Jexp(—tHo)(x, ) .
Then, noting that ||¢||, = 1 and (by scaling)

|Ho@ll, = ct™% for suitable ¢ >0
we have

[exp(—tHy)|VI2](y) < cet™2 + aexp(be™?) . (1.5)
Now, take ¢:=(1 + |Int|)”?, where y:=2/(1 + ), and multiply (1.5) by

texp(—tE) for E > 0. Then the R.H.S. of (1.5) is integrable in ¢ and its integral
goes to zero as E — oo. Now if we use the identity

(Ho + E)"2 = | te™™Hoe ™ 4y
1)

we get (1.2), and therefore Ve S, by Theorem 1.7. [

The second class of potentials we are considering here is K,, which is the
form analog of S,. This type of potentials was first introduced by Kato [193].
See also Schechter [308] for related classes. K, was studied in some detail by
Aizenman and Simon [7), and Simon [334].

Definition 1.10. Let V be a real-valued measurable function on R*. We say that
VeK, if and only if

a) Iim[sup ) Ix—ylz'VIV(y)ld"y]=0, if v>2

2,0 x |x-yj<a



1.2 The Classes S, and K, 7
b) Iim[sup { Inj(x - y)l"lV(y)Id'y] =0, if v=2
alol x |x-y|<a

c)sup | IVO)d’y<oo, if v=1.

x |x-yl<t

We also define a K,-norm by

IVlg:=sup [ Rx,yvIV()Id’y

x |x-y|<1

where K is the kernel in the above definition of K,. Then virtually everything
goes through as before.

Theorem 1.11 [7]. Ve K, if and only if
lim [|(Ho + E)'|V|[|z.. =0 .

E-x

The proof is the same as in Theorem 1.7.

Theorem 1.12 [7]. Suppose there are a, b > 0 and a 6 with 0 < é < 1 such that,
forall0 <¢ < 1andall peQ(H,)

(o,|VI9) < e, Hoo) + aexp(be™®) o] .
Then VeKk,.

The proof is again like that in Theorem 1.9 above (see also [7, Theorem 4.9]).
Remarks. (1) Both of the classes S, and K, have some nice properties:

a) If u <v, then K, € K, and S, = S,. By these inclusions we mean the
following. Suppose W e K, (resp. S, ), and there is a linear surjective map T: R* —
R* and V(x):= W(T(x)). Then Ve K, (resp. S,). The canonical example to think
of here is an N-body system with v = Ny, where a point x € R" is thought of as
an N-tuple of u-dimensional vectors x = {(x,,...,xy) and Tx:= x; — x; for
somei,je{l,..., N}, i#j.

b) There are some L ,-estimates which tell you when a potential is in K,
(resp. S,), i.e.

v
Lr <5, if p>—2— for v>4
p=2 for v<4

and

v
Lr cK, if {p>§ for v>2
p=2 for v<2
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where

Loy:={VIsup | lIV(y)l”dy< w} .
<

x |x-y
The proof is a straightforward application of Holder's inequality (see [7, Propo-
sition 4.3]).
2)If VeK,, then V is H,-form bounded with relative bound 0. This follows

again analogously from Proposition 1.3(ii), Theorem 1.11 and a corollary ana-
logous to Corollary 1.8.

The classes K, and S,, however, are not the “maximal” classes with respect
to the perturbation theorems, that is, one just misses the “borderline cases.” This
can be seen in the following:

Example. (a) Let v > 3 and
V(x):= |x|"?|In|x|| % .

Then VeK, if and only if 6 > 1, but V is H,-form bounded with bound 0 if and
onlyif 6 > 0.

(b) Let v>S5 and V as in (a). Then VeS, if and only if 6 > 1/2 but it is
H,-bounded with bound 0 if and only if 6 > 0. (a) is a consequence of [ 7, Theorem
4.11] and general perturbation properties (see [293, Chap. X.2]). (b) has a similar
proof.

Remark. The above example shows that it is false that S, is contained in K.

1.3 Kato’s Inequality and All That

We will now sketch a set of ideas which go back to Kato [193], and which were
subsequently studied by Simon [322, 327] (see also Hess, Schrader and Uhlen-
brock [163]).

Let us first consider a vector potential a (magnetic potential), and a scalar V
(electric potential) satisfying

aeLi (R")
VelLlL(R"), V>0, (1.6)
Then the formal expression
ti=(—iF—-al+V
is associated with a quadratic form h,,,, (called the maximal form) defined by
Q(hpma):= {@e LAR")|(F — ia)pe L3 (R")", V2 pe L3(R")}

and
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hmal((p9 ¢)= zl <(aj - iaj)‘p9 (aj - la])¢> + <V1/2(p, V”2¢>
j=

for ¢, Y € Q(hp,,); (9;:= 0/0x;). Note that h,, is a closed, positive form (since it
is the sum of (v + 1) positive closed forms), and therefore there exists a self-
adjoint, positive operator H associated with h_,,, with

Q(H) = Q(hy,,) and

CHQ, Y ) = hyoilo,y) for o,y eD(H) [196] .

Note also that (1.6) are the weakest possible conditions for defining a (closable
positive) quadratic form associated with t on C3°(R"). The closure of this form
[which is the restriction of h,,,, to C3’(R")] is called h,;,. Our first theorem now
says that these two forms coincide. Thus, the self-adjoint operator associated
with the formal expression 1 is, in a sense, unique.

Theorem 1.13 [329, 195]. CF(R") is a form core for H.

We give only a sketch of the proof (see [329]).
Step 1.

e L2(R") -» L*(R"), teR* . (1.7)
We only need to show that

le™ ol <e™Molgl, @eL*R") (1.8)

(which is the semigroup version of Kato’s inequality, sometimes also called
Kato-Simon inequality or diamagnetic inequality; see [327]), since (1.7) follows
from (1.8) by using Young’s inequality and the fact that exp(—tH,) is a convolu-
tion with an L2-integral kernel.

We know that H is a form sum of v + 1 operators. Therefore, we can use a
generalized version of Trotter’s product formula (shown by Kato and Masuda
[198]) and get

t t t t \I
exp(—tH) = s — lim [exp (— D,’) exp (— D§). ..exp (— D,’) exp (—-— V)] ,
n—x n n n n
(1.9)
where
Dj:= g; —ia;, je{l,...,v} .
Now, let

xj
Aj(x):= ga(x,.....x,-_,.y, Xjeps oo s X,)dy .
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Then [329]
—iDJ = eiA"( —iaj)e_“’ .

(Note that, in a “physicist’s language”, this means that in one dimension, mag-
netic vector potentials can always be removed by a gauge transformation.)
Therefore

t . a
exp (% Df) = exp(iz);exp (; 8,2) exp(—i4;) , so that

lexp(tD?)o| < exp(téf)lol, @eL*R’) . (1.10)

Now (1.8) follows from (1.10), (1.9) and |exp(—tV/n)| < 1.

Step 2. L*(R*) n Q(H) is a form core for H.
This follows from (1.7) and the fact that Ran[exp(—tH)] is a form core for
H by the s¢pectral theorem.

Step 3. L%,,(R*) N Q(H) is a form core for H [where L%n,(R"):= {pe LA(R")|
@ € L*(R"), supp ¢ is compact}].
This follows by a usual cut-off approximation argument, i.e. choose ne

C&(R*) with n = 1 near 0, then consider, for any ¢ € L* n Q(H)

Pal(x):=1n (E) o(x) (neN)

then ¢, = @, (n = o) in the form sense. Now the proof will be finished by

Step 4. C5(R") is a form core for H.

This follows by a standard mollifier argument, i.e. choose j € Cg (R*) such that
fi(x)d*x = 1; set j,:= ¢ "j(x/e), then for ¢ € L%, N Q(H) @,:=j,» € C§ and
@, = @, (¢ = 0) in the form sense. [J

Note that in the last two steps, it is crucial that the approximated function
isin L*.
The next theorem is also a well-known result [193].

Theorem 1.14. Let V >0, Ve L} (R') and a = 0. Then H:= H, + V is essen-
tially self-adjoint on C§ (R"), i.e. C5 (R") is an operator core for H, and its closure
is the form sum.

The proof is exactly the same as in Theorem 1.13 (replacing form cores by
operator cores and form domains by operator domains) with one additional step.
Once one notices that L*(R") n D(H) is an operator core for H one uses the
formula

H(ne) =nHe + 2Vn-Vo — @4n (1.11)
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for ¢ € L*(R*) n D(H) and n € C§ (R"). The right-hand side of (1.11) makes sense
since we know from Theorem 1.13 that ¢ € Q(H) and therefore Ve L*(R")".
Equation (1.11) can then be used to show the analogous steps of Step 3 and Step
4in Theorem 1.13. O

1.4 The Leinfelder-Simader Theorem

Our last theorem in this chapter is a result due to Leinfelder and Simader [229].
It finishes the problem of self-adjointness of Schrodinger operators with singular
potentials and ¥ > 0 by giving a definitive result.

Theorem 1.15 (Leinfelder, Simader [229]). Let V >0, VeL:.(R') and ae
L¢.(R) and ¥ -ae L (R"). Then H [the operator associated with the maximal
form of (—iF — a)® + V] is essentially self-adjoint on C&(R").

Though not explicitly mentioned in [229], the key lemma in the proof of
Leinfelder and Simader is

Lemma 1.16 (Kato’s Version [197]). Let e L% (R"), ae Li,(R")". If Ppe
L3(R*)’ and —4¢ + 2ia-V¢pe L*(R"), then 4p e L*(R*) and Fp e L*(R")".

Proof (of Lemma 1.16) [227]. By a scaling argument, it is clear that without loss
one can choose supp ¢ to be contained in the unit ball B,. One needs, as a basic
step, the following inequality which goes back to Gagliardo [127] and Nirenberg
[264]

IPoll2, <d(p)lol ld0ll, (1.12)
for any pe(l, ), p € LE,, and a suitable constant d(p) depending on p. (Note
7l := |[|Fe||). Equation (1.12) can be shown by using

Iéol3h = lirg]' {[(E0) + )"0} 0

partial integration and controlling all second derivatives by the formula
ID*gll, < d'(p)ll4¢ll, (see [350, p. 59]). If we choose 1 < p, < p, < o and only
concern ourselves with pe[p,,p,], then d:= maxd(p) can be chosen indepen-
dently of p.

From (1.12) we get, for ¢ > 0 and pe[p,.p,]

IVoll,, < 3de' ol + delldol, .
Thus, with g:= —4¢ + 2ia- Vo
1Pz, < 3de™'lloll. + 3deligll, + 3del|2ia-Poll, .

Now, since supp ¢ is in the unit ball, if we choose p < p, < 2, we can always
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estimate |gll, by llgll,, and by using ae L*(R*)" and Holder’s inequality, we get
IPoll,, < cle) + $éelPol,

for some ¢, c(€) > 0, where 1/r = 1/p — 1/4. Now take

Thenr,<4andr,”4and

L1 n_ !
zpn—z Tn 4 —rn+l )

If we choose ¢ > 0 suitably, we get inductively that |[Fo|e L'~ and |Fo|, <D +
1/2|IF¢|,,, for some constant D and all r,. Here we used the fact that r, < 2p,
and that supp ¢ is contained in the unit ball. This implies |F¢|, < 2D, (neN)
and therefore |F ||, < oo, and this proves Lemma 1.16. [

Having this result, the proof of Theorem 1.15 is as elementary as the above
theorems.

Proof (of Theorem 1.15). The only problem in following the proof of Theorem
1.13 is Step 4, since the mollifier j, does not commute with (¥ — ia). All other
steps work as in Theorems 1.13 and 1.14, i.e. we can prove as above that

L&,n, 0 D(H) is an operator core for H. So, for ¢ € L%, » D(H)

Hop=—4¢ + 2ia (Vo) + (—iV-a+a*+ V)op . (1.13)

By the assumptions of Theorem 1.15 and Lemma 1.16, each individual term in
(1.13) is in L*(R") and V¢ e L*(R")". This suffices to show that the “mollified”
sequence @, := j, * ¢ converges to ¢ in the operator normase¢—»0. [



2. L?-Properties of Eigenfunctions, and All That

In this chapter, we study properties of eigenfunctions and some consequences
for the spectrum of H.

We begin with some semigroup properties which turn out to be useful for
showing essential self-adjointness of H, + V when the negative part of Visin K,
(Section 2.1). In Sects. 2.2 and 3, we give some estimates for eigenfunctions, which
we use in Sect. 2.4, to give a characterization of the spectrum of H.

In Sect. 2.5, we make some assertions about positive solutions, and in Sect.
2.6 we give an alternative proof of the result of Zelditch, that the time evolution
exp(—itH) has a weak integral kernel under suitable hypotheses on V.

We will only prove a few things, and refer the reader to the review article of
Simon [334] which has fairly complete references and results. Some of the results
are also contained in the Brownian motion paper of Aizenman and Simon [7].

2.1 Semigroup Properties

The first theorem states a basic “smoothing” property of the semigroup asso-
ciated with H = H, + V where H,, is the self-adjoint realization of (— 4). We will
give a complete proof of it. The following Corollary 2.2 is an immediate con-
sequence of the L2 —» L*-boundedness of the semigroup. It is an extension of
Theorem 1.14, i.e. it gives essential self-adjointness of H if V_ (the negative part
of V) is in K,. In the last proposition, we give (without proof) a semigroup
criterion for V being in K, if V is negative. This illustrates the “naturalness” of
the class K, for these LP-properties.

Theorem 2.1 7). If Ve K, and t > 0, then exp(—tH) is a bounded operator from
LPtoLiforalll <p<gq < o0.

Remark. Note that V € K, implies that V is H,-form bounded with relative bound

0. So H:= H, + V is well defined and self-adjoint as a form sum (see Theorem
1.5).

Proof (of Theorem 2.1). We divide it into six steps.

Step 1. exp(—tH): L*(R") —» L*(R") is bounded for small .
We have, for Ve K,

t
lim|/fe~*"|V|ds|, =0 . Q.1
tNO O
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To verify (2.1), we note that exp(—tH,) has an explicit integral kernel

—v?
P(x,y,t):= (4nt)™*? exp(_lx 4tY| ) .

Moreover, explicit integration shows that
t
0(x,y,1):= [ P(x,y,5)ds
()

behaves outside the region 4:= {(x, y)e R?"||x — y| < 4\ﬂ} like

— vl
Ix — YI’exp(—Ix 41’ ! ) 2.2)

for suitable ; real and inside the region A like

[x —y]7*"2 ifv>3
In|x —y|™' ifv=2
c ifv=1,
i.e. like the kernel in Definition 1.10 of K. Thus,

t
fe™Ho| V| ds
(V]

< lim

€, x tNO

lim
tNO

[ 0,y 0V(yld’y

x-yl<sayt

€

+ lim

tNO

[ _QxynlV(yldy

|x—y}>4v’o

X

The first term on the R.H.S. vanishes since Ve K,, and the second because of
(2.2), if we use the fact Ve L}, ,.
Therefore, we can choose a t, > 0 such that

to |
feMo|vids| <1
]

|
fl.=‘

xX,x

Now assume for a moment that Ve C&. Then we can expand the semigroup by
the Dyson-Phillips expansion:

e =Y T,  where
j=0
Ty:= e tHo and
j
T;:= J. [!dsiexp(—s,Ho)Vexp(—szHo)V...

1.
0s Y s, <t

exp(—s,-Ho)Vexp[—(t - is,-) Ho] .
i=1
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Now we calculate the norm of T} as an operator from L* to L®. Lett < t, and
denote by | T;| the operator whlch has replaced V by |V|in T;. Then

1Tl < 1T

I

j
[ Tldsiexp(—s,Ho)|V|exp(—s,Hp)... 1
0<s, sti=1
1<isj
ac.ao) e"pl:_(t— si)"o]l

j t
< n( Ij'ds,-exp(—s,-Ho)IVl
i=1 0
The last inequality holds since the last factor on the L.H.S. is equal to 1.
Therefore, we have

A

it

PO

al .

IA

since & < 1.

Now let Ve K,. Using the continuity of | R(x,y,v)V(y)d’yin x [7, Theorem
4.15] where'K is the kernel in Definition 1.10 of K ,, one can easily find a sequence
{V,}nen € C§ such that V, -V, (n— o) in the K,-norm. Then we have
llexp(—sHo)(V, = V). = 0 when n, m - oc, by arguments similar to those
we used to verify (2.1).

Now, if we denote by T;" the operator which has replaced V by V,, we can
conclude, by a suitable “telescoping” argument, that {T;"},.~ is a Cauchy
sequence in B(L*, L*), and therefore also {exp(—tH,)},~, Where H,:= Hy + V,.
Thus, a limiting argument yields

le™™ )l .. < o

for general VeK,.

Step 2. By the semigroup property, we know that exp(—tH) is bounded from L*
to L* forall te R*.

Step 3. We claim that

|[exp(—tH) f1(x)1> < [exp(—tHo)|f1*](x) {exp[ —t(H, + 2V)]1}(x)  (2.3)

holds for fe€ L? and a.e. xe R". Assume for a moment that V e C. Consider for
0eCs, 920 '

F(z):=<exp[—t(Hy + zV)]If1*"%,0), O0<Rez<2.

Then this is an analytic function in z. When Rez =0, then |F(2)| <
{exp(—tHy)|f1%. @), since the imaginary part of z just gives a phase factor (use
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the Trotter product formula). When Re z = 2, then | £~ gives a phase factor.
So

|F(z)| < <exp[—t(Hy + 2V)]1,¢), ifRez =

Therefore, by Hadamard’s three line theorem [293, p. 33] we conclude, for
Rez=1

|F(2)] < <exp(—tH)|f]. 0>
< [Kexp(—tHo)|f 1%, 9>1"*{<exp[ —t(H, + 2V)]1, @)} .

Furthermore, since exp(—tH) is positivity preserving [293, Theorem X.55], we
have

le"#f| <e™|f| ,  and hence

[<exp(—tH)f, 0>|* < exp(—tHo)| fI?, @) (exp[—t(H, + 2V)]1, 0> . (24)
Now let xeR®, and choose ¢(x’):= @, (x — x’), x'eR", ¢ >0 where ¢,(*):=
e 'Y( /e), withyeCg, ¢ =0, |y, = 1. Then (2.4) reads as

lexp(—tH)f » ¢.|(x)

< [exp(—tHo)|f1? # @, J(x){exp(—t(Ho + 2V)]1 2 ¢} (x) ,

and this gives (2.3) for Ve Cy when ¢ — 0 for a.e. x.

If Ve K,, we can approximate V again by CS-functions in the K -norm and
get (2.4), and therefore (2.3) in this case.

Step 4. exp(—tH) is bounded from L? to L. Because 2V e K,, we know that
llexp(—t(H, + 2V)1||, < ¢ by Step 1. Since exp(—tH,) is a convolution with a
smooth decaying function, exp(—tH,) is bounded from L! to L*. Thus, we can
estimate, by (2.3),

le™ 1% <clllf1?lly el f1d,
Step 5. exp(—tH) is bounded from L' to L2 by Step 4 and duality.

Step 6. exp(—tH) is bounded from L?to Lfor 1 < p < q < .

We know, by Step 4 and Step 5 and the semigroup property, that exp(— tH)
is bounded from L' to L*®. Furthermore, since exp(—tH)p e L? for ¢ in a suit-
able dense set (say Cg) of L!, we can conclude by duality and Step 1 that
exp(—tH)pe L', and that exp(—tH) is bounded from L* to L®. So we have
boundedness of exp(—tH) if

(00, 0) by Step 1
(@)= {(1,1) by duality
(1,00) just proven .
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Now, by the Riesz-Thorin interpolation theorem [293, Theorem IX.17],
exp(—tH) is bounded from L” to L7 for all (p',q7"') in the convex set
{(p™",q7")eR?0 < ¢! <p~! <1}, and this proves the theorem. [

The above proof is very similar to that in [334], where Simon used Brownian
motion techniques. In fact, our proof is an analyst’s translation of the Brownian
motion proof. Equation (2.3) is more transparent in the Brownian motion lan-
guage since it is just the Schwarz inequality in path space. The interpolation
argument we used is borrowed from Guerra, Rosen and Simon [145].

Theorem 2.1 was originally proven, using the above ideas, by Carmona [58]
and Simon [331] independently.

Somewhat earlier, it was proven using semigroup analytical methods by
Kovalenko and Semenov [219]. There were also slightly different results by Herbst
and Sloan [161] which motivated some of this work.

One obvious consequence of Theorem 2.1 is the following:

Corollary 2.2. If Ve L (R*) and V_:= max(0, — V)e K,, then H, + V is essen-
tially self-adjoint on C3’(R").

This is just an extension of Theorem 1.14. The proof is identical, except that
we replace Step 1 of.that proof by Theorem 2.1 with p = 2 and g = o0, i.e. by the
fact that exp(—tH) is bounded from L2 to L™.

We should also remark that Ve K, is almost necessary for L*-semigroup
boundedness, for one has the following proposition which we will not prove (see
(334, Theorem A2.1]).

Proposition 2.3. Let V < 0. Then Ve K, if and only if exp(—tH) is bounded from
L* to L™ with lim, ¢ |lexp(—tH)| o = 1.

This proposition says that K, is the “natural” class for this L?-property.

Remark. If one keeps track of how the L, - L, norm of exp(—tH) behaves in ¢,
and if one sees for which (p, q) this norm is integrable, one obtains some infor-
mation about (powers) of the resolvent of H mapping from LP to L% This
leads to (analogs of) Sobolev estimates where H,, is replaced by H; (see [334],
Sect. B2).

2.2 Estimates on Eigenfunctions

In this section, we state without proof two basic results concerning eigenfunc-
tions, and we give some interesting applications. We denote V_ := max(0, — V)
and

e = {V|VpeK, for any pe C{(R")} .

Note that K}, < L} (R").
The first main result is the following:
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Theorem 2.4 (subsolution estimate) [7, 334, 131]. Suppose VeK;, and let
Hu = Euin an open set 2 < R* (in the distributional sense), i.e. in the sense that
Auell},, Vuelj, and

(—d,u) + {(V—E)p,u) =0 forall peCy.

Then

(i) u is (a.e. equal to) a continuous function in Q.
(ii) for xe 2 and any r > 0 with B:= {y||x — y| < r} < Q we have

lu)l<c | lu(yld’y (2.5
[x=¥|sr

where ¢ depends on r and the K,-norm of V_ x5 (x5 = characteristic function of

B). In particular, if V_ € K, and 2 = R, then ¢ can be chosen independently of x.

This estimate is very useful, for example, if u is an eigenfunction (i.e. ue L?),
then (2.5) implies that it goes pointwise to 0 at o«c. Also, if one has exponential
decay in some average sense, one gets pointwise exponential decay.

Note that V can always be replaced by V — E, therefore the assertions hold
also for solutions of Hu = Eu (the constants, however, will be E-dependent).
Equation (2.5) is called a subsolution estimate because if u > 0, then one has only
to require the distributional inequality Hu < 0(i.e. u has only to be a subsolution)
for (2.5) to hold. This is proven in [7, Theorem 6.1]. Note also that it generalizes
the well-known estimates on (sub-) harmonic functions when V = 0.

The other result is

Theorem 2.5 (Harnack Inequality) [7, 334, 131]. Suppose VeK},., let 2 = R*
be an open set, Hu = Eu (in the distributional sense), u # 0 and u > 0 on L. Let
K be a compact set K < Q. Then the following estimate holds

< :{}% <c forx,yekK (2.6)

where ¢ depends only on K, 2 and on local K*-norms of V.

The proof of this theorem (in [7]) consists essentially in estimating a proba-
bilistic representation of the Poisson kernel of H. Brossard [55] and Zhao [381]
have further studied this Poisson kernel using probabilistic methods. They
establish that the singularities of this Poisson kernel at the boundary are the
same as those for harmonic functions.

We should note that K, is almost the optimal class for which these estimates
hold. There is a theorem which says that if V < 0 and one has a “strong” Harnack
inequality, then V e K}, [7, Theorem 1.1]. This is illustrated by the following

Example. Let v = 3, and consider potentials that behave at the origin like

Vix)=|x|"2(In|x)"", |x| <} xeR3.
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By the example after Theorem 1.12, we know that this is just the border line case
where V ¢ K,. Furthermore, a straightforward calculation shows that the eigen-
solution u of Hu = 0 behaves at 0 like

u(x) = —In|x|, |x|<1.

Thus, because of the logarithmic singularity of u at 0, the Harnack inequality
and the subsolution estimates fail.

This example also shows that K is “exactly” the class where the eigensolu-
tions are (locally) bounded.

Note, however, that for potentials of any sign the (strong) Harnack inequality
is not a sufficient condition for V to be in K,. There are examples of heavily
oscillating potentials which are not in K, but where exp(—tH) is a bounded
semigroup in L*. So it is quite likely that a Harnack inequality still would hold
(see [7, Example 3, Appendix 1]).

We should mention that there is a result of Brezis and Kato [54] where it is
shown that if V is H,-form bounded with bound 0, then the eigenfunctions are
in all L?, p < oc (but they are not necessarily bounded).

2.3 Local Estimates on Gradients

In this section, we show some simple L. bounds on Fu for eigenfunctions, and

that these bounds depend only on local norms on V. These estimates will be

useful in the next section where we give a characterization of the spectrum of H.
We start with the following key lemma.

Lemma 2.6. Ifue L and due L), then Fue L. and for 9 € C§
folvul*d*x =4[ d¢|ul*d*x — [udud’x . .7
In particular, if u is an eigensolution, i.e. Hu = 0, then for e Cf, ¢ >0
folPul?d'x <i{d¢|ul?d"x + [V_@|u]*d"x . (2.8)

Proof. Equation (2.7) follows just by integration by parts twice for smooth
functions and then by a mollifier argument. Equation (2.8) follows from (2.7). 0O

Together with the subsolution estimate, this leads to an L'-estimate for the
gradient.

Theorem 2.7. Suppose V, := max{0,V}eK},., V. €K, and Hu = 0. Then Vue
L% and for K compact in the open bounded set 2 = R*

2
fIPu?d*x < c[]’luld"x] . 2.9)
K Q

where the constant ¢ depends only on local norms on V and on €2 and K.



20 2. LP-Properties of Eigenfunctions, and All That

Proof. Since VeKj,, we have ue Ly, by Theorem 2.4. This, together with
Ve L\, implies dueL},. Thus, if we choose ¢ € Cg such that ¢(x) = 1 for xe K
and supp ¢ =: W’ < Q, (2.8) implies

[IPul?d*x < ¢, sup lu(x)I? (2.10)
K xeW’

for suitable ¢, depending on 2 and the L;,. norm of V_. Now choosing W” open
such that W’ € W” < £, we conclude from (2.5) that

sup |u(x)| < ¢, f lu(x)|d"x
xeW” Q

for suitable ¢, depending on 2 and local K,-norms of V_. This, together with
(2.10), implies (2.9). O

The following L2-estimate on “rings” of hypercubes will be useful in the next
section.

Corollary 2.8. Let V, € Kj},, V- €K, and C, be the hypercube
C,:= {xeR’|max|x;| <r} forreN .
Then for any eigensolution u of Hu = 0 and any re N

] |l7u|2d"x5c'C ch lul? , (2.11)

Crer Gy re2\Cpr-1
where c is independent of r (it depends only on local norms of V_).

Proof. Let K be a unit cube, and K’ a cube of side 3 centered at the center of K.
Then, by (2.9) and the Schwarz inequality

2
fI7ul?d x < E[f Iuld'x]
X FE

<c||u?d"x
i

for suitable constants ¢, c. Now (2.11) follows by adding up these estimates for a
partition of C,,,\C, into unit cubes. []

2.4 Eigenfunctions and Spectrum (Sch’nol’s Theorem)

For Schrodinger operators with K,-potentials there is an interesting character-
ization of the spectrum [which we denote by a(H)]. It consists essentially (i.e. up
to a closure) of “eigenvalues™ with polynomially bounded eigensolutions. This
has an important application in Chap. 9, where we discuss the spectrum of
random Jacobi matrices.
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The first theorem is a result of Sch’nol [307] (1957), who assumed that V is
bounded from below. It was rediscovered by Simon [332], who proved it for more
general V’s, with a very different proof. Our proof here is essentially Sch’nol’s
proof, which we extend to V_ € K, by using Harnack’s inequality.

Theorem 2.9 (Sch’nol, Simon). Let V, €K},.. V_e€K, and Hu = Eu, where u is
polynomially bounded. Then E e a(H).

Proof. Note that it suffices to prove the assertion only for E = 0, since E can
always be absorbed in V.

Ifue L2, then obviously 0 € 6(H), since it is an eigenfunction. So assume u ¢ L2.
LetC,,r = 1,2,... be the hypercubes defined in Corollary 2.8. Choose n,€ C§F(R")
withsuppn, € C,,, and n,(x) = 1 for xe C,such that |4n, ||, < Dand ||Fn,| . <
D with a suitable D > 0 independent of r. Let

W,I= 'lr“/ ||'lr“||z .
We will show that
IHw, | -0 (r,— o0)

for a suitable subsequence {r,} = N. This implies 0€ o(H), since we have a Weyl
sequence (see [292, Theorem VII.12]).
Since Hu = 0 and

A(n,u) = (4n,)u + 2Vn,-Vu + n,4u
we get
H(nu)= —A4n,u —2vVnVu .
Thus, since || 4n,| ,, and ||V, | , are uniformly bounded,

IHpul2<c | (lul® + |Pul®)d x

r+l r

<c¢" | |ud’x (2.12)

Cre2\Cproy

by Corollary 2.8.
Let M(r):= (¢ |u|?d"x. Then (2.12) implies

M(r+2)—M(r—I)SM(r+2)—M(r—I)

|Hw,||? < ¢
| llmull? M(r-1)

Now assume there is no subsequence {r,} such that

M(r, + 2) — M(r, — 1)

M. = 1) -0, (r,— o).
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Then there exists a ReN and an « > 0 such that

M(ir+2)—M(r—-1)

g >x>0 ifr>R.
M@r-1)

This implies that
Mr+2)>(1 +2)M(r—1) and
M@r+3)=>(1+a)M(r) forr>R .

Thus, by induction we get
M(R + 3k) > (1 + 2 M(R) for any keN .

But this means that M(R) has an exponential growth, which is a contradiction
of the hypothesis that u grows polynomially. []

Remark. A direct consequence of our proof of this theorem is that if Hu = Eu, u
is polynomially bounded, and u ¢ L2, then E€a,,(H).

A kind of converse of Theorem 2.9 can also be proven, using trace class-valued
measures and eigenfunction expansions. It can be found in Simon’s review article
[334, Theorem C5.4] or in [219]. See also [46]. We state it without proof.

We say that an assertion A(E) holds H-spectrally almost everywhere if and
only if E (H) =0, where 4:= {EeR|A(E) does not hold} and E,(H) is the
spectral projection of H on 4. Then we have

Theorem 2.10 [334]. If Ve K, then H-spectrally a.e. there exists a polynomially-
bounded solution of Hu = Eu.

Note that this does not imply that for any Ee€a(H), Hu = Eu has a poly-
nomially-bounded solution! Combining these two theorems one gets

Corollary 2.11. If Ve K,, then a(H) is the closure of the set of all E for which
Hu = Eu has a polynomially-bounded solution.

Proof. If 4 < R is the set where Hu = Eu has polynomially-bounded solutions,
then by Theorem 2.9, 4 < o(H). Suppose that 4 is not dense in a(H). Then
6(H)\4 contains a open set S < a(H) with Eg(H) > 0. But this contradicts
Theorem 2.10. [J

2.5 The Allegretto-Piepenbrink Theorem

Here we will discuss a theorem which was originally shown by Allegretto [9, 10,
11] and Piepenbrink [283, 284] and Moss and Piepenbrink [254]. It states that
“eigenvalues™ below the spectrum have some positive eigensolutions. We will
prove it under very weak regularity hypotheses.
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Theorem 2.12. Let V_€ K, and V, € Kj},,. Then Hu = Eu has a nonzero distribu-
tional solution which is everywhere nonnegative if and only if infe(H) > E.

Proof. Suppose infa(H) > E. Let { f,},.~ be a sequence of C§ -functions which
are nonzero and positive with

supp f, € {xeR'|n < |x| < 2n} .

Letu,:= c,(H — E + n~')7'f,, where c, is chosen such that u,(0) = 1. u, is every-
where nonnegative since (H — E + n™') has a positivity preserving resolvent
[295, p. 204]. Clearly, u, obeys Hu, = (E — n"")u, for the region |x| < n. Thus,
by Harnack’s inequality (2.6), for any R > 0 we know that u,(x) > 0 if |x| < R,
and we can indeed normalize u, such that u,(0) = 1. Moreover, by Harnack’s
inequality, we find Cx > 0 such that

Cr' <u,(x)<Cgp if|x| <R .

By passing to a subsequence, we can be sure that u, has a limit point u in the
weak-star L7 .-sense, so that {u,,@) —= {u,¢), (n— ) for all peL' with
supp ¢ compact. It is easy to see that u is a distributional solution of Hu = Eu,
and that

Cr! <u(x) < Cq

so that u is a nonnegative and not identically zero.
Conversely, suppose Hu = Eu has a nonzero nonnegative solution. By
Harnack's inequality, u is strictly positive, and by Theorem 2.7

g:=u'Wu isinlL}, .
We will prove that, for o € C§
{¢.(H - E)p)> = }IVo — gol3 , (2.13)

which implies that H — E > 0.
We first prove, (2.13), assuming ue C*. Then, by direct calculation (as
operators)

u'Wutvu =[4 —u'(du)] = —(H — E) ,
SO
{o,(H — E)¢> = |uPu~"¢|? = |[Fo — (u"'Pu)p|?

proving (2.13) in that case.

Given general u and V as in the assumption, we know that u is continuous
and locally bounded away from zero (Theorems 2.4, 2.5). Let u,e C* be u-
convoluted with an approximative identity j,. Let V;:= u;'(4u,) + E and g,:=
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uy ' V. Then (Hy + V;)u, = Eu,, so by the above

(o.(Ho + V3 — E)o) = Vo — g,01% .

But since u; — u local uniformly (u is continuous!) and Pu,; — Puin L}, we have

thatg, —»gin L% and ¥, - Vin L}, as § - 0. This proves (2.13) in general. [
Agmon [4] has made a deep and complete analysis of all positive solutions
of Hu = Eu if V is periodic.

2.6 Integral Kernels for exp(—tH)

It is a comforting fact to learn that some operators have integral kernels. There
is a very general theorem which implies the existence of an integral kernel: the
theorem of Dunford and Pettis (see Treves [358]).

Theorem 2.13. Let (M, u) be a separable measure space, and % a separable
Banach space. Let 4 be a bounded operator from ¥ to L*(M,du). Then there
exists a unique (up to sets of u-measure zero) weakly measurable function K from
M to £* such that, for each fe ¥ and a.e. xe M

Af(x) = <K(x), > .
Moreover, |K| , = ||4].

In particular, choosing ¥ = LP(M,dp), | < p < o, so that £* = LYM,dy)
with ¢! + p~! = 1, and noting the trivial converse of Theorem 2.13, we have

Corollary 2.14. If A4 is bounded from L? to L*®, then there is a measurable function,
K,on M x M obeying

SUP[I IK(x,y)I"d"y]”" =l Allp,o <00, (2.19)
xeM| M

so that, for any fe L?
(AN (x) = [K(x, p)f(y)d*y . (2.15)

Conversely, if 4: L? — L” has an integral kernel K in the sense of (2.15) obeying
(2.14), then A4 is a bounded map from L? to L.

There are some results which state that the semigroup exp(—tH) has a
uniformly-bounded, jointly continuous integral kernel [334, Theorem B7.1]. But
the results for exp(— tH) are much weaker. Consideration of the “free” case (i.e.
V = 0) shows we cannot hope that there are integral operators in the sense of
(2.14) and (2.15) for p = 2, since this kernel has no decay. Thus, we need a weaker
notion of integral kernel.

We say that an operator A4 has a weak integral kernel K(x, y) if and only if
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KeL}.(R" x R"), and for all L*-functions with compact support f, g we have
(fAg) = R'wa(x)K(x,y)g(y)d'x d'y .

Then we have the following result.
Theorem 2.15. Suppose V is a C*-function obeying
(D*V)(x)| < C(1 + | x|

for all multi-indices « where either k(x) = ko — |a| withky < 1 ork(a) =0(C, >0
suitable). Then exp(—itH) has a weak integral kernel P(x, y,t) for all t # 0, and
it is jointly C* on R* x R* x (R\{0}).

This was proven by Fujiwara [120, 121] in a series of papers; see also Fujiwara
[122] and Kitada [209], Kitada and Kumanogo [211]. See also Zelditch [380]
for an alternative proof. The restrictions on V are undoubtedly too strong.
Zelditch [380] has eased the conditions, e.g. he has the following

Theorem 2.16. Let V(x) = ) T, V,(T,x) where xeR", V, is a function on R* with
V.(k)e L*(R*), and T, is a linear map of R* onto R*. Then exp(— it H) has a weak
integral kernel.

We give here a proof different from that of Zelditch, due to Cycon, Leinfelder
and Simon [73] (see also [266]).

Proof. For simplicity, we assume for a moment m = 1 and V = V,. We have

e—il" - e—ilHeil"oe—ilHo

We know that exp(—itH,) is bounded from L! to L*. So, by Corollary 2.14, it is
enough to show that

U(I) := e itHgitHo

is bounded from L* to L*. Assume first that Ve C&. Then
]
Ut)=1+ [U(s)V(s)ds ,
[}
where V(s):= exp(isHy)V exp(—isH,). Note that V(s) has the integral kernel

1 x2 — y? x—y
V : =
(x.:5) (2n)'s” exp( 2is )[7( 2s ) ’

Now we expand U(t) by the Dyson-Phillips expansion

U = ;Qum .
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where Q,(t) are integral operators with kernels Q,(x, y, t) defined by Q,(x, y,t):= 1
and

n—1 n
0.(x,y,1):= , f 1dsj§ ﬂl dx;V(x;_,,X;:s)) .

<s5,<s;...5,<t j= R j=

And we estimate the operators

1Qull <. < j[

tll
SC”’?IIV”? .

Therefore, we have

A«

IO« < Zl 10, <.« <explct|P]l;)
ne
for Ve C§. Now an approximation argument gives the result for general V.

To handle the general case (including some N-body situations), we can always
modify V, so that T, is actually an orthogonal projection onto a subspace X, of
R'. Let Y, = X; and §,, the v — p, dimensional 5-function in the Y, variables.
If W, =V, T, then

ﬂ/z - (27!)“"_"/26,' [7’ T, ,

so W, is a measure of total bounded variation. The above proof is easily seen to
extend to such measures. [J



3. Geometric Methods for Bound States

In this chapter, we develop methods that make explicit use of the geometry of
phase space to investigate bound states (that is, discrete spectrum). We apply
these methods to determine the essential spectrum and to distinguish the cases of
infinitely many, finitely many and no bound states below the essential spectrum.

Among the theorems we will prove by geometric methods are the celebrated
HVZ-Theorem on the essential spectrum of N-body Schrédinger operators, a
theorem due to Klaus [214] on the essential spectrum of a one-dimensional
Schrodinger operator with infinitely many wells further and further apart, and
a theorem on the nonexistence of very negative ions due to Ruskai [302,303]
and Sigal [310,313].

Geometric methods were already used in the works of Zhislin [382] and
Jorgens and Weidmann [187], as well as in a different context in Lax-Phillips
theory and in quantum field theory by Haag.

A systematic use of geometric ideas in Schrédinger operator theory started
with the works by Enss [94], Deift and Simon [78] and Simon [323]. Further
developments appear in Morgan [250], Morgan and Simon [251] and Sigal
[310,312,313]. In this chapter we develop most closely the approach of Sigal.
Geometric ideas will play a major role in later chapters.

3.1 Partitions of Unity and the IMS Localization Formula

The main tools we are going to work with are appropriately chosen partitions
of unity in the following sense:

Definition 3.1 A family of functions {J,},. , indexed by a set 4 is called a partition
of unity if

(i) 0<J,(x)<1 forall xeR,

(i) YJI2(x)=1 forall xeR",

(iii) {J,} is locally finite, i.c. on any compact set K we have J, = 0 for all but
finitely many ae A.

(iv) J,eC=.

(V) SUpPy e R® ZaeA |V.'¢(X)|2 < ac.
Note that a definition of partition of unity that is more common in mathema-

tics requires Z J.(x) = 1instead of (ii). Nevertheless, for us the square will be very
convenient.
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The key to the geometric approach presented here is the following localiza-
tion formula:

Theorem 3.2 (IMS Localization Formula). Let {J,},. , be a partition of unity,
and let H = H, + V for a potential Ve K,. Then

H=Y J,H),— Y IFJ>. 3.1

aeAd aeA

We call the term Y .. ,IFJ,|? the localization error. The above formula
appeared, at least implicitly, in Ismagilov [177], and was rediscovered by Morgan
[250] and used in Morgan and Simon [251]. It was I.M. Sigal [310] who
discovered its importance in the present context.

Remark. Since VeK,, ¢ € D(H) implies J,¢ € D(H) (and the same for the form
domains). Thus, (3.1) makes sense.

Proof. Straightforward computations show
.. 0J.,H]] = —2(¥J,)> and
(..., H11 =J2H + HJ? — 2J,H], .
Summing over all ae A, we end up with (3.1). [
We give a first application of the IMS-localization formula due to Morgan
[250]:
|;Proposition 3.3. Let Ve L} (R"), and assume that for a partition of unity {J;} we
ave

VIJ? < al;H,J; + bJ} with a, b independent of ie [
then

V<aH,+b withb=b+ sup ¥ |FJ(x) .
xeRd

Proof.

V=Y Vi?<aYJHoJ;+b=aH, +Y|FJ2+b. O
iel
It is well known that V = —a/|x|? in R? is relatively form bounded with
relative bound a < 1 (resp. a < 1) if a < 1/4 (resp. a < 1/4). By Proposition 3.3
we can conclude that

W= -y HEPSIx— x)

— x.|2
iel |X X,|
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is form bounded with a <1 (resp. a < 1) if, for all iel, a; < C < 1/4 (resp.
x; < 1/4) and the distance between the points x; is bounded away from zero.

3.2 Multiparticle Schrodinger Operators

Before we continue our discussion of the geometric methods, we first fix some
notations for N-body operators. The reader may consult Reed and Simon 111 and
1V [294,295] for further information.

The positions of N particles each moving in u-dimensional space is repre-
sented by a vector x = (x,, ..., xy)€ R™, where each x; is a vector in R¥, giving
the position of the ith particle. The corresponding free Hamiltonian (kinetic

energy) is given by
g
= _E — 4. . 3.2
HO - 2m,~ An ( )

Here m; is the mass of the ith particle and 4; is a u-dimensional Laplacian in the
x; variables.
We will consider a potential V that comes from pair potentials, i.e.

Vix) =Y Vix), where 3.3)

i<j

Vi(x) = f.‘j(xi - X;) (3.9

for functions f;;: R* — R.
In the following, we will assume that the functions f;; are relatively compact
with respect to the (u-dimensional) Laplacian,’i.e.

fil—4 + 1)"' is compact . (3.5

We refer to Reed and Simon 1V [295, Sect. XII1.4] for this notion and further
details.

To investigate Schrodinger operators with pair potentials, it is convenient to
remove the center of mass motion, a procedure that is well known in classical
mechanics. For this, let

N
1
R = R(x):= M Z m;x;
i=1

with M := " m;. R(x)is the center of mass of x. Define X := {x e R"*|} m,x; = 0}.
In the (N — 1)u-dimensional vector space X, we choose suitable coordinates
Y1s..., Yn-y € R* By “coordinates” we mean linear mappings y,, ..., yy-, from
R™ to R* such that the linear mapping y(x) = [y,(x), ... . yn—1(x)] gives a linear
isomorphism of X = R¥ and R "™ and y;(x) = 0if x, = - = xy.
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We may choose the coordinate y,, ..., yy_, in a way that is convenient for
the problem under consideration. One possible choice are the so-called atomic
coordinates y;:= x; — xy, i =1, ..., N — 1. As the name suggests, these coor-
dinates are particularly useful in atomic physics where usually one particle is
distinguished (the nucleus with coordinates xy).

Once we have chosen our new coordinate system y,, ..., yy-; of X, we
compute the Laplacian on R in terms of the coordinates y,, y,. ..oy Yn-1- RoOf
R™“, Doing this we obtain in general cross terms of the form 7, WPy, (i # j). Those
expressions are called Hughes-Eckart terms. However, we obtain no cross terms
of the form 7, V.

Therefore A, splits into a tensor product:

1
A, = (—mdn)@’“um + @y ® H (3.6)
where 4 is the Laplacian with respect to the R-variable acting on L?(R*) and
H, acts on L3(X) = L3(RN"1»),

The exact form of H, depends, of course, on our choice of y,, ..., yy_,. For
atomic coordinates, for example, H, is given by

o=—22”.A +Z (3.9

with 1/y; := 1/m; + 1/my. A pair potential V does not depend on the coordinate
R, thus the Hamiltonian A = H,, + V splits into

H=—(ﬁ4,‘)®n+n®n (3.8)
with H = H, + V. Equation (3.8) expresses that the center of mass of our system
will move like a free particle, whereas the relative motion of the particles is
governed by the Hamiltonian H.

There is an interesting, more systematic way to look at the separation of the
center of mass motion, due to Sigalov and Sigal [315]. Let us introduce a scalar
product §(-, ') in R*¥ by g(x,y) =YX, 2m;x;-y;,. Then H, is the Laplace-
Beltrami operator with respect to the scalar product g.

We note that the Laplace-Beltrami operator can be defined on any Rieman-
nian manifold with Riemannian structure g (see e.g. Spivak [348] or virtually any
book on Riemannian geometry). We will restrict ourselves to the case of linear
spaces with scalar product.

Let x,, ..., x, be the coordinates in R" and g(-, -) be a scalar product in
R". Then §(x,y) = x'Gy for a suitable matrix G. The Laplace-Beltrami A; opera-
tor with respect to g is defined by

o 0 =y €
4;:= Z c’—x:(C ¥ o (3.9)

i,j=1
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Specializing to RN with the above introduced scalar product, we see that (3.9)
is just a complicated way to introduce H,.
The operator n defined by

n(x) = (x; — R(x),x; — R(x), ..., xy — R(x))

is the orthogonal (w.r.t. §) projection onto X. Then R*¥ is the direct sum of the
subspace X and the (u-dimensional) space X* = {xeR*¥|x, = x; all i, j}. Let us
denote the scalar product g restricted to X by g. Then H,, is the Laplace-Beltrami
operator on X with respect to g.

For a two-body system condition (3.5) forces the potential V(x) to decay, at
least in some weak sense, as |x| goes to infinity. In sharp contrast to this, in an
N-body system (with N > 2), V will not decay at infinity even in the case that all
f;; have compact support. This is due to the fact that the vector (y,, ..., yy-,)
may go to infinity while, e.g., y, may remain constant. This fact that V will not
decay in certain “tubes” around the direction x; — x; makes the general N-body
theory so complicated (and so rich!).

A common approximation that is used in atomic physics is to take the nuclear
mass to be infinite, that is, one looks at the operator that results after removing
the center of mass, using atomic coordinates and then taking the mass of one
particle to infinity. This operator looks much like an N — 1 body Hamiltonian
before its center of mass term is removed, but with additional potentials added
that only depend on the location of the particles relative to the origin. Certain
arguments in the theory of N-body systems must be slightly modified to handle
this situation. Since these modifications are always simple, we will settle for
placing the reader on notice that one should look for these places and make the
appropriate modifications if one is interested in this infinite mass situation. Even
though we have not explicitly given the proofs in the infinite mass case, we will
occasionally discuss this case and use the results corresponding to those we have
proven in the case where all masses are finite.

To take into account that some of the particles may remain close together
while others will move away, we introduce the notion of clusters. As a rule,
our partitions of unity introduced later will reflect the cluster structure of phase
space.

By a cluster decomposition a, we mean a seta = {A,, ..., Ay} such that
K

A, ={1,...,N}

1

and 4; N A; = ¢ for i # j. The elements A, of a are called clusters, and #a will
denote K, the number of clusters of a. We use the notation (ij) < a to express
that i and j belong to the same cluster of a.

For a given cluster decomposition a, we define the intercluster interaction by

=%V, (3.10)

(i)¢a
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and the internal Hamiltonian
H@=H-1, . 3.11)

Leta= {A,,..., A} be a cluster decomposition. We define the center of mass
of the cluster A4; by

1
R?:= Ri(x):= 1+ Y mx;

jeA;

with M; = Y. ., m;. Let us set

X :={xeX|Ri(x)=0 i=1,...,j}. (3.12)
Then X splits into a direct sum

X=X®X,,

where X, := {xe X|x; = x;if (ij) = a}. X* and X, are orthogonal with respect to
the above introduced scalar product g. The Hilbert space L?(X) splits into a
tensor product: L2(X) = L*(X*)® L*(X,) and

Hy=h{®1)+(1®T,) (3.13)

similar to the removal of the center of mass [see (3.6)]. [In (3.13) h§ is the
Laplace-Beltrami operator corresponding to g restricted to X°.] Since H(a) does
not depend on any interaction term between different clusters in a, we also have

H@@=h"®N+(1®T,) . (3.14)

The operator h° describes the internal dynamics in the clusters of a. Let ¢ denote
the set of eigenvalues of h°. We define the set T of thresholds of H by

T=|) ¢ (3.15)

#a>1

with the convention that ¢ = {0} if #a = N; thus0e T.

3.3 The HVZ-Theorem

Now we are ready to define a partition of unity which will allow us to determine
the essential spectrum of N-body operators. This partition of unity was intro-
duced by Simon [323]. A related partition into sets was used by Ruelle [299] in
quantum field theory.

Definition 3.4. A Ruelle-Simon partition of unity is a partition of unity {J,}
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indexed by all two cluster decompositions a (i.e. all a with #a = 2) with the
following properties:

(i) J, is homogeneous of degree zero outside the unit sphere, i.e. J,(ir) = J,(r)
forallA>1,|r|=1.
(ii) There exists a constant C > 0 such that

supp J, N {x|Ix| > 1} = {x||x; — x;| = C|x|for all (ij) ¢ a} .

Remarks. (1) We require homogeneity (i) only outside the unit sphere to avoid a
singularity at the origin. For the moment, we are not interested in the region
around the origin, where all particles are close together.

(2) Condition (ii) says that J, lives where the particles in different clusters of
a are far away from each other. Note that on supp J,, two particles belonging to
the same cluster need not be close to each other.

Of course, we have to prove the existence of a Ruelle-Simon partition of unity.

Proposition 3.5. There exists a Ruelle-Simon partition of unity.

Proof. Once we have a (locally) finite cover {U,} of the whole space, it is a
standard procedure to construct a partition of unity, {j,}, with suppj, = U,.
Moreover, in the present case it is enough to construct the partition of unity on
the unit sphere since we may extend it to the exterior by homogeneity, and to
the interior in an (almost) arbitrary way. Thus, it suffices to find a constant C > 0
such that the sets {US} ,,-, defined by

US = {x|Ix| = 1,]x; — x;| > 2C for all (ij) ¢ a}
covers the unit sphere, S. Since

U U us=s,

C>0 #a=2
such a constant C exists by compactness. []

One can use a little geometry in place of compactness and obtain an explicit
value for C; see Simon [323].

The following proposition states properties of the Ruelle-Simon partition of
unity that are crucial for the proof of the HVZ-theorem.

Proposition 3.6. (i) (VJ,)(H, + 1)~! is compact.
(ii) (J,1,)(Hy + 1)7! is compact.

Proof. (i) ¥J, is continuous and homogeneous of degree — 1 near infinity, so it
tends to zero at infinity. Hence FJ,(H, + 1)™! is compact (see e.g. Reed and Simon
1V, XI111.4 [295)).

(i) We prove (ii) for f;;e C5; the general case follows by a straightforward
approximation argument. For f;e Cg, the function J,I, has compact support
(while I, itself does not!). (]
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HVZ-Theorem 3.7. For a cluster decomposition a, define XZ(a) := info(H(a)) and
2 :=min4,-, 2(a). Then

acss(") = [Z» ) .

The HVZ-theorem was proven by Zhislin [382], van Winter [359] and
Hunziker [171] (with increasing generality).

Proof. “Easy part™ [Z, o) < a,.,(H). This inclusion can be shown using the

Weyl's criterion (see e.g. Reed and Simon 1, VI1.12 [292]) by construction of an

appropriate sequence of trial functions; see Reed and Simon 1V, XIII [295].
“Hard part™: o, (H) = [Z, o). By the IMS-localization formula

H= anH(a)"a + zln‘lnz - ZIVJnI2

where {J,} 4.- is a Ruelle-Simon partition of unity. By Proposition 3.6, we know
that both I,J, and |FJ,| are relatively compact with respect to H,. Therefore
Weyl’s theorem (see e.g. Reed and Simon 1V, XII1.14 [295]) tells us that

Oess(H) = 0.,,(3 J,H(a)J,) .
By definition of 2, we have

H@=>2(a)=2 .

Hence,
Z J,H(a)J, > z Z)P=X.
#a=2 #a=2

Thus, Oess(H) = O'“S(ZJ‘,H(G)J“) c[Z,c) O

We will present a second geometric proof of the HVZ-theorem. We need the
following result which will be used again in the next chapter.

Proposition 3.8. Let {J,} denote a Ruelle-Simon partition of unity. For any
f€C,(R), the continuous functions vanishing at infinity, we have

(i) [f(H(b)),J,] is compact,
(i) [f(H(a)) — f(H)]J, is compact.
(iii) If, furthermore, f has compact support, then both

Ho(f(H(b)) — f(H))J, and Ho([f(H(b)), J,]) are compact .

Proof. We prove (i) and (ii) for the functions f.(x) = (x — 2)~! for ze C\R and use
the Stone-Weierstrass gavotte (see the Appendix to Chap. 3) to obtain the results
for all of C(R).

(i) We compute
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[(H(b) - 2)7",J,] = (H(b) = 2)' [J,, HoJ(H(b) — 2) ™"
= (H(b) — 2)""(4J, + 2V, P)(H(b) — 2)”!
= {(H(b) — 2)"(4J,)} (H(b) — 2)”!
+ {(Hb) — 2)"'20J,}V-(H(b) — 2)" . (3.16)
Since 4J, and VJ, are homogeneous of degree —2 and — 1, respectively, near

infinity, the terms in curly brackets are compact. Moreover, V- (H(b) — z)~! is
bounded. Hence the whole expression is compact.

(ii) {(H@)—z)' —(H-2)""}J,
=(H(a) - 2)'I(H - 2)7'J,
=(H@) - 2)'"IJH-27"+H@-2"L[(H-2"J].

The first term is compact by Proposition 3.6; the commutator in the second terms
is compact by the argument in (i); thus, the whole expression is compact.
(iii) Set g(x):= (x + i)f(x), thengeC,

Ho[f(H(b)).J,] = Ho(H(b) + )" (H(b) + ) [f(H(b)).J,]

= Ho(H(b) + i)' {[g(H(b)),J,] — [Ho, L1f(H(b)} . (3.17)

By (i), [g(H (b)), J,] is compact. Furthermore

[Ho,J1f(H(b)) = (- 4J, — 2VJ,-V)(Ho + i)' (Ho + i)

x (H(b) + i)"'g(H(b)) .

Since .;,, is homogeneous of degree zero, both 4J,(H, + i)' and VJ,- V(H, + i)™!

are compact. Hence the right-hand side of (3.17) is compact, which proves the
first part of (iii). The second one can be proven in an analogous way. [J

We now give a second proof of the HVZ-theorem: Let f be a continuous
function on R with compact support below . By Proposition 3.8, we know
that

C:= zz [f(H) - f(H(a))}J?

#a=

is a compact operator. But

SHH) =Y [f(H) - f(H(@)}J} + ¥ f(H@)J} =C ,

since supp f N a(H(a)) = ¢. Thus, f(H) is compact. By an operator inequality, it
follows that the spectral projections E(4) of H are compact for i < X, hence
o.s(H) = [Z,c). O
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3.4 More on the Essential Spectrum

It is “general wisdom” that the essential spectrum of Schrodinger operators
comes from “what happens very far away.” The two theorems of this section
make the above statement precise. They determine the essential spectrum, but
not as explicitly as the HVZ-theorem does. On the other hand, they apply to
potentials that do not decay at infinity even in the very weak sense of (3.4) and
(3.5). Thus, for example, periodic, almost periodic and random potentials are
included in those theorems while they are not in the HVZ-theorem.

The crucial property of Schrodinger operators that makes the above “general
wisdom” true is local compactness, a concept particularly emphasized in the
work of Enss (see e.g. [100]).

Definition 3.9. A Schrodinger operator H = Hy + V is said to have the local
compactness property if f(x)(H + i)™' is compact for any bounded function f
with compact support.

Virtually all Schrodinger operators of physical interest obey the local com-
pactness property. For example, if V is operator bounded (or merely form
bounded) with respect to H,, then H has the local compactness property.

We will assume throughout this section that V is operator bounded. Notice,
however, that we do not require any decay conditions at infinity. For those
operators, we have the easy lemma:

Lemma 3.10. Suppose that V is operator bounded with respect to H,. Let f
be a bounded function with compact support. Then both f(x)(H + i)™ and
S(x)P(H + i)™! are compact operators.

Proof.
JXV(H + i)™ = (f(x)(Ho + i)""?)[V(Ho + i)™ )(Ho + i)(H +i)™" .

The first term in the above expression is compact, the others are bounded. The
proof that f(x)(H + i)~! is compact is obvious from the above. []

We now state and prove the first of the announced theorems. We denote, by
B, := {x||x|] < n}, the ball around the origin, of radius n.

Theorem 3.11. Let V be operator bounded with respect to Hy. H := H, + V. Then
‘€0 (H)if and only if there exists a sequence of functions ¢,e CF(R"\B,) with
ll@all2 = 1 such that

I(H— 2)@,ll =0 . (3.18)

Remark. (1) By the Weyl criterion, we know that i€ a,,(H) is equivalent to the
existence of a sequence of trial functions {¢,} obeying [ ¢,||, = 1 and @, = 0 with
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(3.18). Thus, Theorem 3.11 tells us that the weak convergence of the ¢, actually
takes place in a particular way.

(2) The theorem can be proven under much weaker conditions on V. All we
have to ensure is that the conclusions of Lemma 3.10 remain true and that C§
is an operator core.

Proof. By remark (1), the “<="-direction is trivial. Let us assume that i € o,,(H).
By the Weyl criterion there exists a sequence ¥, € CF(R"), [y, ll, = 1, ¢, = 0such
that

I(H = A, =0 . (3.19)

For any n choose a function y,e C*, 0 < x,(x) <1 such that yx,(x) =1 for
|x| > n + 1, and y,(x) = 0 for |x| < n. We claim that, for any n, there exists an
i = i(n) > nsuch that

I(1 = xa)Wimll < 1/n, (3.20)
I(Axa)¥imll < 1/n , and (3.21)
IV gV il < 1/n . (3.22)

Assuming this for the moment, we set

0= Xn\l’i(n)
" “x;:',/i(n)” ’
We have
I(H = Ao, < {I(H = Al + 2177l + 1(Axa)¥ill}

|| ..l// l

which goes to zero by (3.19-22). Thus, it remains to prove (3.20-22). For this,
let x be a C§-function, then:

lxWnll = llx(H + )'[(H — ) + (i + ¢,
< llx(H + )7 | I(H — A,
+1A+illlx(H + )", .

The first term goes to zero because of (3.19); the second one goes to zero since
Y. — 0 and x(H + i)™ is compact by Lemma 3.10. This proves (3.20) and (3.21).
A similar proof applies to (3.22). O

There are numerous related results, such as

aess(") = na(H + "X:xllxISu}) .
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We now prove a result due to Persson [282] that gives the infimum of the
essential spectrum in terms of a “min-max”-type expression:

Theorem 3.12 (Persson). Let V be operator bounded. Then

infe,.(H) = sup inf {@,Hp) .
KcR' @eCH(R" K)
compact L@ =1
Remarks. 1) Persson’s theorem says that inf g, is not effected by “what happens”
in any compact set.
2) For any fixed K, the term
inf  <o,Hop)
@eCy(R' K)
is just the ground-state energy for the Hamiltonian H on L*(R*\ K) with Dirichlet
boundary conditions at ¢K. (See Reed and Simon 1V [295]). Thus, infe . (H) is
the sup over all these ground state energies.
3) Theorem 3.12 can be proven under weaker assumptions. See the book of
Agmon [3] for another proof.

Proof. “>": Let 4, be the infimum of ¢.,,(H). Then 4, €0, (H), and by Theorem
3.11, we can find a sequence ¢, C§ (R"\B,) with | ¢,|| = 1 and (H — 4¢)¢, — 0.
Thus,

sup inf <@,He)=1m inf (@, He) <lim<p, Ho,)
K @eCo(R' K) n @eCH(R" B, n
compact @l=1 r@; =1

< m <(pm(H - ';0)(pn> + m <(pn~;-0‘pu> = ;'0
*“ <™ Define

Hai= sup inf {p,Hop) .

By the min-max theorem (see Reed and Simon IV, XIIL.1 [295]), u, is the nth
eigenvalue of H from below counting multiplicity. If there are only n, eigenvalues
below ig:= info.,(H), then u, ., = pp +2 ="+ = Ao. Moreover, if there are
infinitely many eigenvalues below o.,(H), then yu, — info . (H). Thus, to show

/o =info. (H)<sup inf <{(o,Hp)=:v,,
K o¢eCo(R' K)
l@il=1

it suffices to show that v, > u, for all n. Since

w= inf {@,Ho) ,
ve(‘(,lﬂll‘)
®=

obviously vq > pu,.
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Suppose now n > 1 and vy > u,_,. If u,_, = 4o, we are done. If y,_, < 4,,
then

mo= inf  <p,Ho) ,

elpy..... Pn-1
tel=1

where the p; are normalized eigenfunctions corresponding to the eigenvalues y;,
and moreover, p,, ..., p,-; span the eigenspaces of the ;. Now choose ¢ > 0 and
K, so large that

[ lpx)*dx<e fori=1,...,n—1. (3.23)
RKo
Define for any ¢ the function ¢(x) := @(x) — Y 1=, <@, p,>pi(x). Then § L p,. We
have

vw> inf  <¢,He)

@eCo(R" Ko)
‘pli=1

= Cirg . K@, Hp) + @, 2@, pd 1ipi> + {ZK@, P 1ib1 9D} -
@eCH(R" Ko)
o!=1

For any ¢ € C5 (R*\K,), <9, p:>| < £"*|l@]l by (3.23), thus

Vo = inf {(@,HPp) — Ce

@eCH(R" Ko)
® =1

5 H
>(1—-Cé¢ inf M—Cc

@eCH(R' Ko) <(P,(P>

l@l=1

5 Ho

>(1 —-C%) inf (_u)__cc

@lpi.c.ion {¢,9)
>(1 - Céeu,— Ce .

Since ¢ was arbitrary, we have

vo = i, and hence

Vo = 4g .

3.5 A Theorem of Klaus: Widely Separated Bumps

Before we turn to applications of geometric ideas in atomic physics, we use
geometric methods in a different context:

Theorem 3.13 (Klaus). Assume Ve Cj§ (R), V < 0. Let {x,},.2 be a sequence of
real numbers satisfying x, < x,., and |x, — x,,,| = oc as |n| = oc.
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Define W:=Y,.,V(x —x,), H:= —d*dx?> + W and H := —d*/dx* + V.
Then
O.s(H) = o(H') .

Remark. The above theorem is a special case of a theorem due to Klaus [214],
who proved it by Birman-Schwinger techniques.

The negative eigenvalues of H' are isolated points of the essential spectrum
of H, hence they cannot belong to the continuous spectrum of H. But they also
cannot be eigenvalues of infinite multiplicity, because we have a one dimensional
problem. Thus, they must be accumulation points of the discrete spectrum of H.
Such a phenomenon is impossible if the potential decays at infinity (by the
HVZ-theorem). In Chaps. 9 and 10, however, we will demonstrate other examples
of “unexpected” spectral phenomena: singular continuous spectrum and dense
point spectrum.

Proof. The direction “o,,(H) > a(H')” can be proven by a standard application
of Weyl's criterion. We only argue “o(H') o a,.,,(H)". Let us define V,(x) =
V(x — x,)and H, = —d?*/dx*® + V,. For notational convenience, we will assume
that supp V, nsupp V,, = ¢ for n # m. Under this assumption, we may choose a
partition of unity { j,},.z with the following properties:

() jaW =jaVo,
(") jnjm = O‘f'" - m' > 2’
(iii) j,e C5" and |Pjul, =0, |4j,l, — 0 as |n] — co.

We define
A(2):=Y ju(H, — 2)7j, . (3.24)

It is not difficult to see that A(z) is bounded and analytic as a function of z on
Q2 := C\a(H’). (The reader may adjust the proof of the lemma below.) We will
show that

A(z) = (H - 2 '[1 + B(2)] (3.25)

for compact operators B(z) analytic on 2. Once we know (3.25), the analytic
Fredholm theorem (see e.g. Reed and Simon 1 [292], Theorem VI.14) tells us that
the inverse of 1 + B(z) exists on 2\D for a discrete set (in ), D. [From the
definition of B(z), we see that || B(z)| = 0as z - —o0, so 1 + B(z) is invertible for
some z.] Moreover, the residues at the poles are finite rank operators. Thus, by
(3.25), we can continue (H — z)™! to an analytic function on 2\D, the residues
of which are finite rank operators at the points of D. This implies that 2 N
o.(H) = ¢, and we obtain the desired result.
To prove (3.25), we define

B,(2) := [Ho.ja)(Hy = 2) 7' . (3.26)

Here B,(z) is compact and analytic on 2. We compute:
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(H—2)"'By(2) = (H — 27" [(H = 2),j,)(H, = 2)"'ja
=(H = 2)7'[(H = 2)j, — ja(Hy — D(H, — 2) ")
(we used: j,W =j,V,)
= jalHy = 2)jo = (H = 2)7'j7 .
To prove that B(z) = Y B,(2) is well defined and compact, we make use of the
following lemma:

Lemma. Let C,, neZ be bounded operators, and let f,, g, be bounded func-
tions satisfying supp f, N supp f,, = ¢, and suppg, N suppg, = ¢ for n #m. If
| fuCagall = O as |n| — oo, then the series

:i J2Can

converges in norm.

Proof. Denote by x, and n, the characteristic functions of supp f, and suppg,,

respectively. Then
Y <x..¢.(f..C..g..)m.¢>’

‘<¢. Y L.C..g..tp>| =
|n|>M In|>M

< sup [1,.Cagnll Y llxa¥ll Inaeoll

(n]>M [n|>M

< 8(...;;" ||X.l//||2)”2 (MZM ||'l,.¢||2)m

<elyl llell for M largeenough . O

Proof of the Theorem (continued). Now we write B(z) as

Bz)= S [Houjad(Hy — 2

=Y —iH, =2+ Y = 25V(H, - 2)" )
nodd nodd
+ Y —JaH =2+ Y = 2P (Hy = 2) )

We apply the lemma to any of the four terms separately. Since we have shown
norm convergence, we conclude that B(z) is compact. [

3.6 Applications to Atomic Physics: A Warm-Up

For the rest of this chapter, we will be concerned with questions arising from
atomic physics. We begin with a somewhat artificial example, which nevertheless
will be illuminating for more realistic problems. Let us consider the Hamiltonian
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1 1 A
HA)= -4, -4, -~ -~ +r—2 (3.27)
1 2 1

acting on L?(R?'3) where, as usual, r, = |x;], r,, = |x, — x,|. This operator
describes two electrons moving under the influence of an infinitely heavy nucleus,
with the repulsion strength between the electrons given by A.

By physical reasons, one expects that H(A) has no bound states for very large
repulsion between the electrons, i.e., for 4 » 1. We shall prove this here using
the localization formula. By Lieb’s method (see Sect. 3.8), one can prove there is
no bound state once A4 > 2. Numerically (see Reinhardt [296]), the critical value
seems to be about 1.03.

The HVZ-theorem tells us that g, (H(A)) = [—1, x), since infa(—4, —
1/r,) = —4. Thus, the expected result is equivalent to

Proposition 3.14. For A sufficiently large, we have H(A4) > —4.

Proof. We choose a partition of unity, j,, j,, j, With the following properties:
suppjo < {x|Ix| < 1} ,
suppj, < {x||x,| > }|x,l;|x| > %} ,
suppjz < {x|lxa| > }Ix,;|x| > 3} ,

and so that j, and j, are homogeneous of degree zero outside the unit sphere.
To dominate the localization error ) |Vj;|>, we may choose A, sufficiently large
such that

A .
23|l
r2

This choice of A, is possible because j, and j, are homogeneous of degree zero
for r large, while j, has compact support. By the IMS-localization formula, we
can write

H(A) =

2
. (A .
JiH(A = Aoli; + (—" =) |V1.-|2)
e 5

2 ) jiH(A — Ay)j; -

2
i=0
2
i=0
Notice that it is the long-range nature of the Coulomb interaction that helps us

to control the localization error.
Next we observe that, for any ¢ > 0 and sufficiently large 4, we have
1 1 A—- A,

-+ ———->0
bl Ixal o xy — xal
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for all x with |x| < 1 and |x,|, |x,| > ¢. Thus, for large A

Xlxy)  xdx3) (3.28)

joH(A — Ag)jo = —4, — 4, — ,
Jo oo 1 2 Ix, | x|

where x, denotes the characteristic function of the ball of radius &. We know that
the Hamiltonian on the right-hand side of (3.28) has no bound states if ¢ is small
enough. This may be seen by (almost) any bound on the number of bound states
(see e.g. [295], Theorem XII1.10). Hence,

JoH(A — Ag)jo 20,

if A is large enough. Furthermore, on suppj, we have

( L+;>- >0
M T m T

since |x, — x,| < |x,;| + |x;| < 3|x,|. Therefore, if A > A, + 3, we have

. .o 1.
J1H(A — Ay)j, 2]1(_41 -4, - —‘>!| ’

and by symmetry

. oo 1.

Jj2H(A = Ap)j, Z]z(—dn -4, - ““)12 .
Since —4; — 4; — 1/|x;| = —1/4, we conclude

H(A) 2 jH(A — Ao)j, +j,H(A — Ag)j2 > -3

for sufficiently large 4. [

In this argument, as well as in the next section, the separate region near zero
is needed, because without it the localization error near zero is O(r~2), which
cannot be controlled by Coulomb potentials.

3.7 The Ruskai-Sigal Theorem

Now we come to an important application of geometric methods in atomic
physics. We consider the Hamiltonian of an atom with nucleus charge Z, and N
electrons:

N

HN(Z):=Z< - M) Zl‘_x : (3.29)
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By physical reasoning, one would expect that a nucleus of charge Z can bind
only a limited number of electrons, because at some point the attraction of the
nucleus should be dominated by the mutual repulsion of the electrons.

Let us give a more mathematical formulation of this expectation. Define

E(N,Z):=infa(H,(2)) . (3.30)
Then, by the HVZ-theorem

0cs(Hy+1(Z2)) = [E(N, Z), o0) .
Thus, our expectation can be formulated as

E(N + 1,Z) = E(N,2) (3.31)

for large N. We emphasize that we are dealing with the discrete spectrum
exclusively. Thus, we make no assertion on embedded eigenvalues.

Theorem 3.15 (Ruskai-Sigal Theorem). For any Z, there exists Np,,,(Z) such that
E(N +1,Z) = E(N,2)
for all N > N_,.(Z). Moreover, for fermionic particles, we have

im Nmax(Z) <

Z—x

2. (3.32)

Remarks. (1) Theorem 3.15 was proven by Ruskai [302,303] and by Sigal
[310,313].

(2) There exists an improved version of the Ruskai-Sigal theorem due to Lieb
[231,232] which gives N,,,,(Z) < 2Z for all integers Z. We present this theorem,
as well as Lieb’s elegant proof, in Sect. 3.8. Our proof below, however, follows
Sigal [310]. Although Sigal’s proof is much more lengthy than Lieb’s, we present
it here for two reasons. Firstly, we feel that it gives more physical insight into the
phenomena, and secondly, there is another improvement of the Ruskai-Sigal
theorem by Lieb, Sigal, Simon and Thirring [233] that states that the limit in
(3.32) is actually 1. The proof of Lieb, Sigal, Simon and Thirring is a refinement
of Sigal’s proof which we give below.

(3) We will take into account the fermionic nature of our particles (for the
second part of the proof) only by using the Pauli exclusion principle. A more
careful investigation should check that one always discusses Hamiltonians re-
stricted to antisymmetric states. For this, we refer to Appendix 4 in Sigal’s paper.

Proof. Sketch of the Ideas. We divide the configuration space into N + 1 pieces:
Ao, Ay, ..., Ay. The first part, A,, consists of the region where all the electrons
are close to the nucleus, and A; essentially consists of the region where the ith
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particle has larger distance to the nucleus than any other electron. We then
construct a partition of unity, J;, with supp J; = 4; and with good control on the
localization error Y ., |V Ji(x)|%. On A,, the strong repulsion between the elec-
trons will dominate both the attraction by the nucleus and the localization error,
provided N is sufficiently large. On A4, (i > 1), we split Hy into an (N — 1)-body
operator Hy_, corresponding to the electrons 1,2, ...,i—1,i+ 1,..., N and
the additional terms due to the ith electron. Since that one is further from the
nucleus than any other electron, the distance between the electrons i and j is at
most twice the distance of the ith electron from the nucleus. Therefore, the
repulsion between electron i and the other electrons dominates the attraction of
the ith electron by the nucleus as well as the localization error if N is large enough.

Details of the Proof. Define

x.(x):= max |x;] .
i N

i=1,...,

Ag:={x|Ixjl<p forj=1,...,N}

A= {xllx.-l > (1 = 8)X,(x), X (x) > ‘2—’} :
where p and 6 < 1/2 are positive numbers that will be fixed later on. We will
eventually choose p in an N-dependent way.

We will construct a partition of unity, {J;}!,, with supp J; = 4;. We single
out some crucial estimates on the gradients of the J;, and defer their proofs to
the end of this section:

Lemma 3.16. There exists a partition of unity, {J;}X.,, with supp J; = 4, such that
the following estimates hold:

N

ANI/Z
Z IPJ(x)? < on A, and (3.33)
i=0
N

ANI/Z
Z VI < - G O Iz (3.34)
i=0 ©

for a suitable constant A.

Proof of Theorem 3.15 (continued). We set L(x) = Y X, |VJi(x)|%. By the IMS
localization formula, we have

N
Hy = Jo(Hy = L))o + 3. Ji(Hy — L(x)J; . (3.35)

Using (3.33), we estimate:
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N

N
z 1 AN'2 )
-4, - =)+ - J
Z ( lx,.l) ; Ix; — x;l PE o

i=1

Jo(Hy — L)Jo 2 Jo

1 N(N -1 N2

4p p?

>0 forlarge N. (3.36)
Observe that we used —4; — Z/|x;| = —4Z2 and |x; — x;| < 2p on supp J,. For
i # 0, we define

N

HY_, = 4, - _) (3.37)
; ( 'xk - X; |
j#i k]#:
We have, for i # 0, setting Ey_, := E(N — 1, 2Z):

N
i zZ 1 AN'?

JHy = L) = J(HY — 4, =+ - )J‘

(Hy ) ( N x| ;|x‘.—xj| x4 (x)p

Z N -1 AN2
(| Eyoy — — + —— — J
21‘(5” 'l Y e xm(x)p) :

N -1 AN'2

> J;Ey_,J; forlarge N . (3.38)

We used above that x; > (1 — 8)x,(x) on A;. Thus, we proved

N
Hy Z JEy_,J; > Ey_, if N is sufficiently large .
To obtain the additional result for fermions, we choose p N-dependent:
p:=gNV3
Then the estimate of J(Hy — L)J,, i # 0, reads

_ AN5/6
J(HN—L)J,>J(£~,+|'|(N2 '(1-5)—2— , ))Ji.

The term

N — /6
(—l(l—é)—Z—AN )
2 n

will be eventually positive if Z = (1 — 26)N and N is sufficiently large.
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We have, however, to improve our estimate of Jo(Hy — L)J,, because (3.36)
is too rough for the asymptotics of N,,. If we take into account the Pauli
exclusion principle, we may estimate

N
Z (—A,- - 3) > —CN3Z2,
= x|

With this estimate, we obtain

NN —1) AN
JoHyJy > .Io(—CN‘“Z2 + an T )JO
Again, with the above choice of Z, the term in brackets is positive for appropriate
n and sufficiently large N.
Thus, we have proved that

E Nmn(z) < 2
Z—-x VA 1-26

which gives the desired result since 6 > 0 was arbitrary. [J

Remark. Our boson proof yields N,,,(Z) = O(Z?). One can improve Lemma 3.16
to get Np.,(Z) = O(Z'**) (see Sigal [313]), but that seems the best one can do
with this method. Lieb’s method (see Sect.3.8) shows that N_,,(Z) < 2Z + 1 for
bosons.

Proof of Lemma 3.16. Let  be a C*-function on R satisfying 0 < y/(t) < 1 and
Yy=1fort>1—¢ Y(t)=0fort <1 — ;0 < ¢ < 8. We define x(t) := yY(t)?,
and set

Fo(x)=1- x(""‘”) , (3.39)
P
Fi(x)=x(x,_(x))x<ﬂ_> i=1,...,N. (3.40)
P X (x)

We will show that

Fi(x) .
Ji(x) Z|Fj(x)|2 i=0,...,N
is a partition of unity with the required properties, except that it is not smooth.
This is due to the fact that x, (x) is not differentiable at those points x where
X; = X; = X, (x) for some i # j. However, VJ; in the distribution sense belongs
locally to the domain of H,, so that we could prove the localization formula for
this more singular case without additional problems. An alternative way would
be to smooth out x, (x) by convolution with a C*-function with small support
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around the origin, and to define F; with this smoothed out version of x,, . A third
possibility (Sigal [310])is to use | x|, := (3 |x;|?)"/? rather than x, . We leave these
details to the reader, and argue the required estimates for the F; defined in (3.39)
and (3.40), eventually neglecting sets of measure zero where the gradients are not
well defined.

First, it is easy to see that suppF; < A4,,i =0, ..., N. For at least one i, we

have |x;|/[x.(x)] > 1 — J, hence
X\ | (1%l \[?
* "( P ) ;"‘(xmtx))

3 o <[ =25
(xm(x)) 21
X
P

. (xm) 2 1
X P 2

(we used |1 — x|? + |x|? = 1/2). Therefore

>

>

Fi(x)
X IFx)13)"?
is well defined. Moreover, {J;} is a partition of unity with suppJ; = A4; (but, as
we emphasized above, J; is not smooth!). Let us now prove the gradient estimates
(3.33) and (3.34). By definition of x, we have, for any y > 0,

0P <4y 12y’

4
<y+ w" y()*

Jix) =

C
=y + —x()?
y

[we used 2y <y + (1/y)y*]. Hence, fori=1,..., N

N
PR =, {"' (Lﬁi’%( 'x(i))] '3;;
= j

ji=1

xo 0\ L Ikl \[ 1xl oxe I
T ( p )" (xm(x))[xw(x)za_xf‘s"xwm]}

(the gradient dx,, /0x; is defined in L2-sense, i.e. almost everywhere)
B (x:0) (lxil :
RIERT R AR R CH E
x(x)) ( || )2}
+
x( o )\
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since

1 1 ) xm(x))
-< if '( #0, and
p ka0 X\ Tp

Xl _ ifx'(-——lx‘| );&o.

xo(x) X (x)

Furthermore, we read off from the definition of x,, that, for a given x, provided
x, is differentiable at x, there exists only one i with dx(x)/dx; # 0, and for this
i, we have |0x(x)/0x;| = 1. Hence

or sl (57 )
IPE SIxm(x)l2 U yx p X X5 (X)
C ([ Ixi 2] (xa)(x))z}
+[y+vx(xm(x)) o

D (. Cr
5%uwG+vmﬂ)'

It is easy to check that

’

D
IVFO(XNZ < ’7 .

Therefore

|PF;? A C
paoor < 210 F (1 N _)
LIV < Spr- s mam (TN + 2

Inserting y = N2, we obtain

Nl/z

2
LIPI <

Moreover, by enlarging A—if necessary—we have

ANl/Z
YIPIx)? < S on suppJ, and

AN 12
X5 (x)p

Remark. The reason why we get merely lim [N,...(Z)/Z] < 2 is the estimate
Ixi = x;| < 2x,(x)in(3.38). Indeed, one might hope to improve the estimate (3.38)
by a more clever choice of the J;. This is actually what Lieb, Sigal, Simon and
Thirring [233] do.

LIPI)? <

onsuppJ; i#0. O
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3.8 Lieb’s Improvement of the Ruskai-Sigal Theorem

In this section, we present Lieb’s simple proof of an improved version of Theorem
3.15. We use the notations of Sect. 3.7.
Theorem 3.17 [231,232] For any Z: N,.,(Z) < 2Z + 1.

We single out
Corollary. If Z is an integer, then N,,,(Z) < 2Z.

In particular, the Corollary tells us that the ion H 2- has no bound states, i.e.
it is unstable. To prove Theorem 3.17, we will use the following lemma:
Lemma 3.18. If o € L>(R3) and ¢ € D(— 4) n D(|x|), then Re{ o, |x|( —4)¢) = 0.

Proof. If the function f is sufficiently regular, one has

Y2+ ) =pp +ilp.[(p.f1] =P + 3(—4) . (3.41)

Choosing f(x) = |x|™! and multiplying (3.41) by |x| from both sides, we obtain
formally

P2 x| + 1xIp?) = |x|plx|™' plx| — $Ix|(4]1x]7")|x|
= |x|plx|7'p|x| + §|x|4nd, | x|
= |x|plx|~'plx| , (3.42)

where &, is the Dirac measure at the point 0e R3. We used that (4n|x|)™! is a
fundamental solution of — 4, i.e. —A4(4n|x|)™* = J,. From (3.42) we get

Redo,|x|(=)¢> = [Ix|'IF(Ix|¢)|*dx =0 . (3.43)

However, we have to justify the above formal calculations. To do this, we
approximate the function |x| by p,(x) := (|x|? + &2)'2.
Doing the above calculations with p, instead of | x|, we arrive at

Re<o, p(— @) = [ p.(x)! |V (p(x)o(x))|* dx
+ 3 [ p(x) e | (x)|* dx (3.44)

[we used 4(p, ') = —3;{‘552]. Since ep,”'(x) < 1 and

[ ‘é«pm

(see [293], X.2), the last term in (3.44) goes to zero as ¢ —0. Moreover,

2
dx < 4J.|V¢p(x)|2dx
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@, p(—A)p) =<, |x|(— Ao, and
[ 1P (p.@)2dx = [1x|7* P (Ix|@)2dx .

(The reader may check that Lebesgue’s theorem on dominated convergence
applies, using Vo e D(|x|"?).) 0O

Proof of Theorem 3.18. Assume E, < E,_,. Thus, Hy, has an isolated eigenvalue
at the bottom of its spectrum. Therefore, the (normalized) ground state, y, of Hy,
decays fast as |x| = oo (see [295], XII1.11), and consequently y € D(|x|). More-
over, we may assume that ¢ is real. We have (x; is the coordinate vector of the
ith electron, and Hy_, the Hamiltonian of electrons 2, ..., N).

0 = <Ix,|¢.(Hy — Ex)¥>

zZ « |
= <|~"1|¢o<"~—n —Ey—4, - [;;T + z m)¢>

j=2

Z < 1
> lxl,(E_—E _a -2y —)>
< s Ex-y N 1 x| J;lxl_le ¥

= x, \Y (Exoy — ENWY) + xy|Y, —4,¢)
Xy
_Z+<¢ ZI ,—x|¢>
. z+<¢2| "‘_"xlw>

where we used <|x,|Y,(Hy_; — Ex_,)¥) = I'xl|<¢x|o(HN—l — En_ Wy, > dx, 2
0 with ¢, (x;, ..., x§) = Y(x,,X;, ..., Xp).

By symmetry of the above formulae, we obtain, replacing x, by x; and
summing over i,

N
b3 N oyy

ij=1 X = xjl
i#j

Since |x; — x;| < [x;| + |x;|, we get

<~//,( i |)¢> =N(N-1)<2NZ .
i.j=1
i#j

Thus N<2Z +1. O

Remarks. (1) One can show if N > 2Z + 1, then E, is not an eigenvalue.
(2) Lieb [232] treats multi-center problems and various other refinements.



52 3. Geometric Methods for Bound States

3.9 N-Body Systems with Finitely Many Bound States

The HVZ-theorem tells us that the infimum X of the essential spectrum of H is
always defined by two cluster decompositions, i.e.
r=23,:= inf o(H,) .
#(@)=2
In contrast to that, the question whether a,,(H) is finite or infinite depends, in
part, on

Xy:= inf a(H,) .

#(@=3
We will show below that, in many cases, a,;(H) is finite provided 23 > Z. On
the other hand, if £3 = Z, theoperator H = —4 + Y, ; V;;(x) may have infinitely
many bound states even if the Vj; have compact support. This phenomenon is
known as the Efimov effect, after its discoverer Efimov ([91],[92]). For rigorous
treatments, see Yafaev [372], Ovchinnikov and Sigal [268] and references therein,
and the discussion in Reed and Simon [295] after Theorem XIIL6.

In the following, we will show that 2y > X implies the finiteness of a,;,(H)
for short-range potentials Vj;, as well as in the case of once negatively charged
ions. These results will follow from an “abstract” theorem (Theorem 3.23) which
we will prove first. The results of this chapter go back to Zhislin and his
co-workers [16,363,382-384]. The form in which we state them, as well as the
proofs we give are due to Sigal [310]. Additional references may also be found
there.

We first introduce an appropriate partition of unity.

Definition 3.19. A partition of unity { j,}, indexed by all cluster decompositions
aof {1,2,..., N} is called a Deift-Agmon-Sigal partition of unity if

(i) each j, is homogeneous of degree zero outside the unit sphere,

@) {Ix| > 1} nsuppj, = {x = (x,,.... xy}|Ix; — x;l = C|x| whenever (ij)<¢ a},
with a suitable constant C,

(iii) for two distinct cluster decompositions a and a’ with #a = #a' = 2, we
have {|x| > 1} nsuppj, N suppj, = ¢.

Related partitions occurred first in Deift and Simon [78]; their importance in
this context was noticed by Sigal [310]. An existence proof for a DAS partition
of unity can be made by slightly changing the proof of Proposition 3.5 (existence
of the Ruelle-Simon partition of unity). Like for the Ruelle-Simon partition of
unity, we have that each j,I, is relatively compact if the ¥V are (see Proposition
3.6). The following estimate for the localization error is crucial in our proof of
the finiteness of a,;,:

Proposition 3.20. For any ¢ > 0, there exists a C, such that outside the unit sphere
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TIZjLR < (1 + [x)! (e Y x+C ¥ js(x)) : (3.45)
#a=2 #a23

Remark. It is well known that a two-body potential W, which decays at infinity
like a| x| ™2, does not produce infinitely many bound states, provided the constant
a is sufficiently small (Reed and Simon [295], XI11.3). The above proposition,
therefore, ensures that the localization error will not produce an infinity of bound
states for the two cluster Hamiltonians. Note that because of 2’y > X, the Hamil-
tonians with three or more clusters in any case have only finitely many bound
states below 2 := infa, (H) (see Lemma 3.22).

Proof. By (i), Vj, is homogeneous of degree minus one; therefore it suffices to
show (3.45) on the unit sphere S. We consider the set

Y i) = l} :

#a=2

A= {xeS

By Definition 3.19(iii), x € A implies j,(x) = 1 for exactly one a with #a = 2 and
Jo(x) =0 for any other decomposition a’. Hence, |Vj,(x)| = O for any cluster
decomposition, b. Thus,

YIPjy(x)I>=0 onA. (3.46)

Consider now A% = {x€S|Y 4,-5 j2(x) > 1 — 6}; 0 < & < 1/2. Taking & = 8(¢)
small enough, we can assure, by (3.46), that

Y IFjy(x)I> <¢/2 on A%, hence,
YIVjisx)2<e Y jix) onA’.

#a=2
On the other hand
Y 2x)=1-= Y jix)>d(e) onS\A°,
#a23 #a=2
SO

LIV < C, #Z jix) onS\4°. O

az3

For each cluster decomposition a let y, denote the characteristic function of
suppj,. The IMS localization formula tells us that

H > #sz,,(H(a) + Ly, — e(1 + |x]12)7)j,

+ Y jp(Hb) + Lxy — C1 + 1x12)7Y)j (347
#b23

where we used (3.45). To show that H has finitely many bound states, it suffices
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to prove that each of the terms on the right-hand side of (3.47) has finitely many
bound states, because of the following lemma and the fact that the j's are a
partition of unity.

Lemma 3.21. Let A, B be self-adjoint operators. (i) If A > B, then the number

N(A, X) of bound states of 4 below X = infa, (B) satisfies N(4,2) < N(B,2).
(ii) If both A and B have a finite number of bound states below 0, inf g,,,(A) >

0,infa,(B) > 0,and A + Bisessentially self-adjoint on D(A) N D(B),then 4 + B

has finitely many bound states below 0.

Proof. (i) is easily proven using the min-max principle (see e.g. Reed and Simon
[295], XIIL.1).

(1) Let P and Q denote the projections on the eigenspaces for eigenvalues
below 0 of A and B, respectively. Then AP and BQ are finite rank operators.
Moreover, A + B > AP + BQ, which is a finite rank operator, too. Applying (i)
gives the desired result. (O

Since we suppose Xy > X, it is easy to see that the terms in (3.47) resulting
from three and more clusters contribute only a finite number of bound states.

Lemma 3.22 Fix ¢ If 25 > 2, the number of bound states of H, + I,x, —
C,(1 + |x|?)™! below X is finite.

Proof. Iy, — C.(1 + |x]|?)™! is H(b)-compact, hence
info (H(b) + Iy, — C1 + |x|2)7) = info (Hb) = 25> % .

Hence the number of bound states below X is finite by the definition of 6,;,. [J

Using the above considerations, H has finitely many bound states below
2, if all the two cluster terms in (3.47) have. (Actually, only those with
infa.(H(a)) = X have to be considered.) We therefore investigate now those
terms more carefully.

Let a be a decomposition into two clusters. We saw already in Sect.3.2 that
the Hilbert space L2(X) splits into

L¥(X) = LX(X°) ® L*(X,) ,
and moreover
Ha)=h"'®@He(1®T),

see (3.13,14). Since #a = 2, we have X, ~ R*. Of course, h* itself splits into two
parts, corresponding to the two clusters in a.

Let us denote by y° the normalized ground state of h°. It is well known that
the ground state is nondegenerate (see Reed and Simon [295], XIII.12). We
denote, by P, the projection operator from L3(X?) onto . We set P(a) := 1x, ®
P?, where 15 _denotes the projection on L?(X,) onto the whole space, and we set
Q(a):= 1y — P(a).
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We will use below the brackets (-, - > to denote the scalar product in any of
the spaces L2(X), L%(X,), L*(X®). It should be clear from the context which one
is meant.

To state the “abstract” theorem, we introduce the potential W2 on X,:

W2 = QYo L) + 67 (Y Lta) ¥ — Y% Ly *>?) (3.48)

for any 6 > 0. The brackets -, - ) in (3.48) denote the scalar product in L3(X°).
The reader may notice that the operator H(W?):= —4 + W2 is a one-body
operator actingon L?(X,) ~ L?(R*). The following theorem reduces the question
of finiteness of a,;,(H) to the investigation of H(W}?).

Theorem 3.23. Suppose 2, > 2. If, for any two cluster decomposition a, the
(one-body) operator —(1 — n)4 + W,? has finitely many bound states for all
6 > 0, and a suitable n > 0, then H has finitely many bound states.

Remarks. (1) It will become clear in the proof that the condition on —(1 — )4 +
W, need only be required for those a with infa(H,) = X.

(2) For the treatment of Theorem 3.23 on the fermionic subspace, see Sigal
[310].

(3) It is not easy to check the condition of the theorem for a given potential,
which is the reason we called it “abstract™. Later, we will present two important
classes of examples.

Proof. Let j, be a Deift-Agmon-Sigal partition of unity. By the IMS-localization
formula and Proposition 3.20, we have

H 2 Z jn(H(a) + Ian - 8(1 + lxlz)_l)jn
#a=2

+ Y JaH(@) + Lxa — C1 + |xI)™)j,

#a23

What remains to be proven is the finiteness of the discrete spectrum of each of
the H(a) + Ly, — (1 + |x|?)™'. We set

K(a) = H(a) + Ly, — e(1 + |x|*)™" .
We now write K(a) as
K(a) = P(a)K(a)P(a) + P(a)K(a)Q(a)
+ Q(a)K(a)P(a) + Q(a)K(a)Q(a) . (3.49)

Itis clear that the term Q(a) K (a)Q(a) contributes only finitely many bound states,
since inf o,,(Q(a)K (a)Q(a)) > Z. To estimate the contribution of the mixed terms
in (3.49), we use the following decoupling inequality:

Lemma 3.24 (Combes-Simon Decoupling Inequality [323]). Let A be a self-
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adjoint operator, let P be a projection, and set Q = 1 — P. Then for any 6 > 0
A>PAP — 6"'PAQAP + Q(A - §)Q .

Before we prove Lemma 3.24, we continue the proof of the theorem. Applying
the lemma to K(a) and P(a), we get

K(a) = P(@)K(a)P(a) — 6" ' P(a)K (a)Q(a)K (a) P(a)
+ Q(a)[K(a) — 6]Q(a) .

The last term still has the infimum of its essential spectrum above 2 provided
we take 6 small enough. Furthermore, take

0 =0,®0; ¢, L} (X%, @el}X,),
then
<@, P@K(@)P(@)e) = {0, ¥ |*Y°* ® 02, K@ WY* ® 9,)) ,
and
Y ® 02, K@ ® 93)) 2 K02, —49;) + {02, ¥°, L1V > 02
— e YL + X170 + £
2@y, [—4 + Y Lya¥*>
—e(l +|x13) ' Jo2> + 2,
where |x|2 is meant on L2(X), while | x|2 is meant on L(X,). Therefore, we obtain
P(@K(a)P(a) > —4 + Y% Ly — e(1 + |x|3)™ + ZP(a) .

In a similar way we get

Pa)K(@)Q(@)K(a)P(@) = <Y 12y — Y, Ly°)? — el +|xI3)™" .
In total, we have shown that

K@= —nd+W2—nd -2+ |x3)"+2.

By assumption, the Hamiltonian —(1 — )4 + W2 has finite discrete spectrum.
Furthermore, —n4 — 2¢(1 + |x|2)™* has finite discrete spectrum if ¢ is small
enough (Reed and Simon [295], XI11.3). Therefore, using Lemma 3.24, we arrive
at the conclusion of the theorem. [J

We now prove the Combes-Simon decoupling inequality.
Proof (of Lemma 3.24).

A=PAP + PAQ + QAP + QAQ . (3.50)
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We estimate the mixed terms by the Schwarz inequality:

[<®,QAP@)| = |<6"2Qp,6 2 QAPp)|
< <51/2Q¢,51/2Q¢>1/2 (6'”2QAP¢p,6‘”2QAP(p)”2
< 3(<6"2Q¢,6'2Q¢) + <67'2QAPp,6 2QAPy))
=1(6<0,00) + 67 '<p, PAQAP®)) .

Thus, we get
Re(QAP) > —36Q — 367 'PAQAP .

Estimating Re(PAQ) in a similar way and inserting in (3.50), we obtain
A= PAP — 6'PAQAP +Q(A-46)Q0 . O

We now present two applications of the above “abstract™ theorem:

Theorem 3.25. Assume dimension u > 3. If the potentials V;; belong to L*2(R*)
for u > 3, and to L*(R*) for u = 3, and if furthermore X > X, then H = H, +
Y ¥, has only finitely many bound states.

Proof. We show that the negative part of W, belongs to L*?(R*). This implies
that —(1 — n)4 + W2 has only finitely many bound states below zero by the
Cwickel-Lieb-Rosenbljum bound (see e.g. Reed and Simon 1V, [295], XIII.12).
This implies the assertion by Theorem 3.23. Let us first consider

<¢n’lnln'pn>= Z <¢n’ Vijlnwn> .

iEa
Let a = {A,,A,}. Define M, = Y ;. , m;. We can write any xe X as (%, + y,,
X4 Yayeens Xy + y,) With (%4, ..., X,)€ X, and

Vi= m;x; forie A, .

Since xe X, we have M,y, = —M,y, for i€ A,, je A,. Therefore x; — x; =
Yi—yi+ X —X;=y+ X, — X;with y = y, — y;. We see from this that

YLV = [ W ®IPVy(y + %, — X;)d%
Xﬂ
is a convolution. It is well known that

vee ) L°

1<p<xm

(see Reed and Simon 1V, [295], X111.39). Thus, the Young inequality tells us that
the convolution <y, V;y*) € L**(R¥). The term {y?, I2 y,*> can be handled by
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the estimate

2
Yo a¥®> < <¢°»( Y Vij) W°> <C Y WaViy® .
Wj¢a iHa

As above, <y V;7y®) is a convolution. Assume first p > 3. Since Vj;e L*?, we
have V?eL**. By the Young inequality this implies <y°, V;}¢*> € L*? (since
Y?e L for any q). For p =3, V;eL? hence V?eL'. Again we conclude that
Yo VY el .

Since the third term, <y V;y*>? is positive, we are done. [J

Finally, we state without proof

Theorem 3.26. Once negatively charged bosonic ions have only a finite number
of bound states.

Remarks. (1) The problem with fermions is that the corresponding ground state
may be degenerate with a parity degeneracy producing a dipole term in the
effective potential. If this ground state happens to be nondegenerate, Theorem
3.26 holds in this case, too.

(2) We can apply Theorem 3.23 only to negative ions of charge 1, since we
do not know X5 > X for higher charges. For an ion of charge —k, 2y > 2 means
E2=EZ+k-1,2)#EZ + k- 2,Z)=Z,. So, what we cannot exclude is
that an ion of charge —k + 1 has no bound states, while the corresponding ion
of charge —k has infinitely many bound states. The fact that we do not know
how to exclude this physically absurd situation indicates how little we under-
stand about atomic physics from a mathematical point of view.

Appendix: The Stone-Weierstrass Gavotte

It appears several times in this book that it is relatively easy to show an assertion
for the resolvents (H — z)™! of an operator H, while a direct proof for f(H) for
an arbitrary function f e C(R) seems to be much harder.

However, it is in many cases easy to deduce this seemingly stronger assertion
from thcl: knowledge that it holds for resolvents, i.e. for the functions f(x) =
(x —2)7L

One way to see this is the use of the abstract Stone-Weierstrass theorem, as
follows: Suppose we know that 4 := { fe C(R)| f(H) has the desired property}
obeys: (i) 4 is norm closed (ii) 4 is an involutative algebra, i.c. a vector space that
contains, with f, g, also fand f- g. Then the abstract Stone-Weierstrass theorem
tells us that A = C,(R), i.e. the assertion holds for f(H) with any feC, (R),
provided we know it for (H — z)™! for a single ze C, Re z # 0.

A second, more elementary way goes as follows: Suppose we know that a
certain property holds for all (H — z)~! with z in an open subset, G, of C. Suppose,
furthermore, we know (i) above, i.e. if f, has the property, f, — f uniformly, then
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f has the desired property, and (ii)’ A is a vector space. Then we conclude that
(H — 2)7% ke N, ze G belongs to 4, since by Cauchy'’s integral formula

1 ((H-2)™

R Tk

dz , (A.3.1)

where 7y is a circle in G around z,. The right-hand side of the above equation is
a norm limit of linear combination of resolvents, and hence belongs to A.
“Mixed” polynomials of the type

(H—2z)"(H—-2z)™"...(H = z,)!

can be handled by the first resolvent inequality

1
H-z)"H-2z)"'= z[(H—z,.)- (H-z)™]

ci T <
for z; # zj, and by (A.3.1) for z; = z;. Thus, we know that all the polynomials in
(H — z)~! with ze G belong to A. Since the polynomials in (x — 2z)7', ze G are
dense in C,, we conclude by (i) that A = C,.



4. Local Commutator Estimates

In this chapter, we will examine a number of theorems about operators H which
follow from the Mourre estimate, an estimate which says that a commutator
[H,iA] is positive in some sense. The ideas in this chapter can be traced back to
Putnam [289], Kato [191] and Lavine [225] for theorems on the absence of
singular spectrum, and to Weidmann [367] and Kalf [189] for theorems on
absence of positive eigenvalues.

All this earlier work applied to rather restricted classes of potentials. It was
Mourre [256], in a brilliant paper, who realized that by only requiring localized
estimates, one could deal with fairly general potentials. He developed an abstract
theory which he was able to apply to 2- and 3-body Schrodinger operators. Perry,
Sigal and Simon [281] showed that his ideas could handle N-body Schrodinger
operators.

In Sect. 4.1, we prove Putnam’s theorem on the absence of singular spectrum,
and introduce the Mourre estimate. We then give some examples of Schrédinger
operators for which a Mourre estimate holds, deferring the proof of the estimate
for N-body Schrodinger operators until Sect. 4.5. In Sect. 4.2, we prove the virial
theorem and show how this, together with a Mourre estimate, can give informa-
tion about the accumulation of eigenvalues. In Sect. 4.3, we prove a variant of
the theorem of Mourre [256] on absence of singular spectrum. In Sect. 4.4, we
present theorems of Froese and Herbst [114], and Froese, Herbst, Hoffmann-
Ostenhof and Hoffmann-Ostenhof [116] on L?-exponential bounds for eigenfunc-
tions of Schrodinger operators which imply that N-body Schrodinger operators
have no positive eigenvalues.

4.1 Putnam’s Theorem and the Mourre Estimate

Commutator methods appear in a simple form in Putnam’s théorem, where
positivity of a commutator is used to prove absolute continuity of spectrum. We
first give a convenient criterion for the absolute continuity of spectrum.

Proposition 4.1. Suppose H is a self-adjoint operator, and R(z) = (H — 2)™".
Suppose for each ¢ in some dense set there exists a constant, C(¢) < oc such that

lim sup {@,ImR(u + ie)p) < C(p) .
£l0 pe(ab)

Then H has purely absolutely continuous spectrum in (a, b).
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Proof. By Stone’s formula [292], if E, = E ,(H) denotes the spectral projection
for H corresponding to 4,

1 .1 .
5 <0 (Bt + Eqy)@> = lim— [ Co,Im R + ie)g) dp .
elo T a
Since E p) < Ej4.p this implies, if (a’, b’) < (a, b)

1
(@, Eg @) < ;.,I C(p)du

1
=—Clg)Ib' — a
n
for a dense set of ¢’s. This implies

(¢, Eqp) <17 'C(9)|2|

for every Borel set 2 < (a,b), which means that the spectral measures du,, are
absolutely continuous. Since the set of such ¢’s is assumed dense, the spectrum
is purely absolutely continuous. [

Theorem 4.2 (Putnam’s Theorem). Suppose H and A are bounded, self-adjoint
operators. Assume

[H,iA] = C*C , 4.1)
where Ker(C) = {0}. Then H has purely absolutely continuous spectrum.
Proof. Set R(z):= (H — 2)*. Then

ICR(p £ ie)l|> = |R(u F ie)C*CR(u + ie)|

= ||R(u ¥ ie)[H,iA]R(u £ ie)|l
= ||R(u F ie)[H — p F ie,iA]R(p £ i)
< |IAR(pu £ ig)ll + IR(pu F ie)All + 2¢||R(p F ie) AR(u £ ie)|
<47 A .

Thus,

2||CImR(u + ie)C*|| = ||CR(u + ie)(2ie)R(u — ie)C*||
<84l .
Since ran(C*) is densc. the theorem now follows from Proposition 4.1. [

Remark. This proof shows that [H,iA] > al is impossible for bounded H and A4,
since this would imply that R(z) is bounded for all z, i.e. that H has no spectrum.
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The Mourre estimate can be thought of as a weak form of hypothesis (4.1).
In the Mourre estimate, H and 4 can be unbounded, which is crucial for
applications to Schrodinger operators. Moreover, the Mourre estimate is local
in the spectrum of H. Thus, we will be able to prove absolute continuity of the
spectrum of H away from eigenvalues without proving (as Putnam’s theorem
does) that eigenvalues do not exist.

Before describing the Mourre estimate, we need some definitions. We first
define a scale of spaces associated with a self-adjoint operator H.

Definition 4.3. Given a self-adjoint operator H acting in a Hilbert space H, define
H.,:= D(H) with the graph norm

IWllsz = I(H + )yl .

Similarly, define H,, := D(|H|"?) with its graph norm. Define H_, and H_, to
be the dual spaces of H, , and H,,, respectively, thought of as the closure of H
in the norm [lg[|_; = [[(|H| + 1) ¢].

Thus, we have the inclusions

H.,cH_,cHcH, cH,,.

Remark. When H = — A or —A4 + V with V 4-bounded with bound less than 1,
these are just the usual Sobolev spaces.

We now give a list of hypotheses on a pair of self-adjoint operators H and
A, to which we will refer later. In these hypotheses, {H, } are the spaces associated
with H.

Hypothesis 1. D(A)n H,, isdensein H, ,.

Hypothesis 2. The form [H,iA] defined on D(4A)n H, , extends to a bounded
operator from H,, to H_,.

Hypothesis 2'. The form [H,iA] defined on D(4) ~n H,, extends to a bounded
operator from H,, to H_,.

Hypothesis 3. There is a self-adjoint operator H, with D(H,) = D(H) such that
[H,.iA] extends to a bounded map from H, , to H and D(4) n D(H, A) is a core
for H,.

Remark. In applications where H = — 4 + V, Hy will be — 4.

Hypothesis 4. The form [[H,iA4],i4A] where [H,iA4] is as in Hypothesis 2 extends
from H,, n D(A) to a bounded map from H,, to H_,.

Definition 4.4 (The Mourre Estimate). We say that a self-adjoint operator H
obeys a Mourre estimate on the interval 4 if there is a self-adjoint operator A,
such that

(i) H and A satisfy hypotheses 1 and 2’
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(i) there exists a positive number x and a compact operator K such that
EA[H,iA]EA > IEJ + K . (4.2)

Here E4 = E 4(H) is the spectral projection for H associated with the interval 4.
We say H satisfies a Mourre cstimate at a point 4€ R if there exists an interval
A containing 4 such that H satisfies a Mourre estimate on 4.

We close this section by giving four examples of Schrodinger operators which
satisfy a Mourre estimate.

Example 1 (2-Body Potentials). The starting point for this example is the obser-
vation that if H, = — 4 acting in L%(R"), and A is the generator of dilations, i.e.
A = (x-D + D-x)/2i, where D is the gradient operator Df = Ff, then

[Ho.iA] = 2H, .
Thus, it easily follows that H, obeys a Mourre estimate on any interval 4 not
containing 0. We now show that the same is true for H = H, + V if V satisfies

(i) V(4 + 1)"! is compact

(i) (=4 + 1) 'x-FV(—4 + 1)"! is compact
[see Remark 1 following Proposition 4.16 for the precise meaning of (ii)]. Since
Cs (RY) = D(H) n D(A), Hypothesis 1 is satisfied. Also

[H,iA] =2H, - x-VV , 43)
so (ii) implies that Hypothesis 2’ holds. From (4.3) we see
E‘,[H.iA]E_,=ZEAHEJ+EAWEJ N

where W = 2V + x- P V. By our assumptions, E ;WE , is compact for any finite
interval 4. If 4 lies below 0, then E, and E  HE , are also compact, since by (i)
o.(H) = 0. (Hy) = [0, x), so the Mourre estimate is trivially satisfied. If 4 =
(a,b) with a > 0, then E,HE , > aE 4, so the Mourre estimate holds in this case
also.

Example 2 (Froese and Herbst [114]). Consider H = —d?/dx? + V acting in
L*(R), where

sin(2x)

V(x) = K, + Vi(x) ,

.

with ¥, satisfying the conditions in Example 1. What we will show is that, withe

A t(d L d
Toilaxt T Yax)

a Mourre estimate holds at all points except 0 and 1.
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Since these Mourre estimates can be used to prove the non-existence of
imbedded eigenvalues (see [114]), it is amusing to note that there exists a
potential of this form, the Wigner-von Neumann potential [362, 295], which has
an eigenvalue at 1. For notational simplicity, we set k, = 1. The general case is
proven in an identical way. It is easy to check that Hypothesis 1 and 2’ hold.
Now let f,e Cy(R) be a smoothed out characteristic function of the interval 4.
Then, if 0¢ 4, it follows from Example 1 that, for H, = —d?/dx?

f4(Ho + V))[H,iA)f4(Ho + V}) = of }(Ho + V}) + K

Si"‘z"’,m]fd(uo V),

+ fa(Ho + V;)[

where a > 0 and K is compact. Now (H, + 1)[f(Ho + V;) — f(H)] is com-
pact by an argument similar to the one in Proposition 38. Also,
(Ho + 1)"'[H,iA](H, + 1)7! is bounded. Thus,

Sa(H)[H,iA)f(H) > of {(H) + K’

sin(2x)

+ fa(Ho + V;)[ ,iA]fA(Ho + W), 44)

with K’ compact. If we can show that the last term is compact for sufficiently
small intervals about any point 4 # 1, we will be done, since in that case, if
4A¢{0,1}, we can choose f, to be identically 1 in a neighborhood 4’ about
/. The Mourre estimate then follows upon multiplying (4.4) from both sides
with E,.. Now [x7'sin(2x),i4] = 2cos(2x) — x~! sin(2x) and f,(H, + V;)x™!
sin(2x)f,(H, + V,) is easily seen to be compact. Since f(H, + V,) — f(H,) is
compact, we need only show that f,(H,) cos(2x)f,(H,) is compact for any
sufficiently small interval 4 about 4 # 1. But this operator has an explicit integral
kernel in momentum space:

[f4(Hp)cos(2x)f4(Ho)] (p,p))
=3L(p)(p —p' +2)+8(p—p' = 21f4(p'?) ,

which is identically zero for any small enough 4 interval about 4 # 1, since for
such 4 no p, p’esupp(f,) obey |p — p'| = 2.

Example 3 (Electric fields; Bentosela, Carmona, Duclos, Simon, Souillard and
Weder [45]). In the study of electric fields, the group of translations often plays
a role analogous to the one played by dilations in the study of other Schrédinger
operators (see Chap. 7). In this example, A = id/dx, the generator of translations
and H is a one-dimensional Hamiltonian with an electric field

—d?
H=F+V(.V)+F.‘ "
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where F > 0 is the field strength and V is assumed to be C' with bounded,
uniformly continuous first derivative. Again, CF(R) = D(H) n D(A4) and C§’(R)
is dense in H,,. Also [H,iA] = V' + F which is bounded. Thus, Hypotheses 1
and 2’ hold. Since

E,[H,iAlE; = FE, + E,V'E, ,

we see that a Mourre estimate holds, provided the last term is compact. We will
show in Sect. 7.2 that this is the case for any finite interval 4.

The absolute continuity of the spectrum for operators of this form has been
proven by other means (see e.g. Titchmarsh [357], Naimark [261], Walter [364]).
The Mourre method actually proves at the same time that for suitable states ¢,
I(, x(t)@)| grows as t2.

This example can be extended to H= —4+ V + F-x and A =iF-D in
L?(R"), provided FV — 0, at infinity.

Example 4 (N-Body Hamiltonians; Perry, Sigal, Simon [281]). Suppose H is an
N-body Hamiltonian with center of mass removed, acting in L2(R™¥~1#) ag
described in Sect. 3.2. Suppose the pair potentials V; each obey (i) and (ii) of
Example 1 in their spaces L3(R*). Then, with 4 = (x- D + D- x)/2i, H satisfies a
Mourre estimate at every non-threshold point. The proof of this result is more
involved than those in the previous examples. It is given in Sect. 4.5.

4.2 Control of Imbedded Eigenvalues

The first application of the Mourre estimate is a theorem of Mourre [256], which
states that if H satisfies a Mourre estimate on an interval 4, then the point
spectrum of H in 4 is finite. The only tool we need to prove this result is the virial
theorem, which says that if  is an eigenfunction of H, then (y,[H,iA]y) = 0.
Formally, this is obvious (by expanding the commutator). However, when H and
A are unbounded some care is required, since it might happen that ¢ D(A). The
virial theorem has been proven by various authors [189, 367, 281]. The proof we
give follows [281]. We will need the following lemma to regularize A.

Lemma 4.5. Assume that H and A satisfy Hypotheses 1 and 3, and let {H,}
be the spaces associated with H. For 4 # 0, define R, = A(i4 + 4)~'. Then
R;: H, - H, is uniformly bounded for large ||, and

s—limRA=l

lA|=x
inH, fork = -2, —1,0, +1, +2 (here Hy, = H).

Proof. We will prove this result for H, ,. By duality, we get that R,: H_, - H_,
is also uniformly bounded for large | 4|. The uniform boundedness for the other
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H,’s then follows by interpolation [293]. Since H, , is dense in each H;, uniform
boundedness on each H; and strong convergence in H, , imply strong conver-
gence in each H;.

Let H, be as in Hypothesis 3. We will also regularize H,. For peH,,

(Ho + i)(1 + ieHo) 'R,
= R;(Ho + )(1 +ieHo) ¢ + [(Hy + i)(1 + ieH,) ™', R;]o .
Since ||R;|| =1,
IRi(Ho + i)(1 + ieHo) ' oIl < II(Ho + D)ol ,
while
[(Hy + i)(1 + ieHo)™",R;] = (i4 + 4)"'[(H, + i)(1 + ieH,)™',iA]R,
=(id + A '[—ieMicHy + 1 — & — 1)(1 + ieH,) ' iA]R;
= ie!(1 + e)(iA + A)7'[(1 + ieHo) \,iA]R,
=ig (1 + e)(id + A)" (—ie™" + Ho) *[Ho,iA](1 + ieHy) 'R, .

Inserting a factor (H, + i)"'(H, + i) to the right of [H,,iA], and using that
[H,, A](H, + 1)™! is bounded (by Hypothesis 3), we find that for large |4|

IL(Ho + i)(1 + ieHo) ™', R ]@ll < CIAI7MI(Ho + i)(1 + ieHo) ™' Ry0]]
Thus,

(1 = CIAI™)II(Ho + i)(1 + ieHo) ™' R0l < Cli(Ho + Doll
so that for || large

I(Ho + i)(1 + ieHo) ™' R;0)l < CI(H, + Dol .

Taking £|0 and using that D(H,) = D(H) = H,,, wesee that R;: H,, = H,, is
uniformly bounded for large |4|.

Now | — R; = i"'R,iA. If AYeH,,, this implies ||(1 — R)Y|l, >0 as
|A| = oc. Since D(A) N D(H, A) is dense in H, ,, the uniform bound implies the
strong convergence. []

Theorem 4.6 (The Virial Theorem). Assume Hypotheses 1, 2 and 3 hold for H
and A. If E,,, denotes the spectral projection for H corresponding to the point p,

E,.[H,iA]E,, =0 . (4.5)

In particular, {y,[H, A]y)> = 0 for any eigenfunction ¢ of H.

Proof. Let A; = AR, with R, as in Lemma 4.5. Then A, is bounded, and since
E:“:H = [IE:“:, we have
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E{”}[H, IAA]E{“} = ﬂE{";iAAE!“} - ﬂE{“}iAAE{“}
=0.

By direct calculation, we find [H,i4,] = R,[H,iA]R;. Thus,
E; R,[H,iA]RE, =0 .

Since R; — 1 strongly in H,, and H_, as |4| - o0, and E,, maps H to H,,
and H_, to H, this operator tends strongly to E,,[H, A]E,,, as an operator from
H to H. This implies (4.5). O

We now can prove the theorem of Mourre [256] on finiteness of point
spectrum.

Theorem 4.7. Assume Hypotheses 1,2’ and 3 hold for H and A, and that H satisfies
a Mourre estimate on the interval 4. Then H has at most finitely many eigen-
values in 4, and each eigenvalue has finite multiplicity.

Remark. This result shows that in the (open) set of points at which a Mourre
estimate holds for H, eigenvalues cannot accumulate.

Proof. Suppose there are infinitely many eigenvalues of H in 4, or that some
cigenvalue has infinite multiplicity. Let {,},-, be the corresponding ortho-
normal eigenfunctions. Then by virial theorem and the Mourre estimate

0 = (Y, [H,iA1Y,>
= <¢m Ed[HolA]EA¢n>
> allynll® + Yu Kp)

Now |y, || = 1, and since ¢, — 0 weakly and K is compact, (Y, Ky,> =0 as
n — oc. This is impossible, since « > 0. [J

Remark. For N-body Schriodinger operators, we will see that the Mourre estimate
holds away from the set of thresholds, so that Theorem 4.7 says that eigenvalues
can accumulate only at thresholds. Perry [280] has shown that, for N-body
systems, eigenvalues can actually only accumulate at thresholds from below.
There are examples of atomic Hamiltonians for which one knows (for reasons of
symmetry) that there are infinitely many imbedded eigenvalues converging to a
threshold. In Sect. 4.4, we will show that under suitable hypotheses, N-body
systems cannot have positive eigenvalues.

4.3 Absence of Singular Continuous Spectrum

The purpose of this section is to prove that an operator H has no singular
continuous spectrum in the set on which it obeys a Mourre estimate. Using this
result, we can reduce the proof of the absence of singular continuous spectrum
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for a given operator H to the proof of the Mourre estimate for some choice of
conjugate operator A. The strategy for proving this theorem is due to Mourre
[256]. It was extended by Perry, Sigal and Simon in [281] to deal with more
general operators.

Actually, what we will show is that H has a purely absolutely continuous
spectrum on the set where H obeys the Mourre estimate (4.2) with K = 0. The
following lemma with allow us to deduce the result on absence of singular
continuous spectrum from this.

Lemma 4.8. Suppose H and A satisfy Hypotheses 1, 2’ and 3. If D is the (open)
set of points at which H and A obey a Mourre estimate, then H and A obey a
Mourre estimate with K = 0 at each point in D\a,,(H).

Proof. By the definition of D, there exists an interval 4, about every point 4 in
D\a,,(H), such that a Mourre estimate (4.2) holds for some 2 and K. Multiplying
this inequality from both sides with E 4.(H), where 4’ isan interval with Aie 4’ < 4,
we obtain, for each such 4',

E,(H)[H,iA]E4(H) > aE4(H) + E4(H)KE 4(H) . 4.6)

Since 4¢o,,(H), E4(H) tends strongly to zero as 4’ shrinks about A. Thére-
fore, E,(H)KE,(H) tends to zero in norm. If we choose 4’ such that
|E4s (HYKE4(H)| < /2, (4.6) implies

E4(H)[H,A]E4(H) 2 aE 4(H) — a/2
and the lemma follows upon multiplying this inequality from both sides with
E,(H). O

We now come to the main theorem in this section.

Theorem 4.9. Suppose H and A satisfy Hypotheses 1, 2, 3 and 4. Then each point
/4 for which a Mourre estimate holds with K = 0 is contained in an open interval
4, such that

limsupl(|4] + )'(H — p—i6)'(1AI + )" < C (L))

3l0 ued

for some constant C.

Corollary 4.10. If H and A satisfy the hypotheses of Theorem 4.9, then H has a
purely absolutely continuous spectrum in the (open) set where a Mourre estimate
holds with K = 0.

Remark 1. Given the results of Sect. 4.5 (Example 4 above), Theorem 4.9 and
Lemma 4.8 imply that N-body Schrodinger operators have no singular continu-
ous spectrum.
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Remark 2. For N-body Schrodinger operators, the conclusion (4.7) of Theorem
4.9 remains true when (| 4| + 1)~ ! is replaced with (|x| + 1)"¥27¢,see [281]. More
recently, Jensen and Perry [185] have improved this result, showing that
(H — u — i6)™! remains bounded as a map between certain Besov spaces as 6 | 0.

Remark 3. The result of Perry, Sigal and Simon implies that (1 + |x|)"'2¢is a
locally smooth perturbation of H (see Reed an Simon [295], XIII. 7 for the theory
of smooth perturbations). This result immediately implies asymptotic complete-
ness for two-body systems with potentials decaying like |x| ™! ~2¢ and should be
useful in studying N-body asymptotic completeness.

Remark 4. Mourre [257] has shown that (1 + |4|)™! can be replaced by spectral
projections for A onto + [0, o), yielding propagation estimates of use in scatter-
ing theory.

We will prove Theorem 4.9 in a sequence of lemmas. Let 4 be a point where
the Mourre estimate holds, with K = 0, i.e. for some interval 4 containing 4, and
some x > 0

EA(H)[H,IA]EA(H) > aEA(H) .

Let S € C§(R) be a smoothed characteristic function with support in 4 such that
f = 1in some sub-interval 4" containing 4. Then

S(H)[H,iAlf(H) > of *(H) , 4.8)
and we can define the nonnegative operator, M2 = f(H)[H,iA]f(H). The proof
will center about the analysis of the operator

G.(z) = (H — ieM?* - 2)7!
which, as we show below, exists for ¢ > 0 and Im z > 0. This operator is not as
mysterious as it appears to be at first glance. If we ignore the f(H) terms in M2,

G, is the resolvent of H = ¢[H, A], which is the first term in the formal power
series expansion of the complex dilated Hamiltonian exp(e4)H exp(—eA).

Remark 5. Jensen, Mourre and Perry in [184] have explored the idea of using
more terms of this expansion. They establish a connection between the bounded-
ness of higher-order terms and the smoothness of the resolvent in the limit § | 0.

Define the operators D and F, by
D=(Al+ 1!
F, = F(z) = DG,(z2)D .

Then the strategy of the proof will be to show F, is C! in ¢, and establish the
following inequalities for small ¢.

(a) “F:” < C/C
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(b) ||dF,/de|l < C(|F,]| + e "2 ||F,|I"? + 1) with C independent of Rez = u for
peda'.

Proposition 4.11. The estimates (a) and (b) for small ¢ imply Theorem 4.9.
Proof. Inserting (a) into the right side of (b), we find that, for small ¢,
IdF,/de| < Ce™"
which implies
|F || < Clog(e) .
Using this new estimate in (b), we find
|dF,/de| < Ce™ "2 log(e)

near ¢ = 0, which shows that || F,| stays bounded as ¢{0. [

In this proof and in what follows, C denotes a generic constant independent
of u = Rez for ue A, whose value might change from line to line. We prove next
some technical lemmas which estimate quantities which will appear in the proof
of (a) and (b). We remark that it is the need to control [A4, M2] which forces us
to assume Hypothesis 2 in place of 2’, and to assume Hypothesis 4.

Lemma 4.12. If f e C{(R), then [A, f(H)] is bounded from H_; to H,,.

Proof. To avoid domain difficulties, we regularize A. Let R, = i(i4 + 4)™! as in
Lemma 4.5. Then A4, := AR, is bounded, and

ei'"AA — Ale“" - (eilHAle—ilH — Aa)e""
t
= (! e“"[H, Al]e“‘" ds) eith
(

Asin Lemma 4.6, [H,A,] = R,[H,iA]R; and R, is bounded uniformly in 4 for
large | 4| from H, to H, and from H_, to H_,. On the other hand, by Hypothesis
2, [H, A] is bounded from H, to H_,. Thus,

II[A"eil"]"z' -1 S C‘

with C independent of 4. Here ||-||;. j denotes the norm of maps from H; to H;.
Now for ge C§ (R) we have

g(H) = (27!)-”2 :‘E g(s)eisllds s

where § denotes the Fourier transform of g. Thus,

1[4 g(H)]ll2, -y = C 49)
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where C depends on g, but not on 4. Since
[A;,(H+i)']= —(H+ i) '"R,[H,A]R;(H + i)',
we see that
IlALH +)7' Mo,y < €, [Au(H+ D)7 I-10<C (4.10)

for C independent of A Now for feCyF(R), we write f(H)=
(H + i)"'g(H)(H + i)"! for ge C¥(R) and thereby obtain

[A:. f(H)] = [, (H + )7 1g(H)(H + )7 + (H + i)' [A,,9(H)](H + i)
+(H+i)'gH)[A;,(H+1)'], 4.11)
so0, using (4.9) and (4.10), we find
1[4 f(H)]llo., < C .
Using this estimate for [4;,g(H)] in (4.11), we get
IlALf(H)l-, < C

with C independent of 4. Taking 4 to co completes the proof of the lemma. [

Lemma 4.13. [A, M2] is bounded from H to H.
Proof. We have
[4,M?] = [A, f(H)]1Bf(H) + f(H)[A, BYf(H) + f(H)B[A, f(H)] ,

where B:= [H,iA], so this lemma follows from Lemma 4.12 and Hypothesis
4 0O

Lemma 4.14. (a) For ¢ > 0 and Imz > 0, (H — ieM? — z) is invertible, and the
inverse, G,, is C! in ¢ on (0, o0) and continuous on [0, o).

(b) The following estimate holds for all ¢ with 0 < ¢ < ¢, for suitable ¢,, and
for all z with Re ze 4'. (Recall that 4’ is an interval on which f = 1.)

I f(H)G, ()| < Ce™'?|<p, G, (2)pD|"? . 4.12)

(c) For z and ¢ as in (a)

(1 = f(H)G,(2)| < C 4.13)
1G.(2)l < Ce™' . (4.14)
(d) The estimates in (b) and (c) hold when the operator norm ||-|| on H is

replaced with |- ||o.,. the norm as operators from H to H,.
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(e) For e and z as in (a)
IG(2)DIl < C(1 + &2 F,|'?) .
Proof. (a) Write z = u + i6. Then
I(H — ieM? — 2)9||* = (H — ieM? — p)ol||* + 6*l||* + 20 Mo|* .

Thus, for 6 > max(0, —2¢||M||) (¢ may be negative), we conclude that H —
ieM? — z is invertible on its closed range. Since the adjoint operator
H + ieM? — z* obeys a similar estimate, its null space is empty, which implies
that the range of H — ieM? — zis dense, and hence all of H. Since M? is bounded,
H — ieM? — z, for fixed z, is an analytic family of type (4) in ¢ [196]. Thus, G,(z),
for fixed z, is analytic in a region surrounding (— /2 || M|, o), which gives us the
required smoothness and continuity. For future use, we note that, by differen-
tiating ¥ = G,(z)(H — ieM? — z)y for Yy e D(H) = H,, and using the product
rule, we find that

dG,
de

= iG,M?G, 4.15)

(b) This is the only step where the Mourre estimate enters. By (4.8),
I /G.ol? = <o,G? [*G,.0>
< (2ue) "<, G*2eM?G, )
< ue) <, G*(2eM? + 2Im 2)G,p)
=(20e)"'{0,i(G¥ — G.)p>
< (@) <9, G, 0| .
(c) We can write
(1 - 1)G, =( - f)Gy(1 + ieM?G,) ,
and for Reze 4', (1 — f(H))Gy(z) is bounded. Thus,
I = NG N < C(1 +¢|G) , (4.16)
so that (4.13) follows from (4.14). To prove (4.14), we estimate
IGI+ 1 < I fG.Nl + 111 = NIG.N + 1
< Ce™ |G, + Cy(1 +¢llG,||) + 1,

Here we used (4.12) and (4.16). Now if C,e <1 and C, + } < Ce™'2, we can
continue estimating to conclude
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Gl + 1 < Ce™2(IG,I"2 + 1) + (G, + 1)
S 2C(IG N + D2 + 331G + 1),
which implies that

|G|l <16C3e™! . 4.17)

Thus, if ¢ < & := min{(2C,)!, C*(C, + $)72}, (4.14) holds.

(d) We remind the reader that for an operator S, ||Sllo.» = [(H + i)S||. Since
f has compact support in 4, we have (H + i)f(H) = (H + i)E 4(H)f(H), so the
required estimate follows easily for (4.12). Returning to the proof of (c), we note
that in fact (H + i)(1 — f(H))Gy(z) is bounded so that

I(1 = f)G.llo. < C(1 +¢lG,II) < C .
Here we used (4.14) with H — H norms. Since
1 /G llo.2 < CI(H + )f(H)G,|| < CIIG,|l

by the compact support of f we find, combining this estimate with the previous
one, that (4.14) also holds for H - H, norms.
(e) From (4.12), with ¢ = Dy, it follows that

IfG.DY Il < Ce™2I<y, Fy>I"? , 5o that
| fG.D|| < Ce™"2||F,|| .

On the other hand,
(1 = N)G. DI < (1 = f)G,|l

is bounded by (4.13), so the result follows. O

The inequality (a) follows from (4.14), so the following lemma will complete
the proof of Theorem 4.9.

Lemma 4.15. The differential inequality (b) holds.
Proof. From (4.15), we have
—idF,/de = DG, M*G,D = Q, + Q, + Q; , where
Q, = —-DG,(1 — f)[H,iA](1 - f)G.D
Q. = -DG/(1 — f)[H,iA)fG,D — DG, f[H,iA](1 — f)G.,D
Q; = DG,[H,iA]G,D .
Now, from (4.13) with the | |lo., norm, (1 — f)G,D is bounded from H to H,,
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while [H,iA] is bounded from H, to H_,. Thus,

10, <C and

1Q.1l < CIl(H +i)fG,D|
< C||G,D|
=C(1 + " F,|I'?)

by Lemma 4.14(c). We write

Q3 =0Q4+0Qs, where
Q, = DG,[H — ieM? — 2,iA]G,D
Qs = ieDG,[M?,iA]G,D .
Expanding the commutator in Q,, we find

1941l < 2IIDAG,D|
<2|/G.D|
SCU + e 2R )" .

Here we used |[DA|| < 1 and Lemma 4.14(e). Finally we estimate, using Lemmas
4.13 and 4.14(c)

1051l < £IG, DI I[M2,i4]|
< CE'? + |IF,))2)
<C(+|F])

for £ < ¢;. Combining the estimates for Q, through Q,, we conclude that (b)
holds. (O

4.4 Exponential Bounds and Nonexistence of Positive Eigenvalues

In this section, we will describe the relationship between the decay rates of
eigenfunctions of Schrodinger operators and the position of the eigenvalue
relative to the points where the Mourre estimate fails to hold (by the results of
the following section, these are the thresholds for N-body Hamiltonians). This
will lead to a proof of the nonexistence of positive eigenvalues for N-body
Schrédinger operators in two steps. First, we show that the eigenfunctions of
N-body Hamiltonians corresponding to positive cigenvalues have to decay
extremely rapidly. Then we show, in a sort of unique continuation theorem at
infinity, that such rapid decay is impossible. The results of this section are less
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general than those of previous sections in that H is required to be of the form
—4 + V, and A4 is always the dilation generator. This restriction arises because
we use the special commutation properties of — 4, V and A.

The proofin this section follows Froese and Herbst [114] and Froese, Herbst,
Hoffmann-Ostenhof and Hoffmann-Ostenhof [116]. That N-body Hamiltonians
can have no positive eigenvalues was previously known for some special cases
from the work of Weidmann [367], Balslev [35], and Simon [321]. For one-body
systems, the absence of positive eigenvalues was known for quite general poten-
tials from the work of Kato [190], Agmon [1] and Simon [318] (see also the recent
book [90]). The exponential decay properties of eigenfunctions, which we use
here as a tool, are interesting in their own right. We mention only the book of
Agmon [3], which contains further references.

In this section, it will be convenient to use the antisymmetric dilation gen-
erator. Define

A=4D-x +x'D), (4.18)

where D is the gradient operator, i.e. Df := Pf. Then 4 = iA, where A is the
dilation generator used above. We will also use the notation for xe R*

xy=(1+ x4 . 4.19)

To give some idea of how commutators can give information about positive
eigenvalues, we sketch a proof of Weidmann’s theorem [367], which applies in
particular to potentials ¥ which are homogeneous of degree — 1, i.e. V(ix) =
A'W(x) for i>0 (e.g. atomic Hamiltonians). For these potentials,
[V,A) = —x-PV = V. Thus, if y is a normalized eigenfunctionof H = —4 + V
with eigenvalue E, we can apply the virial theorem to conclude

0= CY,[H,AW) = Y. (=24 + V)¢
=Y HY) + Y, —AY)

>E.

Here we used the commutation relation [ — 4, 4] = —24 and the positivity of
—A.

We will be dealing with exponential decay of eigenfunctions in the L? sense.
A function ¢ is said to satisfy an L? upper (lower) bound if exp(F)y is in (not in)
L2 Here F is a function which measures the decay rate. The next proposition
lists some equations satisfied by i, := exp(F)¥ when y is an eigenfunction of a
Schrodinger operator, and F(x) is an increasing function of | x| alone. An impor-
tant hypothesis in this proposition is that yre L2 This is how the L? decay
properties of y will enter our proofs.

Proposition 4.16. Suppose H = —4 + V in L2(R"), where V satisfies
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(i) V is 4-bounded with bound less than one,

(ii) (=4 + 1)7'x-PV(—4 + 1)"! is bounded.

Suppose ¥ is an eigenfunction of H, with eigenvalue E, i.e. HY = Ey. Let F be
a non-decreasing C* function of | x| alone, and assume that

|PF| < C,(x-¥)*g — x-P(FF)?*) < C ,

where g is the nonnegative function defined by VF = xg. Define Y := exp(F)y,
and assume Y€ L. Then

H(F)Yr = EYp, where H(F)=H — (VF)? + D-VF + VF-D , (4.20)

Yp HYp) = Up, [(PF)? + EJYg) 4.21)
<¢F’[H’Z]¢F> = _4"9”21¢r"2
+ YR ((x-P)g — (x- V)P FP? ) . 4.22)

Here A is given by (4.18) and D is the gradient operator.

Remark 1. Assumption (i) allows us to define H as a self-adjoint operator with
domain D(4). Assumption (ii) implies that Hypothesis 2’ holds for H and the
generator of dilations. What (ii) really means is that form Q( f,, f5) defined for f,
and f; in the Schwartz space S by

0(f1.f2) = IV(Z —ox[(-4+ D) fi (-4 + l)_’fz])dv-"

extends to the form of a bounded operator. Note the V need not have derivatives
in the classical sense for this to hold. For example, if (1 + |x|)V is — 4 bounded,
then Hypothesis (ii) will hold.

Remark 2. Although it might happen that y,¢ D(4), we will show that e
D(g'2 4), so that (4.22) makes sense.

Remark 3. Formally, this proposition follows just from computing commutators.

Proof. Since PF is bounded, H(— F)is a closed operator with domain H, = D(4),
with C§° as a core, and with adjoint H(F). For ¢ € CZ, it follows from calculating
commutators that H(— F)¢ = exp(— F)H-exp(F)e. Thus, (H(—F)o,y¢) =
{@,Ey) for ¢ e C&, which implies that e D(H(F)), and that (4.20) holds.
Equation (4.21) follows from (4.20), and the antisymmetry of D-VF + VF-D.
Explicitly

Ellel? = (Yp, HF)YED

= Re{Yr, H(F)§>
= <'ﬁro(H - (VF)Z)¢F> .
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To prove (4.22), we first verify the following identity for ¢ € C§° and & := exp(F)

(@, [EAE, — A)p) = (Eo,[A, —A)Ep) — 4llg"2 ALl + (£, GEp) . 2
4.23)

Here G(x) = (x-¥)?g — x-V((FF)?). Since g € CZ, this identity follows from the
formal computation
[EAE, — 4] = E[A, —A]E + EALE, — 4] + [€, — 4] A¢
= ¢[A, —A)E + EA(eFgx D + D- xgeF)
+ (eFgx-D + D-xgeF)AE
= ¢[A, —A)E + E(A(gx-D + D-xg) + (9x-D + D-xg)A
+[(PF?, A))¢
= E[A, — )¢ + 4EAGAE + &((x-P)*g — x - P((PF)))E .

Define the cut-off function g,,(x) = x(x/m), where ye Cy and yx equals one in a
neighborhood of the origin. Then it is not hard to see that (4.23) holds, with

@ = Am. Adding {xm¥, (x-FV)xm¥> = (tmts [4, VImip) to each side, and
introducing the constant E in the commutator on the left, we obtain

<Xm¢9[€/‘fé,H - E]Xrn¢> = (éme’[/tH]éx"lw)
—41g" 2 Ayt 12 + (Exm¥ GEXmY) - 4.24)

Using (4.20) and (4.21), it is possible to show that &y, ¥ — &Y = ¢y in H,, as
m — oo. Thus, the first and last terms on the right side of (4.24) converge. Here
we use the boundedness of G. To handle the left side of (4.24), we write

= =2 Re< <x>_l /Téx:nw’ (X){(H - E)Xm¢> .
4.25)

[Recall that {(x) = (1 + |x|?)"?]. Now
(XDE(H — E)ymi = —<XDE(AYm — 2V xm" DY , (4.26)

and [{x)>4x,,| and [{x)F,,| are bounded by a constant independent of m. Since
&Y = Y and EPy are both in L2 (the latter follows from Fyre L? and Y€ L?),
the right side of (4.26) is bounded in absolute value by a fixed L? function.
Moreover, it converges pointwise to zero. Thus, by Lebesgue’s dominated con-
vergence theorem

Kx>E(H — E)xmy| 0 as m— oo .
Since {x)~! A is bounded from H, to H,
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I<x) Alxmpll < C

with C independent of m. Thus, the left side of (4.25) converges to zero as m — oc.
Since all the other terms in (4.24) converge as m — x, so must ||g"2 Ay ¥ |l.
Thus, for p € C§

IKWr, Ag' 2 )| = lim [(Exa¥, Ag'20)|

m—x

< (lim ||g”zf“f§X...¢”) lell ,
which shows that e D((—Ag'?)*) = D(g"?A4), and it follows easily that
Ag'2Exmy = Ag"* Y as m - oo. Thus, all the terms in (4.24) converge to the
corresponding ones in (4.22). O

The next theorem relates the L? decay rate of an eigenfunction y with
eigenvalue E to the set on which the Mourre estimate fails to hold. Consider
V. := exp(a{x))y. When a = 0, this function is in L2 by hypothesis. If we increase
a, it may happen that at some critical point, a,, Y, leaves L2 The next theorem
says this can only happen if a2 + E is a point where the Mourre estimate does
not hold. This theorem does not rule out the possibility that i, never leaves L2.
That such rapid decay cannot occur is proven in Theorem 4.18.

Theorem 4.17. Let H = — 4 + V in L*(R"), where V satisfies

(i) Vis 4-bounded with bound less than 1,

(i) (=4 + 1)"'x-PV(—4 + 1)"! is bounded.

Suppose Hy = Ey. Let E(H) be the complement of the set of points where a
Mourre estimate (4.2) holds, with A the dilation generator. Define

T =sup{a? + E: a > 0,exp(x{x))y € L}(R")} .
Then te E(H)u {+ o0}.

Proof. Suppose the theorem is false. Then t = a3 + E ¢ E(H) for some oy < 0.
If 2y # 0, choose a, and y such that 2, < ag < 2, + 7. If ¢y = 0, let 2, = 0 and
7 > 0. In both cases, exp(a, {x))y € L2, while exp[(x, + 7){xD>]¢ L% We will
derive a contradiction for small 7. We assume that 0 < 7 < 1,so that all constants
in the proof are independent of y and a, .

To begin, we define an interpolating function y, for se R by

$slt) = f (x> 2 dx .
(1)

Then g (1)1t as s]0, and
LM <c, fors>0, 4.27)

dy -n+1
I(Z) Xs(t)‘ <ct , (4.28)
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where the constant in (4.28) is independent of s. Define

Fi(x) = a; (x> + 7x,({x)) .
By (4.27), exp(F,)y € L? for all s > 0, but |lexp(F,)¢|| = oo as 5] 0. Define

¥, = exp(F,)y/llexp(F)y |l .
Then for any bounded set, B
lim | |¥,%d"'x =0,

sl0 B

lim | |P¥)2d"x =0 . (4.29)
sl0 B

In particular, ¥, converges weakly to zero. In addition, we claim
WY <c, 4.30)
=4+ )P <c. 4.31)

To prove these inequalities, we need to use Proposition 4.16, and therefore must
verify that F, satisfies the hypotheses of that proposition. By direct calculation
we find

PF, = (2, + yx({x)) x> 7" x
g = (2, + 70:(<x)<x>7" , so that
1% P((PE)) < eylay +7) + cla, + 9)*<x)72
[(xP)g| < cla; + y)<xD! . 4.32)

Thus, Proposition 4.16 holds. Using (4.21) of this proposition, together with the
4-boundedness of V, we find

P 1% < <KW, HY¥,) + cl|¥,I?
<c(la, +7)2+1) .

This implies (4.30). Equation (4.31) now follows similarly from (4.30) and (4.20),
together with the 4-boundedness of V.
We wish to prove

g2 A%, <c . 4.33)

To do this, we note that ||g*> A%, is one of the terms in the equation obtained
by dividing each term in (4.22) by (lexp(F,)y ||2. Thus, it suffices to bound the re-
maining terms. By (4.31) and the boundedness of (— 4 + 1)"'[H, A](—4 + 1)},
which follows from (ii), we have

(V.[HA1¥) <c.
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The estimates (4.32) imply that
¥ ((x-P)?g — x-V(PE)¥D <c .

Thus, (4.33) holds.
We now claim that

lim [(H — E — (PF) ¥, =0 . (4.34)

sl0

From (4.20), this is equivalent to

lim (D FF, + VF,-D)¥,| =0 .
slo

Now D-VF, + VF,-D = 2gA + x-Vg. Let xy denote the characteristic function
of {x: g(x) < N7'}. Then

@ngivzu < @(N'”’ lxng 2 AN + 111 — xn)gA¥,1)
s S
< cN~ V2

Here we used (4.29) and the fact that 1 — x, has support in a fixed, bounded set
as s]0. Since N is arbitrary, this shows that [|g4¥,|| =0 as s|0. Similarly,
Ix-Vg¥| —0as s|0, and (4.34) is proven.

From the expression for VF,, it is not hard to estimate

I(PF)? — afl < clayy + y* + af<x)7?)
so that, from (4.34), it follows that

@ I(H—E - a)¥,|l <cya, +7) .
sl0

Now choose y small enough so that the Mourre estimate holds in some interval
4 of width 26 about a2 + E. This is possible since E(H) is closed and a2 + E ¢
E(H). Then

ﬁ IE@\A)¥,|| < 67" | E(R\A)(H — E — a})¥,)| < cy (4.35)
and
lﬁ I(H + )E(R\4) ¥,
<HmI(E + of + DER\D Y, + |(H - E - a) ER\A) ¥,

<cy. (4.36)

Thus, we can insert spectral projections E(4) in the left side of the equation
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obtained by dividing (4.22) by |lexp(F,)y (|2, and control the error terms to
conclude that

@("’,,E(d)[ﬂ, AJEAY) < cy(ay + ) - (4.37)
slo

Here we use the negativity of the first term on the right of (4.22), the estimates for
|(x-V)*g — x-P(VF)?), the boundedness of (H + i) '[H, A](H + i)™ and the
estimates (4.35) and (4.36). On the other hand, we know by the Mourre estimate

(¥, E(A)[H, AJED) Y, 2 al E) ¥, |* + (P, K¥,)
for some a > 0. Thus, since ¥, ZoandKis compact, we have, using (4.35)

lim ¥, E(4)[H, A]E(4) ¥, > a(l — Cy?) . (4.38)
slo

For small enough y, (4.37) and (4.38) contradict each other, so the proof is
complete. O

Remark. By making more careful estimates, one can prove this theorem without
using weakly convergent sequences. This was done by Perry [280].

We now prove a theorem which eliminates the possibility T = oo in the result
above. To prove this, we need to make an assumption on V that does not
correspond to any of the hypotheses is Sect. 4.1. This assumption is not optimal;
some alternative assumptions on V which imply the theorem are given in [114].

Theorem 4.18. Suppose H = — 4 + V, where V satisfies (i) and (ii) of Proposition
4.1. Assume, in addition, that x:-VV is 4-bounded with bound less than 2.
Suppose Hy = Ey and ¢, := exp(a{x)>y)e L? for all «. Then ¢y = 0.

Proof. The function F = a{x) satisfies the hypotheses of Proposition 4.16. Thus,
from (4.20) and the 4-boundedness of V, we have

<Wa’ —A¢u> 2 <¢¢'le> - C||¢.||2
2 (Yoo (PF)*Y,> — CliYsl?
= War @2 x2(xD72Y,) — CllY,ll* .

On the other hand, we know that x-VV < a(—4) + b, with a < 2. Since
[H,A] = —24 — x-VV, this, together with (4.22), implies

<¢a' _A'I’a> < C(‘#m["i i]%) + C”'I’allz
< C(\b,,[(X'V)zg - x'V(VF)z + l]¢a>
= CW [a3x% (x> 7% = 2x3(x)73) — 2a2x3(x)™% + 1]y, .

Combining these two inequalities, we have
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War (@2 (x2x) 72 4 2ex2{x)7*)
+ Ca(2x2{x)73 = 3x3(x)7%) - 2C)y,> <0 .

But for large a, the expression in parentheses is increasing monotonically to co
at all points except 0 as a — oc. This is impossible unless y = 0. [

We can now combine the theorems of this section with the results of the next
section to prove that N-body Hamiltonians have no positive eigenvalues.

Theorem 4.19. Suppose H, acting in L>(R**~"#), is an N-body Hamiltonian with
center of mass removed (see Sect. 3.2), with pair potentials Vj; satisfying

(i) Vj(—4 + 1)7"is compact in L}([R*),

(i) (—4+ 1)'x-VV;(—4 + 1)"! is compact in L*(R*),
(iii) x- ¥V} is 4-bounded with bound zero in L*(R*).
Then H has no positive thresholds or eigenvalues.

Proof. The proof proceeds by induction. Suppose that for all M < N, M-body
Hamiltonians have no positive eigenvalues. Then H has no positive thresholds,
as thresholds are sums of eigenvalues of subsystem Hamiltonians. Now suppose
Hy = Ey.

Since H is not of the form —4 + V (unless all the masses are equal to 1),
Theorems 4.17 and 4.18 are not directly applicable to H and y. However,
H = Hy, + V where Hy = —D-M~2- D for a symmetric positive definite matrix
M, determined by the masses (see Chap. 3). Define the unitary operator U by
Uf(x) = det(M)"2 f(Mx). Then H := U*HU = — 4 + V(M'x) does satisfy the
hypotheses of these theorems. Moreover, U*AU = 4, which implies A satisfies
a Mourre estimate with A if and only if H does. Thus, E(H)-= E(H) which, by
Theorem 4.21, equals the set of thresholds of H. Applying Theorems 4.17 and
4.18 to A and U*y = det(M) "2y(M " x), we find that

7:=sup{a? + E: a > 0,exp(a{Mx))y € L?}

is a threshold, and therefore nonpositive. But E < 7. To start the induction
effortlessly, we define an 0-body operator to be the zero operatoron C. [J

4.5 The Mourre Estimate for N-Body Schrédinger Operators

The final topic in this chapter is a proof that N-body Schrodinger operators obey
a Mourre estimate at all non-threshold points. The first proof of this result is due
to Perry, Sigal and Simon [281]. It was previously proven for certain 3-body
Hamiltonians by Mourre [256]. The proof given here follows Froese and Herbst
[115]. Actually, in [115], this theorem is proven for a class of generalized N-body
Hamiltonians whose geometric structure is explicit. To avoid introducing new
notation, we will restrict ourselves to N-body operators.
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The next lemma uses a Ruelle-Simon partition of unity to decompose [H, A]
for an N-body operator H into terms involving M-body operators with M < N.
This is the key to an inductive proof of Theorem 4.21.

Lemma 4.20. Let H be an N-body Schrédinger operator (with center of mass
removed) acting in L2(R™~~1%) as defined in Sect. 3.2. Suppose the pair potentials
V;; satisfy

(i) Vj(—4 + 1)""is compact on L*(R"),

(ii) (=4 + 1)'x- PV (—4 + 1)"" is compact on L*(R").

Let {J,} be a Ruelle-Simon partition of unity indexed by 2-cluster partitions
a. Let H(a) be the Hamiltonian corresponding to a (see Sect. 3.2), and 4 =
1(x'D + D-x), where x and D denote the variable and gradient operator in
L*(RN~1#), respectively. Then, if fe CZ(R), there exist compact operators K,
and K, such that

SH? =Y Jf(H@)J, + K, , (4.39)
S(H)[H,AYf(H) = Y. J,f(H(a))[H(a), Alf(H(a))J, + K, . (4.40)

Proof. Equation (4.39) follows immediately from Proposition 3.8. To prove (4.40),
w note that [H, A] = 2H, — W, where H, is as in Sect. 3.2, and W has the form
of an N-body potential with pair potentials x - ¥'V,;. Thus, we can apply the IMS
localization formula to obtain

(H. A=Y J,[H,A)J, - 2% |V J,|?
= Z"u[H(a)’ A~]Ju + Z"ui;‘,a - ZZ'V"u'Z ’
where T, is the interaction term

Y xvy;.
(i)¢a
The || in this equation is the norm associated with the mass weighted inner
product on RV~ (see Chap. 3). Multiplying this equation from each side by
S(H), (4.40) now follows from Proposition 3.8 (which gives compactness of terms
involving [J,, f(H(a))]) and the fact that f(H)J2I,f(H) is compact. This com-
pactness is easily seen to hold if the V; are in C§°. Under condition (ii) on the Vj;,
the compactness follows from an approximation argument (see [115]). O

Before turning to the statement and proof of the Mourre estimate, we will
examine the structure of the intercluster Hamiltonians a bit more closely. Let
a = {C,,C,} be a 2-cluster partition. In Sect. 3.2, we saw that the space X < R
corresponding to H has the decomposition X = X?@® X, [so that L*(X) =
L*(X°)® L?*(X,)], and H(a) has the form Ha)= h"® 1 ® | ® T,. In the case
at hand where a = {C,, C,}, there is a further decomposition
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X*=X@®X, LYX%)=LYX®)® L}x )
h*=H(IC,)®1 + 1®H(C,) ,

where X := {xe X°: x; = 0 for i¢ C,} (here x; refers to the coordinates of x
in the original space R"*, see Sect. 3.2). The operator H(C,) is the |C,|-body
Hamiltonian obtained by removing the center of mass from

L. ))ECy
Thus,
x=X"®X*®X,, L*X)=L*X)®L*X?)®L*X,)
and
Ha@=HC)®1®1+1®HC)®1+1®1®T, . 4.41)

Whenever we decompose aspace Y = Y, @ Y,, L3(Y) = L%(Y,) ® L?(Y,), the
generator of dilations 4 in L2(Y) can be written

I=%(Y'D+D'Y)=%(Y1’Dl +D,-Y)+3(Y,'D,+ D, Y,),

where Y, and D, refer to the variablesin Y,k = 1,2.Thus, A= 4, ® I + I ® 4,,
where A, generates dilations in L(Y,). If we apply this to the decomposition
X =X @ X @ X, above, it follows that

[H(@),A] = [H(C,),A,1®I®1 + I®[H(C,), A,1® 1 +2AR®IPT, .
(4.42)

Here we used the special commutation relation [T, 4,] = 2T,

Theorem 4.21. Suppose H is an N-body Schrodinger operator (with center of
mass removed) acting in X = L2(R”~'") as described in Sect. 3.2. Suppose the
pair potentials V; satisfy

() Vj(—4 + 1)7' is compact on L%(R"),

(i) (=4 + 1)'x-PVy(—4 + 1)™" is compact on L%(R*).

Suppose A is the antisymmetric generator of dilations, i.e. A = 4(D-x + x- D),
where x and D are the variable and gradient operator in L2(R"~1"), respectively.

Let E, = E 4(H) be the spectral projection for H corresponding to the interval
4. Define

d(4) := distance(4, {thresholds of H} A (—00,4]) .
Then

(a) Forevery ¢ > 0 and A€ R there exists an open interval, 4, containing 4, and
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a compact operator K such that
E,[H,A)E, > 2[d(A) — €]E, + K .

(b) The set 7 of thresholds of H is closed and countable. Eigenvalues of H
accumulate only at 7.

Proof. The proof is by induction on the number of particles. We have already
proven the Mourre estimate for 2-body Hamiltonians in Example 1 of Sect. 4.1.
This, and Theorem 4.7, imply (b) for these operators. In general, if we assume (b)
for all subsystem Hamiltonians of an N-body operator H, then the first statement
of (b) for H follows directly from the definition of thresholds. Once we have
proven (a) for H, the second statement of (b) for H then follows from Theorem 4.7.

Thus, we assume that (a) and (b) hold for all M-body Hamiltonians satisfying
our hypotheses with M < N, and will be done if we prove (a) for an N-body H.

The function d has the property that d(A) + ' > d(4 + ') for A’ > 0. The
desire to have this inequality hold for 2’ with A’ > —¢ motivates the following
definition of d*:

d(A)=d(i+¢)—¢ .
We claim we can replace (a) in the theorem with

(a’) for every ¢ > 0 and A€ R, there exists an open interval 4, containing 4,
and a compact operator K, such that

E,[H,A)E, > 2(d*(}) — e)E, + K .

Certainly (a) implies (a’), since d(4) > d*(A) for ¢ > 0. On the other hand, suppose
(a’) holds. Then, given ¢ > 0 and Ae T, we can find 4 containing 4, such that

E,[H,A)E, > 2d(’ + ¢/2) — ¢/2 — ¢/2)E, + K
> —2854 + K .

Since d(4) = O for A€ T, this implies (a). Given A ¢ T, there exists an interval about
4 free of thresholds, since by the inductive hypothesis T is closed. Thus, for small
enough ¢, d°(4) = d(4), and again (a') = (a).

The first step in the proof is to remove K in (a’) at the expense of including
eigenvalues in the definition of d°. More precisely, let

d(4) = distance(4, ({thresholds} U {eigenvalues}) A (— o0, 4])
and d*(4) = d(4 + €) — ¢. Then we claim (a’) implies
(c) for every A€ R and ¢ > 0, there exists an open interval 4 about 4 such that

Es[H,A)E, = 2(d* (4) — ©)E, . (4.43)
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To prove (a’) implies (c), we assume (a’) and show that (c) holds. There are
two cases. First, suppose 4 is not an eigenvalue. From (a’) we know that

E4[H,A)E, > 2(d**(A) — ¢/2)E4 + K

for some interval 4. Now multiply this inequality from both sides by E 4 and let
A’ shrink about A. Then, since 4 is not an-eigenvalue, E, — 0 strongly, and
|E4 KE 4 || = 0as 4’ shrinks. Since d(4 + ¢/2) > d(4 + &) — ¢/2 > d(i + ¢) — €/2,
we have d“2(4) > d*(4). Thus, for small 4’, we have

E,[H,A)E, = 2(d*(4) — ¢/2)E4 — € .

Multiplying again from both sides with E ;. we see that (4.43) holds.
Now suppose 4 is an eigenvalues. Then d*(4) < 0, so it suffices to show

E,(H ,A)E, > —2E, . (4.449)
Let P = E{;,. We will show that, for some compact operator K,
E,[H A)E,> —¢E,+ (1 — P)K,(1 — P) . (4.45)

Since E4 (1 — P) — O strongly as 4’ shrinks about 4, an argument similar to the
one above shows that (4.45) implies (4.44). By (a’)

E,[H,A)E,> —¢/2E, + K (4.46)

for some interval 4. Using compactness of K, pick a finite rank projection F,
with Range F = Range P, so that

(1 — P)K(1 —P)—(1 — F)K(1 —F)|| <¢/2 . 4.47)
Then, multiplying (4.46) from both sides with (1 — F) and using (4.47), we find

(Eq— F)[H,A)(Es ~ F) = —¢(E4 — F) + (1 - P)K(1 - P) .
By the virial theorem, P[H, A]P = 0. Thus, we need only show that

R:= F[H,A]E/(1 — P) + (1 — P)E4[H, A]F

2> —¢F + (1 = P)K,(1 - P) (4.48)

for some compact K,. Let C = F[H, A]E4(1 — P). Then

(€ '"2C + e"F)*(c™"2C + ¢'?F) >0 ,
from which it follows that

R=C*F + F*C = —¢F*F +¢7'C*C ,

which implies (4.48). Thus, (c) is proven.
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We now show that (c) implies the following uniform statement.
(c’) For every ¢ > 0 and compact interval M, there exist 6 > 0 such that, for
peM and 45 = (u — 6,p + 9),
Eyu[H, A)E 4 > 2[d*(4) — €]E 4 . (4.49)

We thus assume (c) holds, and prove (¢'). Fix ¢ > 0 and M. From (c) we know
that, for ue M, (4.49) holds for some é depending on p. Let (¢, u) = sup{9: (4.49)
holds with £ in place of €}. Now, for 6 < d(u,€/2) and |y'| < &/2

Eyu[H, AE > 2[d**(p) — /2] E 5
> 2[d(p+ W) — i —¢/2)Eg
> 2[d(p + ') — e]E, .

Since 424" < 42, we find that 8(u + u',€) > 8(p,€/2) — |p'| for |y'| < ¢/2. Thus,
d(u, ) is locally bounded below by a continuous, positive function. Since M is
compact, this implies 6(u, &) > d(e) > O for all ue M, which is precisely the
uniformity needed in (c').

We now come to the inductive step in the proof. We want to prove (a’) for
an N-body H. Fix¢ > 0and 4 € R. Then for f € C3’(R) we have, from Lemma 4.20,

SH)[H,A)f(H) =Y. J,f(H(@)[H(a), A1f(H(@))J, + K, ,

where a runs over 2-cluster partitions and K, is compact. What we will show is
that for each a, and for all f with small enough support about 4

f(H(a))[H(a), A1f(H(a)) = 2[d*(4) — €]f *(H(a)) . (4.50)

Then, since the a’s run over a finite set, we can find one f that will work for all
a’s. Furthermore, we can choose f to be identically 1 in an interval 4 about 4.
Summing (4.50) over a and using (4.39) and (4.40), we obtain

S(H)[H, A)f(H) > 2[d*(4) — €}f*(H) + K ,

where K is compact and the theorem follows upon multiplying from both sides
by E,(H).

It thus remains to show (4.50). Suppose a = {C,,C,}. We have, from (4.41)
and (4.42),

H(a) = H(C,)+ H(C,) + T,
[(H(a), 4] = [H(C,), A] + [H(C,), A] + 2T, ,

where we have abused (and will continue to abuse) notation by writing H(C,)
for H(C,)® I ® I, and 4 for A,, etc. We now can decompose our Hilbert space
into a direct integral
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2(mIN-1 @
LY(RV=1#) = [} H,,..du(e,)dt
a(H(C3)) X a(T,)

so that on each fibre H(a) is represented by H(C,) + e, + t. Now suppose
f€C§(R) has support in a small neighborhood of 4. Then f(- + e, + ) has
support near A — e, — t. Since H(C,), H(C,) and T, are all bounded from below,
f(H(C,) + e, + t)is only nonzero in a compact set. Thus, we can apply (c'), which
holds for H(C,) by our inductive hypothesis, to conclude that for g, = ¢/5, if the
support of f is small enough,
SIH(C)) + e; + O[H(C)), A1 (H(C)) + e, + 1)
> 2[d2 (2 —e; — ) — &, 1f(H(Cy) + e, + 1)? (4.51)
where Jé'l is the modified distance function for H(C,). Now assume, in
addition, that supp(f) = (4 — €,,4 + €,). Then (4.51) implies
S(H(@)[H(C,), Af(H(a)) = 2[d¢ (% — H(C,) — T,) — ¢,1f(H(a))*
= 2[d¢,(H(Cy) + (A — H,)) — &,1f(H(a))*
> 2[d¢, (H(Cy)) — 2¢,1f(H(a))* .
Here we used that |4 — &| < ¢, for Eesupp(f) and that Jéll(a +b) > J,‘;"(a) -b

for |b| < €,. Since there is a similar inequality for H(C,), we have, for supp(f)
small enough about 4,

f(H(a))[H(a), A)f(H(a))
> 2[dg, (H(C))) + d&.(H(C,)] + T, — 4¢,)f *(H(a)) .

We claim that, for ae 6(H(C,)), bes(H(C,)) and ce a(T,), (i.e. ¢ = 0)

dé(a) +de(b)+c>d*(@+b+c).

To see this, note that J,‘_-'I (a) = a — t,, where 1, is a threshold or eigenvalue of
H(C,)in(—o0,a + ¢, ]. Similarly, Jé'z(b) = b — 1,. Thus, the left side is equal to
a+ b + ¢ — (1, + 1,). But by the definition of thresholds, 7, + 1, is a threshold
of H, and since ¢ > 0, t + 1,€(—00,a + b + ¢ + 2¢,]. Now the inequality fol-
lows from the definition of d2*'. Combining the last two inequalities, we obtain

J(H(a))[H(a), A]f(H(a)) > 2{d**'[H(a)] — 4¢, }f*(H(a))
=2{d*'(A + [H(a) — 4]) — 4¢,}f*(H(a))
> 2[d*'(4) — 5¢,1f (H(a)) .

Since 5S¢, = ¢ and d° is non-increasing in ¢, this implies (4.50), and completes the
proof. (O



5. Phase Space Analysis of Scattering

In this chapter, we present an introduction into quantum mechanical scattering
theory by geometric methods. Those methods were introduced for two-body
scattering by Enss in his celebrated paper [95], and further developed by Enss
[96-98, 100, 101], Simon [326], Perry [277,279], Davies [75], Mourre [255],
Ginibre [135], Yafaev [374,375), Muthuramalingam [258,259] Isozoki and
Kitada [178, 180], and others.

The core of the Enss method is a careful comparison of the time evolution
exp(—itH) of a given system with the “free” time evolution exp(—itH,), thereby
making rigorous the physicists’ way of thinking about quantum mechanical
scattering. One of the biggest advantages of the Enss method is its intimate
connection to physical intuition, not only with regard to the general idea, but
also even in single steps of the proof. Furthermore, there is a recent extension
due to Enss [99, 102-105] of his method to three-body scattering, and there is
hope that it may be possible to extend it to the N-body case.

We will give a complete proof of the Enss theory in the two-body case, with
special emphasis on the new elements that Enss brought in from the three-body
case. Moreover, we will discuss some of the features of the three-body case. We
do not give a complete proof of the asymptotic completeness in the three-body
case. Our intention is to present and discuss some of Enss’ new ideas for three
bodies, and to whet the reader’s appetite for further reading.

Besides the research papers mentioned above, there are various expository
works on the Enss theory, among them, Enss’ lecture notes on the Erice Summer
School [100], which is a self-contained introduction to the theory and which, at
the same time, introduced the method of asymptotics of observables (which we
will discuss in Sect. 5.5). There is the comprehensive monograph by Perry [279]
on the Enss method, as well as chapters in the books by Amrein [13], Berthier
[48] and Reed and Simon 111 [294] dedicated to that method. For other ap-
proaches to scattering theory (time-independent methods), see Reed and Simon
II1 [294], where further references can also be found.

5.1 Some Notions of Scattering Theory

In typical (2-body) scattering experiments, we have a (test) particle and a scatterer
(target) that are separated far away from each other at the beginning. As time
evolves, the particle gets close to the scatterer and interacts with it. One expects,
on the basis of physical experience, that after a sufficiently long time, the particle
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will again be far away from the scatterer. The particle should then move almost
“freely”, i.e. almost without influence by the scatterer.

In quantum mechanics, this expectation can be formulated in terms of the
interacting time evolution exp(—itH) and the free time evolution exp(—itH,).
That a state ¢ looked in the remote past like a “free” state can be expressed by
~itH

e Mpxeitop. ast— -

for some ¢_, while

e Mo xeMop,  ast— +oo

expresses that ¢ looks, after a long time, asymptotically like a free state ¢, .
We therefore should have

Q= lim eilﬂe‘ilﬂo(p_ = Iime“”e'""°¢p+ .
1—-x 11—
This leads to the definition
0Q* = s-limeifHe~itHo (5.1)

=3

The operators 2% are called wave operators. Note the funny convention with
respect to the signs +. This is due to the (historically earlier) definition of 2% in
time-independent scattering theory.

We are interested in the correspondence, ¢ — ¢, , so one might think the limit
one really wanted to consider is

lim eitHog=uH | (5.1

=3 x
yet in (5.1), we have H and H,, reversed. This is for several reasons: (a) the limit
(5.1) tends to exist for all vectors, while (5.1') will not exist for vectors ¢ which
are eigenvectors of H; (b) It is much harder to control (5.1°) than (5.1); (c) Once
one shows that (5.1) exists, it is not hard to show that the limit (5.1’) exists if and
only if ¢ = Q* ¢, and the limit is then just ¢_.

Suppose we have proven existence of 2*. Then ¢ = Q* ¢_ is a state that
developed backwards in time with the interacting dynamics looks asymptotically
like the state ¢_ developed with the free dynamics. A similar interpretation can
be given to 2°.

It is therefore reasonable to call H;, = RanQ* the incoming, and H,,, =
Ran Q7 the outgoing states. If

H,, = RanQ* = RanQ~ = H,,, (5.2)

any incoming state will be outgoing in the far future, and any outgoing state was
incoming in the remote past. This is what we expect for scattering experiments.
We will call a system obeying (5.2) weakly asymptotic complete (we usually adopt
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notations from Reed and Simon [294]; note that Enss [100] uses a slightly
different terminology at this point). For weakly asymptotic complete systems, we
will call H;, = H,,, = Ran 2* the scattering states. It is clear that bound states
show a very different behavior than scattering states. Physically, one would
expect that there are no other states than bound states and scattering states (and
superpositions of them). Since the bound states correspond to H,,, (this can be
justified by the RAGE theorem discussed in Sect. 5.4 below), the above physical
expectation can be expressed by

RanQ* = Hj,= H,, . (5.3)

Property (5.3) is called asymptotic completeness. It is one of the main goals of
scattering theory to prove asymptotic completeness for a wide class of interacting
dynamics.

The above considerations, however, are only correct if no long range forces
have to be considered. Roughly speaking, “short range” means decay of the
potential at infinity, like |x|™* for some a > 1. Thus, the Coulomb potential is of
long range nature. For long range potentials, the scattered particle will not move
asymptotically freely. A correction to the free motion is needed to describe the
asymptotic behavior of this motion. This is already true in classical mechanics
(see Reed and Simon 111, X1.9 [294]). This correction has to be considered also
for the wave operators. Therefore, the definition (5.1) is not appropriate to
long-range potentials, so “modified wave operators” are required. In the fol-
lowing, we will restrict ourselves to the case of short-range potentials, and refer,
for the long-range case, to Enss [100, 105], Isozaki and Kitada [179] and Perry
[278] and references given there. We will also restrict ourselves to the Enss
time-dependent method; for the time-independent approach, see Reed and Simon
111 [294] and the works cited there.

We now state a few properties of wave operators before we turn to existence
questions. Thus, let us assume that 2+ exist. Since £2* are strong limits of unitary
operators, they are isometries from L2 to Ran 2*. Therefore the ranges Ran 2*
are closed subspaces of L2. From the definition of 2%, it is easy to see that
exp(—iH1)Q* = Q* exp(—iHyt) and hence HQ* = Q*H,. Therefore, H |}
Ran Q* is unitarily equivalent to H,. This implies

RanQ* c H, (H) . (54

Because of (5.4), asymptotic completeness implies that the singular continuous
spectrum is empty.

Now we turn to the question of existence of 2*. We present a general strategy
known as Cook's method, that will enable us to prove the existence of 2* for a
wide class of short-range potentials.

Theorem 5.1 (Cook’s Method). Let V be a Kato-bounded potential with relative
bound a < 1. If there exists a set D, = D(H,) dense in L2, such that, for all ¢ € D,
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© -—
| IVetittop| dt < oo
T

for some T, then 2% exists.

Proof. We prove that, for e D,, n(t) := exp(iHt)exp(—iHyt)¢ is a Cauchy
sequence as t — —oo. By density of D, and |lexp(iHt)exp(—iHyt)|| < 1, this
suffices to prove the existence of 2. We estimate

In(e) = n)ll < §lIn'@)ll du < [ lle#“(Ho — H)e™ || du

" — 0 —

| Ve Ho“p| du — 0 as s, t = oo by hypothesis. [J
Corollary (Cook’s Estimate). If 2% exists, then

IQ* - Dol < (f) [Ve*itHop| dt . (5.3)

5.2 Perry’s Estimate

To apply Cook’s method to some given class of potentials, we apparently need
some control on the unitary group exp(—itHy). In this section, we present a useful
estimate due to Perry [277] that will enable us to apply Cook’s method to a wide
class of “short-range” potentials, and that is, furthermore, interesting by itself.

Perry’s estimates were motivated by work of Mourre [255] on the Enss
method. If we only wished to obtain existence of 2* using Cook’s method, one
could obtain an estimate on H, much more easily [e.g. take D, to be finite sums
of Gaussians and compute exp(—itH, ) exactly]. The point of Perry’s estimate
is that it allows a uniformity in suitable ¢ that is critical to the Enss approach.
Other methods of obtaining such uniform control are the original, direct phase
space approach of Enss [95] (see also Simon [326]), the coherent vectors analysis
of Davies [75] and Ginibre [135], and an approach due to Yafaev [374,375] close
in spirit to that of Mourre and Perry. We first introduce some technical tools
concerning the dilation generator A (see also Chap. 4). We define

A:=5(xp+px)

(where p = —ié/éx in x-space representation). By P, we denote the spectral
projection associated to A on the positive (resp. negative) half axis. Since

R 1 .0 .0 N
(Af) (p) = —§<P<—'5) + (—IE>P>f(P)= —AN)(p)
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(~ denoting Fourier transform), we have
(P.f) =P f. (5.6)

We now introduce the Mellin transform that “diagonalizes” the operator A.
Denote by C3(R"\{0}) the functions in CS with support bounded away from 0.
For ¢ € CZ(R"\{0}), we write ¢(x) = ¢(|x|w) with we S*! the sphere of radius
one, and define, for Ae R and we S*™!

j P2 ) T (5.7)

o*(hw):= I

(2 )1/2

The Mellin transform * maps CP(R"\{0}) into L*(R x $*7',di x d* ' w).
Moreover

Lemma 5.2. The Mellin transform preserves the L2-norm, i.e.
flo*(GLow)did o= [lo(x)d"x . (5.8)

Therefore, the Mellin transform extends to an isometric mapping, *: L(R*) -
L3R x S*7').

Remark. The Mellin transform can be viewed as the Fourier transform on the
group R, equipped with multiplication as group structure. R, is a locally
compact, Abelian group with d|x|/| x| as Haar measure. Moreover, the characters
on R, (dual group) are given by |x|”*4. Thus, the lemma above is nothing but
the Plancherel theorem on R, .

Proof. We define, for ge CZ(R"\{0})

Ugl(t, w) := exp (; t) ge'w) .

It is easily verified that | Ugll 2 xse-1) = 9]l 2R Now

1 )
o*(iw) = W J.e"“Ug(t,w)dt .
R

Thus, ¢ * is actually the Fourier transform in the t-variable of Ug. Since both
U and the Fourier transform are unitary, the lemma holds. [

Since A(]x|"?|x|74) = i|x|"3|x|"*, it is not difficult to show that the Mellin
transform “diagonalizes™ 4, i.e. (4¢)* (4, ) = A¢ * (4, w) for ¢ € D(A). It follows
that

(P4 0)* (L) = X(o_x)(i';-)w#(;-‘ w) . (5.9)
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We adopt the following notation of Enss: Let S be a self-adjoint operator, M
a subset of R. Then F(S € M) denotes the spectral projection of S on the set M.
In particular, F(xe M) is nothing but multiplication with the characteristic
function of M in x-space. We are now prepared to prove Perry’s estimate.

Theorem 5.3. Let g be a C*-function with support contained in [a?/2, b%/2] for
some a,b > 0. Furthermore, let § < a be fixed. Then, for any N, there is a constant
Cy, such that

IF(1x] < é|t])e"Hog(Ho)Py | < Cy(1 + |t])™F
for +t>0(.e.t >0for P,,t <Ofor P_).

Proof. Define K, (p):=expli(p*t/2 — px)1g(p’/2)/(2m)"* and y(x) =
exp(—itHo)g(Ho) Py Y(x). Then Y, (x) = (K, ,,(P.¥) > = (K, ., P;¥) [by (5.6)],
hence |y,(x)| < ||P; K, [l || (all norms are L2-norm). Therefore, it suffices to
prove

IP; Kyl < Cx(1 +t])™™ for|x|<dtand +¢>0 .

We treat only the case of P_, the P,-case being similar. By Lemma 5.2 and
(5.9), we have

”P— Kx.(llz = ”(P— Kx.l)# "2

= ? (I lK:t(;-’w)lzdv—lw)di. .

- \§'!
Thus, the theorem is proven if we show that
IKZ (A o) < Cy(1 + |4] + |t])™N

for |x| < 8t and 4 < 0. Now

1
(zn)llz

[z dlp|
[ 1pI21p17 K, (1Pl 0) T
(V]

K-\'#.l(;" w) =
Ipl

dipl

Ipl

= o—na | [PI"g(p?/2)e™
v+1)/2
(21:)( 1) l

with a(p) = tp?/2 — |plw-x — ilog|p|. Since A < 0,t > 0 and |x| < 6t < at,

03 pl— @ x — 2= > Iplt > (Ip| — &)t
T—=tpl—w'x——2|plt—w-x>(pl -
dlpl P Ipl P

>(lpl —a) .
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Thus, da/d|p| is strictly positive on K := {p|g(p?/2) # 0}, and we may estimate

-1
(f“—) <CU+]t|+]i)" onK .
olp|

Moreover, we see similarly that

ok (6:1 )“

—z==) GO +I|t|+]i)" onK . 5.10

ZipF \aipl (1 + 1]+ [4]) (5.10)
Writing

el — | i % —Ii Nei:(m
ép] op

and integrating by parts N times, we get

¢ da\ Mo,
v/2—-1 2 ia(p)
I P alp m[((’n) 61’] ¢ dp’

o

== = = P 'g(p*/2); [P dp
! [c’p op) op op

< Cu(1 + [t] + 1A~V
by (5.10. O

Remarks. (1) The last part of the above proof is a version of (the easy part of) the
method of stationary phase (see e.g. Reed and Simon I1I [294]).

(2) We can replace P, by F_, ., (resp. F_ ., in the above argument, possibly
increasing the constant Cy.

IKE (A o) <

5.3 Enss’ Version of Cook’s Method

We remarked already that the wave operators 2* are appropriate only for
“short-range” interactions, while for long-range potentials (e.g. the Coulomb
potential), modified wave operators are required. Various definitions of “short
range” are used in the literature (see e.g. Reed and Simon 111 [294], Enss [100],
Perry [279]). Throughout the rest of this chapter, we will make the following
assumption:

(1 + |x|)"**V(H, + 1)™* is compact for some e >0 . (5.11)

By the term “short-range potential” we will always mean a function V that
satisfies (5.11).



96 5. Phase Space Analysis of Scattering

In this section, our aim is to show the existence of the wave operators for
short-range potentials using Cook’s method.

Let us define S(R) := ||V(H, + 1)"'F(]x| > R)||. We first prove the following
lemma:

Lemma 5.4. For short range potentials
[{S(R)YdR < o . (5.12)
V]

Remark. Kato-bounded potentials (with relative bound a < 1) that satisfy (5.12)
are called Enss potentials in Reed and Simon 111 [294]. To prove asymptotic
completeness, it is enough to assume that V is an Enss potential.

Proof. Define T(R):= ||F(|x| > R)V(Ho + 1)™!|. Then | T(R)dR < o since

T(R) < [I(1 + [x)*F(1x| > R)| (1 + |x])***V(Ho + 1)
S+ RTE + X)) V(H, + D7)

Let j be a C*-function with 0 < j(x) < 1 and j(x) = 0 for |x| <1, j(x) = 1 for
[x| = 1. Set jr(x) = j(x/R). Then

IV(Ho + 1)'F(Ix| > R)oll = |V(Ho + 1)7'jgF(Ix| > R)o||
S IV(Ho + 1)7Yrll llell
thus, S(R) < ||V(Hy + 1)7Yzll < S(R/2), and similarly T(R) < ||jRV(Ho +D)7Y <
T(R/2). Usmg the commutator [(H, + 1)7',jr] = (Hy + 1) ' (djg + 2Pjr-¥)-
(Ho + 1)7" and, for R > 1, |Pjgl, |4jg| < C/R jg,2, We have
S(R) < [[V(Ho + 1)Vjgll
< ljrV(Ho + DMl + IV(Ho + 1) (4jg + 2Pjg- P)(Ho + )7'|
CI
< T(R/2) + ES(R/4) .

Iterating and using the fact that S(R) is bounded, we find that
C’ 2
S(R) < T(R/2) + — T(R/8) + — (C) —-d .
Since T is integrable, it follows that S is integrable. [J

Theorem 5.5 (Enss’ Version of Cook’s Method). For short-range potentials V

X
[ IVetittop| dt <
1)
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for @ € Dy, a dense set in L2(R"). Consequently, the wave operators 27 exist, and
Cook’s estimate (5.5) holds.

Proof. We take Dy = {g(Ho)P - .o ¥|ge CZ(R), suppg < [a2, %] for some a,
p>0aeR ye L*(R")}, P,- ., being the spectral projections corresponding to
A.For e Dy, ie. ¢ = g(Ho)Pi—p 0¥,

|Ve™*Hop|| < [IV(Ho + 1)T'F(Ix| > 80)] (Ho + Dol
+ [IV(Ho + D) IF(Ix| < dt)e™"Ho(Hq + Dol . (5.13)
The first term is integrable by Lemma 5.4. The second one can be estimated by
CIIF(Ix| < ot)e™""o(Hy + 1)g(Ho)Pi— o¥ll < C'(1 + |t])72
by Perry’s estimate (Theorem 5.3); hence it is integrable. [

The following rather technical looking result will be a key to our proof of
asymptotic completeness in Sect.5.6.

Proposition 5.6. Let ¢, be a sequence of vectors converging weakly to zero, with
ll@all = 1. Then

127 — Dg(Ho) P, @l =0 .
As usual, g denotes a Cy-function with support on the (strictly) positive half-axis.

Proof. By Cook’s estimate (5.5), we have
€27 — D)g(Ho)P, o, < (]; | Ve~*Hog(H,) P, ,|| dt

IVe™"Hog(Ho)P, @yl = |IV(Ho + 1)™'e™"o(Hy + 1)g(Ho)P. ¢,

goes to zero since @, — 0, and by our short-range assumption, V(H, + 1)™! is
compact. By (5.13), the integrand is bounded by an L!-function. Therefore the
assertion of the proposition follows from Lebesgue’s theorem on dominated
convergence. []

Proposition 5.6 says that (2~ — 1)g(H,)P, is compact. From this fact, one
can prove asymptotic completeness fairly quickly (Mourre [255], Perry [277]).
We will give a longer proof which is more intuitive, and which will serve as an
introduction to the work of Enss on the three-body problem. We require two
detours before returning to Proposition 5.6 in Sect. 5.6.

5.4 RAGE Theorems

In this section, we will prove three versions of the celebrated RAGE theorem.
The theorem was originally proven by Ruelle [300], and extended by Amrein and
Georgescu [14] and Enss [95] (hence the name “RAGE"” theorem). The RAGE
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theorem states that the time mean of certain observables will tend to zero on the
continuous subspace H,,,.

The theorems are based on the following result on time mean of Fourier
transforms:

Theorem 5.7 (Wiener’s Theorem). Let u be a finite (signed) measure on R, and let
F(t) = fe™ ™ du(x)
be its Fourier transform. Then

1
lim i IFORde= Y u({x)i® .

T=x xeR

We remark that the sum Y |u({x})|? is finite, since u is finite. Since we will,
in essence, give the proof of Wiener’s theorem while proving Theorem 5.8 below,
we do not give it now.

Theorem 5.8 (RAGE). Let A be a self-adjoint operator.

(1) If C is a compact operator and ¢ eH_,,,,, then
N
= [ ICe pi2dt -0 asT— oo .
T o
(2) If C is bounded and C(A4 + i)™! is compact, and ¢ € H,,,, then still
1 T
_ —itA 2
TJ' ICe~ g2 dt =0 .
o
(3) If C is compact, then

T
1 .
N _'fJ‘ e*i'CP, (A)e " dt|| -0 asT — o0 .

0

The integral in (3) is meant in the strong sense.

If we take C = F(|x| < R) [in (2)], then the RAGE theorem tells us that any
state in H,,, will “infinitely often leave” the ball of radius R. This is indeed what
we expect physically.

Proof. We first prove that (1) and (2) follow from (3). Let ¢ € H.,,,. Then

T T

1 1

7 [ ICe Mol di = = [ Cp.etcrCeg) de
(] o
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T
J' e HACsCP, (A)e i dup>
0

~5l -

(o

T
1 . .
< ” T I e MC*CP,,(A)e™"dt | |lI2 >0
o

by (3), since C*C is compact. For ¢ € D(4) N H,n,(A4), we write ¢ = (4 + i)'y
[V € Hconi(A)]. Therefore,

T T
1 -itA 2 — l a—-1,-it4 2
Ti ICe ]| d'_?l IC(A + i) e "y |2 de

converges to zero, given (1). This implies (2), since C is bounded and D(4) N
H_on(A) is dense in H,,,(A).

We now come to the proof of (3). Since the compact operator C can be
approximated in norm by finite rank operators, it suffices to prove (3) for those
operators. Since any operator of finite rank is a (finite) sum of rank 1 operators,
we may restrict ourselves to rank 1 operators. Thus, let Co = {p, ¢ >y (the most
general operator of rank 1). Then C*¢ = (y, ¢)p. Define

T

QT) = o [ € 4CP )™
[}

T
1 . .
= 7 [ <" Pun)p, de My dr |
o

we have
l T
o(T)* = —7-,_" &8y, - Yel'1P.  (A)pdt ,
0

and therefore

T
QNIQTI¢ = 2 [ (P A, QTI pde 4y dt
[\]
TT
. itA isA isA itA
=77 of(j: (" P oy, €4 P p) €Y, e Y ds dr .
Therefore,
T

| l . 2
” T [ e ce P (i
o
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= 1Q(T)II? = 1Q(T)Q(T)*|

TT
< j j <" p,€**P.qu(A)p> | dsdt 4]

< |||//||2< l,

Let u denote the spectral measure for P, p. Then

i

T
j [{Peomp. € -m-s)APcomp>|2 ds d‘)”2 .
o

o~—,.,

<Pconlp9cxp[ —I(t - S)A]Pconlp>l2 dsdt

ot—x._,

2
j exp[—i(t — s)A]du(4)| dsdt

Q-

O oy O
Oty O—

j f exp[ —i(t — s)(4 — x)]du(A) du(x)ds dt

—

T
[% j exp[ —it(4 — x)]dt

0
T
x lr j exp[ +is(A — x)] ds]du(}.)du(x) (by Fubini) .
0

Computing

T

e 1 .
?bf exp[i(4 — k)s] ds?bf exp[—i(4 — k)t] dt

1 . .
=m{exp['(l —k)T] = 1} {exp[—i(A — x)T] — 1}

1
ST r? {exp[i(2 — x)T/2] — exp[—i(4 — x)T/2]}

{exp[ —i(4 — k) T/2] — exp[i(4 — x)T/2]}

_4sin?{(A — ¥)T/2}
T T} —w)?

with the convention that sin0/0 = 1. Since

4sin?{(A — k) T/2}

1
TG —w?

(5.19)
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[which is in L?(du)], and since furthermore
4sin?(i — x)T/2
T34 — k)?

tends to zero for 4 # «, and to one for A = k as T — oo, we have that (5.14) tends to
fu({x})du(x) = ZRM({K})2

by Lebesgue’s theorem on dominated convergence. Since the measure u (the
spectral measure for P, p) is continuous, i.e. does not have atoms, we know that

ZKER”({K’})Z =0. O3

We will make use of the RAGE theorem in Sect.5.5, as well as in the chapter
on random Jacobi matrices.

5.5 Asymptotics of Observables

In this section, we are concerned with recent developments of time-dependent
scattering theory due to Enss [98, 100]. These new ideas present, in the two-body
case, more physical insight and simplify the proof of asymptotic completeness
for long-range forces. Furthermore, they are an essential ingredient for Enss’
three-body proof.

The main result of this section states that some observables, B(t) =
exp(iHt) Bexp(—iHt), behave on H_,,, asymptotically in time in a similar way as
they would under the free time evolution, more precisely: (x(t)/t)> ~ 2H, A(t)/t ~
2H, Hy(t) ~ H.

Theorem 5.9. For fe C(R) and any ¢ e H_,,(H):

2
(i f((%") )w ~ fCH)p

(i) f(@)q»»mm«p
(i) f(Ho())@ - f(H)p ast - +oo.

Remark. The only assumptions on V we need for the proof below are D(H) =
D(H,), and [A, V] is a compact operator from H, , to H_,. For a proof under
very weak assumptions allowing long-range forces, see [98]. Before proving the
theorem, we first state and prove two of its consequences.

Corollary 1. For o€ H,,,,

|P_e"™p| -0 ast— oo and

|P,e”™p| >0 ast— —o0 .
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Proof. By the usual density argument, it is enough to prove the Corollary for
vectors ¢ = g(H)¢ where geC*,0<g <1, g(x) = 1 for x > 26, g(x) =0 for
x < 6 for some 6 > 0. Furthermore, let fe C* satisfy f(x) = 1, x < 6/2, f(x) =

x 20,0 < f < 1. For such a vector ¢ we have (for t > 0):

A(e)
X(—m.m(—t_)‘l’n
A
“f( "’) H—»nf(zm«pu

by Theorem 5.9. Actually, Theorem 5.9 as stated is not applicable since f ¢ C, (R),
but an elementary argument ([294, p. 286]) allows one to extend the result to all
bounded continuous f. Since ¢ = g(H)¢ and fg = 0, we know

|P-e" | = |le"HP_e | =

|P.e”™p|| -0 ast— o .
|P,e”™¢p| -0 ast— —co
is proven in the same way, observing that P, = y_, o,(4/t)fort <0. O

Remark. The corollary states that a ¢ € H_,,,, cannot have an incoming part in
the far future, or an outgoing part in the remote past.

Corollary 2. For o e H_,,,(H): exp(—itH)p — 0 weakly.
Proof. Let f, g be the functions defined in the proof of Corollary 1. Let ¢ = g(H)o.

x|
<5)el

IF(Ix| < a)e™ "o = ” F( .
—0 byTheorem59 . (O

A

Proof of Theorem 5.9. We first do some formal calculations explaining why the
theorem is true.

x(t)

A(t)=[H,A)(t) =2H + W(1) ,

where W:= —2V — xPV and W(t) = exp(iHt)W exp(—iHt). Thus, neglecting
any domain questions,

At
t

1 A 1
;b[A(t)dz=7+2H+;£W(t)dt .

Since we can reasonably expect that 1/t j}, W(t)dt will go to zero when applied
to (nice) ¢ € H,,,, by a RAGE-type theorem, and also (4/t)¢ will tend to zero, we
formally obtain the desired result.
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Let us now make the above calculations rigorous. Define N = p? + x2. Here
N is a self-adjoint operator on D(N) = D(H,) n D(x?). D(N) has the advantage
that all of the relevant operators are defined on this set. Since exp(—itH) leaves
D(N)invariant (cf. Frohlich[117], Kato [192] and Radin and Simon [290]), D(N)
is also in the domain of A(t), x(t), etc. However, we do not know whether D(N)
isa core for HP,,,,. This will cause some complications and requires an additional
approximation argument.

By the Stone-Weierstrass gavotte (see the Appendix to Chap. 3), it suffices to
prove the theorem for f(x) = (x — z)7*; z¢ R. For bounded operators M, N we
have

(M = N)g|> = —(No,(M — N)¢) — {(M — N)o,No)
+ {@,(M*M — N*N)op) .

Inserting, for M, N, the resolvents (A(t)/t — z)™! and 2H — 2)~!, and using
(A-2"(A-2"' =(=2Im2) ' [(A -2 —(4-27"],

we see that weak convergence of the resolvents implies strong convergence. Thus,
it suffices to prove

-1
<n,[(§$ - z) - (2H - z)“]¢p> -0 (5.15)

for e H,,, and n € H. By a density argument, it is enough to prove (5.15) for n,
@ in suitable dense sets. We estimate, for n € D(H),

-1
o[ (-2) - o)
(5] (2o

= ‘<(H —Z)n,(H — 27" 1(A() — t2)"(H — 2)(H — 2)_'(

Aw
t

— 2H)(2H - z)“<p>|
< I(H =2l I(H — 2)7' t(A(t) — tz)'(H - 2)|
”(H -2)! <A—(Q - 2H)(2H —2) ¢p” . (5.16)
The operator (H — z)"'t(A(t) — tz)"'(H — z) is bounded uniformly in (large) t.

This can be proven by exploiting the commutator relation i[H,, A] = 2H, (see
Chap. 4). For y € D(N) n H_.,,, we will prove below that
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Jor - (58 -2 )o]

tends to zero. (The proof is a rigorous version of the above formal calculations.)
From this, we can conclude that (5.16) converges to zero for those ¢ € H,,,,,
for which (2H — z)~! @ € D(N). This set, however, is only dense in H,,, if D(N) is
a core for HP,,,,,. Since we do not see how to prove this, we use a “regularization”
fory :=(2H — 2)"' .
Define ¢?(x):= (1 + x?/t)'¢(x). Then Yy®eD(N) for Yy eD(H), and
furthermore

(@) y > yin L?
(b) HY"™ = Hy in L?
(©) Ay < Ct'? .

The proofs of (a)—(c) are straightforward calculations. We now estimate (remem-
bery = 2H — z) ' o):

([ (52 -) - eu-am o)
-y (- o)
+ Kn,(@ - z)_l<A:t) 2H)¢,m> .

The first term of the right-hand side of (5.17) tends to zero because of (a), (b)
above. As in (5.16), the second term can be estimated by

c ”(H — ) (@ - - 2H)¢"’

Since e D(N), we have

(5.17)

t

1 Ay 1 ) .
FADYY = % +7 j e*H[H,AJe “HyWdr .
0

Thus,

jor = (-2 )

< ;qu“*u




5.6 Asymptotic Completeness 105

+ I H e“(H - 2)'W(H — 2)' e *H(H — 2)y ds
o
+ ‘ %f e!(H = 2) ' W(H — 2 e *"(H — )y — y)ds

(]

The first term goes to zero because of (c). The second one tends to zero by the
RAGE theorem [Theorem 5.8(3)], and the third one does because of (b) and the
uniform boundedness of the operator

t
} Ie""(H —2Z)"'W(H - z) e ds |
0

This finishes the proof of part (ii) of the theorem. The proof of part (i) is similar,
but uses a double integral and d/dt[x(t)>*] = A(t). By the Stone-Weierstrass
gavotte, it suffices to prove part (iii) for resolvents.

IL(H — 2)™ — (Ho(t) — 2)"*Joll = IL(H — 2)'V(H — 2) '] || .

By Corollary 2 above, exp(itH)¢ converges weakly to zero. Since the operator
(Hy — z)"'V(H — z)™! is compact, this implies that the norm goes to zero, thus
giving (iii). The application of Corollary 2 is correct, since its proof makes no use
of part (iii) of the theorem. [J

5.6 Asymptotic Completeness

We now come to the proof of asymptotic completeness.

Theorem 5.10. Ran2~ = RanQ* = H_,,,
Remark. Since Ran 2* < H,,, it follows H,, = {0}.
Proof. As usual, take peH_,,, with gH)p =9 (0<g <1, g=1 on [a?b?],
suppg < [a?/2,2b?]). Set @, := exp(—isH)p.
17 = Dol < (27 — Dg(Ho)o, |l + 1127 — 1)[g(Ho) — g(H)o,|l
< (7 — Dg(Ho)P, o,ll + 2llg(Ho) P- ol
+ 2(I[g(Ho(s)) — g()]ell .

The first term goes to zero as s — oo by Proposition 5.6, since ¢, — 0 by Corollary
2 of Theorem 5.9. The second term converges to zero by Corollary 1 of Theorem
5.9, and the third one goes to zero by Theorem 5.9. Thus,



106 S. Phase Space Analysis of Scattering

¢ =lime*fQ e #Hp = lim Q etoe~isH

$—1 S—x

eRanQ™ =RanQ™ .

The assertion on Q7 is proven in the same way. [J

Theorem 5.11. Positive eigenvalues are isolated and of finite multiplicity.

Proof. Suppose the assertion of the theorem is wrong. Then we find a C§ -function
g, such that g(H)e, = ¢, for a sequence ¢, — 0 with ||@,|| = 1 and @,e HZ.
Since g(H,) — g(H) is compact, ¢, - 0 implies ||[[g(H,) — g(H))@,|l = 0. But

¢ = g(Ho)@, + [0 — g(Ho)n]
= g(Ho)o, + [9(H) — g(H,)] o,
= g(Ho)P_ ¢, + g(Ho)P, ¢, + [g(H) — g(Ho)] o,
= Q7 g(Ho)P- ¢, + 2" g(H,)P, ¢, + (1 — 27)g(H,)P_ o,
+ (1 — 2%)g(Ho)P, ¢, + [9(H) — g(Ho)]p, = 27 g(Ho)P- o,
+ Q% g(H,)P, ¢,

because of Proposition 5.6. Hence, the projection of ¢, to HZ, tends to zero, which
is impossible since ¢, L H,. and @, = 1. O

The above proof also excludes singular continuous spectrum (and did not
use asymptotic completeness). Thus RAGE is not needed to prove a,. = ¢. It was
remarked by Davies [75] that, even for a geometric proof of asymptotic complete-
ness, this celebrated theorem is not required.

For other methods to exclude positive eigenvalues, see Eastham and Kalf
[90] (especially Theorem 4.19) and Reed and Simon IV, XIII.13 [295].

5.7 Asymptotic Completeness in the Three-Body Case

This paragraph concerns Enss’ recent geometric proof of asymptotic complete-
ness of three-body Hamiltonians. Here we make no attempt to give complete
proofs, but rather discuss some of the main ideas in Enss’ three-body proof,
referring the reader to the papers [99, 102-105] for details. We follow, more or
less, Enss’ first three-body paper [99]. However, the articles [102, 105] are more
self-contained, and we recommend them for further reading.

Asymptotic completeness for two-body systems in increasing generality was
obtained by Povzner [287], Ikebe [175], Agmon [2] and Kuroda [223] (see Reed
and Simon 111 [294] for further historical references), and then in Enss’ famous
paper [95]. In a celebrated monograph, Faddeev [106] proved asymptotic com-
pleteness for a class of three-body systems. There were extensions (and correc-
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tions of one gap) of Faddeev’s work by Sigal [309], Yafaev [373], Thomas [354],
Ginibre and Moulin [136] and Kato [194]. Faddeev’'s work had two severe
limitations: (1) It required r~27* decay on potentials, and, in particular, systems
with an infinity of channels were not allowed. (2) Two-body subsystems were not
allowed to have quasibound states at threshold (this assumption was later
removed under stronger decay hypotheses on V; by Loss and Sigal [236]).
Recently, extending their ideas, which is the basis of this and the last chapter,
Enss [99] and Mourre [257] treated three-body systems without any assump-
tions on bound states, and with sufficiently slow decay allowed to have an infinity
of channels.

As the reader will expect, the three-body case—compared with the two-body
case—shows new, physically interesting phenomena, as well as a variety of
mathematical difficulties. First of all, there are more possibilities of “asymptotic
configurations”: All particles may move essentially free, or two of them are bound
together and the third one is free, or all three particles are in a bound state. These
three possibilities are the physically expected ones, and asymptotic completeness
says that they are the only ones that can occur. However, a priori configurations
such as one particle bouncing back and forth between the two others might occur.

Moreover, the asymptotic configurations in the far future and in the remote
past may look “rather different,” e.g. a configuration with two particles bounded
together (and the third one free) in the remote past may have all three particles
moving freely in the far future, etc. However, one certainly expects, on physical
grounds (and we will indicate a proof in the sequel), that a state with one particle
asymptotically free in the remote past has necessarily (at least) one particle free
in the far future, and vice versa.

To formalize the above discussion, let us introduce some notation. As usual,
we work in the center of mass frame. By a, we denote a two-cluster decomposi-
tion, ie. a = {(i,j),k} with {i,j,k} = {1,2,3}. We use Jacobi coordinates to
describe the positions of the particles. Let m;, i = 1, 2, 3 be the masses of the
particles. For a = {(i, ), k} we set

m;x; + m;x

x*:=x;—x; and y,:= x,‘—ﬁ s (5.18)
where x?* describes the relative position in the pair (i, j), while y, is the position
of the third particle relative to the center of mass of the pair. We write

p*i= —i and gq,:= —i (5.19)

ox® Y,
for the corresponding momentum operators. The reduced mass of the pair and
the third particle are given by

my(m; + m;)

pt = m;m,
m; + m; +m,

= and v, :=

(5.20)
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respectively. Defining

1 1
a._ ay2 — 2
hg: 2u® (p*)* and  ko,: 2, (9.)% , (5.21)
we have
HO = h?) + kOa ’ (522)

where we used the symbols p,, h3, etc. in (5.21) as operators on L%(R?*,d"x*d"y,)
with the obvious understanding. As usual, we denote the internal potential by
V2 (this is the interaction between the particles in the pair). We set

h*:=hi + V* and (5.23)
H(@):=Hy, + V* . (5.24)

It seems reasonable that the dynamics of a state which is asymptotically free
is properly described by the free time evolution exp(—iH,t), for large (resp. small
negative) t. However, if one particle moves freely while the other two are bound
together, exp(—iHyt) is obviously not the right description of the asymptotic
behavior of the corresponding state. Rather, exp[ —iH(x)t] should play the role
of exp(—iHyt). Note that exp[ —iH(a)t] actually gives a simple comparison
dynamics for configurations for which the pair in a is in a bound state. Indeed,
if Ey is the bound state energy and P, the projector on the corresponding
eigenspace for the pair, then

e—iﬂ(a)lpo = e—iEole—iko.lPO X

This leads to the definition of a set of wave operators, each of which is expected
to give the correct asymptotic behavior of states in a suitable subspace

Q% = s-lime'fte~ifot | (5.25)
13w
the range of which consists of configurations of three asymptotically free parti-
cles, and

Q% = lim e"fe H@p (p7) (5.26)

13w
[P,(h*) denotes the projection onto the point subspace H,,,(h®) of h*]. The range
of those operators are given by states, with the particles in the pair (of a)
asymptotically in a bound state and the third particle moving asymptotically
free. We used P,(h%) in (5.26) to single out only states for which the pair actually
is in a bound state asymptotically. The dynamics exp[ —itH(x)] does, of course,
describe also configurations with three asymptotically free particles correctly. It
is, however, only the range of P,(h®) where this dynamics is particularly simple.



5.7 Asymptotic Completeness in the Three-Body Case 109

We say that asymptotic completeness holds, if
H.n(H) = RanQ° & (@ Ran .Q“i)

=Ran? @ ((—D Ran Q‘L) . (5.27)

In other words, any state is a superposition of the following types of states: (1)
bound states; (2) a state with asymptotically two particles in a bound state and
the other one moving freely; (3) a state with three asymptotically free particles.
Using the asymptotic completeness of two-body systems, it is easy to see that
asymptotic completeness of the three-body system is equivalent to:
For any y e H_,,,, and ¢ > 0, there is a 7 large enough such that

€T 1Y = Yo(1) + Y (1)

with the following, uniformly in ¢t > 0:
€™ — e Ho)yo(r)| <& (5.28)
™" — e @)y, (1)) <& (529

and a similar decomposition for the past. Knowing this one splits y,(t) into
P,(h*)Y,(7) and P,(h*)y,(1). Then (5.29) says that P,(h®)y,(r)e RanQ22, while
one uses the asymptotic completeness of the two-body system to show that
P.(h*)y,(tr)eRan 2°.

In the following, we will assume, for simplicity, that the V; are continuously
differentiable functions satisfying

(1) (1 + [x])***V,;(x) is bounded, and
(2) x-PV(x) —»0as |x| = o0.

However, Enss’ proof works for a larger class of potentials.

In the two-body case, we restricted our considerations to those states with
energy E between 0 < a < E < b < o0, eventually sending a to zero and b to
infinity. The upper cut-off was for mathematical convenience, while the lower
cut-off had the physical reason that particles with energy near to zero may travel
extremely slowly, thus making problems for many estimates.

In the three-body case, we are faced with a new set of “trouble-makers”,
namely states with energy around thresholds. Recall that thresholds are eigen-
values of subsystems (Sect. 3.2). It is known (see Theorem 4.19 or Reed and Simon
1V, XI11.58 [295]) that the operators h* have no positive eigenvalues. Denote by
e the nonzero eigenvalues of h? in increasing order. The e? can accumulate at
most at zero. The set of thresholds T is given by T = {ef} U {0}.

It might happen that the pair in a is in a bound state with energy e?, or has
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energy almost e, while the third particle is traveling with very small velocity
with respect to the pair. Those states obviously cause the same—if not a more
difficult—problem as the states with small energy in the two-body case.

For a, b > 0, let us define

A = A(a,b):= {E€ER|d(E,T) > a,E < b} ,

where d(x, A) denotes the distance of the point x from the set A.
It is clear that

U Ala,b)isdenseinR ,

a,b>0

and thus the set of states i, with y = F(H € A(a, b))y, is dense in L? if a, b run
through R*. States obeying ¢ = F(HeA(a,b))P.(H)Y have the following
property: If two particles are in a bound state, then the third particle has
kinetic energy at least a with respect to the pair, provided it is far enough
separated.

The strategy of the proof will be the following: We define H, := H_.(H) n
(. RanQ*)*. We then show that any y € H, such that ¢ = F(H e A(a, b))y,
a, b > 0 arbitrary belongs to Ran 2°.

One of the crucial observations of Enss’ three-body paper is the following
remarkable proposition which we will not prove here:

Proposition 5.12. Suppose € H, and ¢ = F(H € A(a, b))y. Then for any a
T
4 1 a —iHt
lim = [ IF(1x"] < p)e™#'y|| =0 .
T—x T )

This proposition tells us that for the states under consideration, any two of the
particles have to separate from each other in the time mean. This proposition
has much in common with the RAGE theorems we discussed in Sect. 5.4. Note,
however, that the assertion of the proposition is definitely not true on the whole
of H.! Proposition 5.12 indeed expresses our physical intuition. If, for a state y,
it is not true that asymptotically two particles are in a bound state and the third
one moves freely (¢ L £2%), and if, furthermore, one particle has strictly positive
kinetic energy with respect to the pair of the two others, then all the particles
will be separated from each other in the time mean.

Itis now easy to obtain an analog of Theorem 5.9 (i) and (ii) for three particles.

Let us define

X% = u®|x%? + v,ly,)* and (5.30)
A

HP X"+ x*p* + 4, Vo + Vo' qa) - (531



5.7 Asymptotic Completeness in the Three-Body Case [A0]
Proposition 5.13. For fe C(R) and ¢ e H,
X 2
i 1((*2) )o - st
A
i 1(22)o - satne

Proof. [Sketch of (ii)]. As in the two-body case (Theorem 5.9), we have (omitting
domain questions)

AW _A Ly
== +2H+Z t!W(s)ds (532)

with W? = =2V?* — xp V2
However, this time we cannot use the RAGE theorem to prove that the third
term in the right-hand side of (5.32) goes to zero, because W* has no chance to
be compact in the three-body case, even if sandwiched between resolvents.
However, by the decay assumptions on V%, we have

IWF(Ix*| < p)ll =0 asp— o

while we can control

t
! [ Hw=F(1x) > p)e™H ds
¢ V]
by Proposition 5.12. [

An analog of Theorem 5.9 (iii) holds in a weak form:

Proposition 5.14. For pe H,~n D(H,) with ¢ = F(H € A(a, b))o, there exists a
sequence t, — oo such that

Ho(r,)¢ = Ho .

Proof (Sketch). By the assumptions on the potentials V* we know that, for any
sequence p, — 0,

H (Ho — H) H F(1x*| > p,) | =0 .

Proposition 5.12 enables us to choose a sequence 1, — oo, such that

S IF(Ix?] < py)e Hengp]| =0 .
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Thus,

”eiguunoe-it,,"(p — H(p” < ” (HO — H)nF(Ixﬂ > pn)

lloll

+ Z VLI F(1x®) < p")e'i"'n(p”

converges to zero. []

Theorem 5.9 is a very powerful tool for the investigation of two-body systems.

As they stand, the three-body analogs (Propositions 5.13 and 5.14) give much
less information, since they do not say much about x?, y,. However, they enable
us to prove the following proposition which turns out to be a cornerstone of the
asymptotic completeness result:

Proposition 5.15. For e H, with y = F(H € A(a, b))y, there exists a sequence
7, — o0, such that

(i) Forany feCy(R"):
) rfems
[{(2) - s

(ii) For any ge CJ(R)

[o(5(Z)) - ot ]erev | -

Proof (Sketch). We only indicate the main idea of the proof of (i).
Neglecting domain questions, we formally have

[exe) o T 1 [t 2
2;4“[ T, _p(t")] +2_v,[ T, _q'(t")]

Xz(t..) _A(,)

‘—»0 and

-0.

= HO( n)

Il tll

60_’90 HO(T") + H — 2H bb_’"
Therefore, both

Hix*(t,)

) pee), and

£0 to zero.
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It is not difficult to turn the above formal calculations into a rigorous proof,
using resolvents and the Stone-Weierstrass gavotte (see Appendix to Chap.
3. O

We now state the asymptotic completeness result of Enss, and say a few words
about the proof.

Theorem 5.16. For three-body Hamiltonians, asymptotic completeness holds.

Remark. Although we require the conditions (i) and (ii) above for the potentials,
Enss’ proof works under weaker assumptions.

Enss distinguishes the case where the energy of the pair, (h%), is negative or
small positive, and the case where the energy of the pair is positive and bounded
away from zero.

For the first case, he proves that the (full) time evolution is well approximated
by exp[ —itH(2)], thus showing (5.29) for those states.

For the second case, Enss proves that the time evolution is approximately
given by exp(—itH,), showing (5.28) for those states. The proof makes use of the
asymptotic of observables as well as of Proposition 5.12.

During the preparation of this manuscript, I.M. Sigal and A. Soffer [314]
have announced a proof of N-body asymptotic completeness under fairly general
conditions.
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In this chapter, we discuss only a few aspects of Schrodinger operators with
magnetic fields. We refer the reader to the review of Hunziker [172] for a more
extensive survey and a more complete list of references.

The dimension (of the configuration space) here will alwaysbev =2 orv = 3.
We will actually discuss two types of operators, i.e., the usual magnetic Hamil-
tonian (see Sect. 1.3), H(a, V):=(—iV + a)®> + V, which is defined on H :=
L*(R*) and the Pauli Hamiltonian, which describes particles with spin (we only
consider the spin-} case [182, p. 249])

H@V):=H@, V)l +6-B (6.1

defined on H := L*(R") ® C2?, where 1 is the unit 2 x 2-matrix and ¢ is the
matrix-vector ¢ := (d,,0,,0,), with

L (R )

and B is the magnetic field associated with the vector potential a,i.e. ¥ x a = B.

Note that we always require assumptions on V and a which are stronger than
the ones necessary for H(a, V) and H(a, V) to be essentially self-adjoint (on a
suitable subspace; see Chap. 1). In the whole chapter, we disregard domain
questions; the closure of the operators on C{ is always intended.

We will first discuss gauge invariance very briefly for smooth a. Then we
prove a result which says that if B — 0 at oo and V is short range in some sense,
then both operators H and A have essential spectrum = [0, ). This is not a
completely trivial result, because if B— 0 at oo only as r *[a€(0, 1)], then the
corresponding @ must go to co. But this does not change the essential spectrum.

We will use this fact to construct a rather striking example of a Hamiltonian
with dense pure point spectrum, a type of spectrum which is known for random
potential Hamiltonians (but there seems to be no connection).

In the third section, we give a set-up for supersymmetry (in a very restricted
sense) and give some examples. Then we present a result of Aharonov and Casher
which gives the number of zero energy eigenstates. This implies an index theorem,
which we might understand as a physical example of the Atiyah-Singer index
theorem on an unbounded space [57]. Section 6.5 contains a theorem of Iwa-
tsuka yielding certain two-dimensional H(a) with purely absolutely continuous
spectrum. In the last section, we give an introduction to other phenomena of
Schrodinger operators with magnetic fields.
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Before we start with Sect. 6.1, we introduce a notation which allows us to
write A in a different, more convenient way. First, we look at the case of v = 3
dimensions. Consider the vector operator

0 := (0,,0,,0,), where O, are operators in L*(R?)

(je{192’3}) .
Then we denote

3
@:=0a=) O .
j=1
Now we have
3
0",6' = 6“‘0 + | z 8,‘,,,,0’,,, N (6.2)
m=1

where ¢, is the usual sign of permutations of (k, I, m), i.e., 0 if any two are equal,
1 for even, and —1 for odd permutations of (1,2, 3). Then using (6.2), an easy
calculation yields

3 3
9:=%0M+i ¥ 0.[0.0] .

=1 m=
(Exim=1)

Il -

If we use the relations

[0 ¢
[(pk - ak)a(pl - al)] = _|<—a, - a—gah) N

0x,
(note p, := —i0/dx,) we get, in particular
(’-—4*=(pp-a’1+0a B, (6.3)

which gives
Ha,V)=(p— 4)* + V1 (6.4)

(we will drop the 1 in the following). The case of v = 2 dimensions can always
be understood as a special case of the 3-dimensional one, in the sense that B has
a constant direction, and one looks only at the motion projected on the ortho-
gonal plane. Therefore, all the above relations are formally still true for the
two-component vector operators. There are some simplifications, however, i.e.,
é é
Vxa=_—a —-—a, =B
ox, 2 oxy !
is now a scalar field (since it has only one component) and (6.1) and (6.3) reduce
to
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A@,V):= H@a, V)l + 0,B and 6.1)
P-#’=(p—0a’t+03B, (6.3)

respectively. A one-component B as in (6.3') is a real simplification, since then
(p—a*+a-B+V

is just a direct sum of the pair of operators

(p—al+tB+V.

6.1 Gauge Invariance and the Essential Spectrum

If ais smooth, then gauge invariance is quite simple (there are subtleties, however,
if a is nonsmooth), namely if we have two different vector potentials @, and a,,
where both of them are smooth and have the same curl, i.e., if a,, a, e (C*(R"))"
and

Vxa =V xa,=B then
Vx(a—a)=0,
which means that there is a (gauge-) function, A€ C*(R"), such that
a, —a,=Vi.
This gives the gauge invariance of the “magnetic momentum”
e (—iV —a,)e"* = (—-iV —a,) ,
which implies
¢'*H(a,,V)e * = H(a,,V) .

This expresses the important physical fact that “physics” depends only on B. So,
if one has different vector potentials with the same B, then the operators are
unitarily equivalent under a multiplication operator. Thus, not only spectral
properties are the same, but also various other properties which are described
by functions of the x-variable.

In the following, we will see that, in particular, the essential spectrum of the
Hamiltonian is much more stable than general spectral properties. That is, we
will show that the essential spectrum is always the positive real axis if B decays
at oo, provided V (depending on x) is not too weird. The first rigorous proof of
this result is due to Miller (see Miller and Simon [244]). There are improvements
for nonsmooth magnetic potentials due to Leinfelder [228].

The crucial idea of the proof is that one “adapts™ the operator to a chosen
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Weyl sequence by choosing a suitable gauge which transforms to a vector
potential which is suitably small in the region where the Weyl vector lives. This
is possible because B — 0 at co.

Theorem 6.1. Let v = 2, 3. Suppose ae(C*(R"))" and | B(x)| —= 0 as | x| = oo, and
suppose that V is Hy-compact. Then a.,,(H(a, V)) = o(H(a, V)) = [0, o).
Proof:
Step 1. We reduce the problem to showing that g (H(a,0)) = [0, o0). In the
spinless case, we know by the diamagnetic inequality (1.8)

le™H@P| < e™Mo|g|, teR, peH
that

[V(H(@,0) + 1) | < |VI(Ho + )70l (6.5)

(see [22, p. 851]). Thus, V is also H(a,0)-compact (see [285, 88]). Therefore,
H(a, V) and H(a,0) have the same essential spectrum [295, p. 113]. In the
“spin”-case, H(a,0), one uses the fact that |a- B| - 0 as |x| = . So ¢ B is also
an H(a, 0)-compact perturbation.

Step 2. Since H(a,0) > 0, we know that o(H(a,0)) < [0, ).

Step 3. Weyl's theorem in a slightly strengthened version: Suppose A4 is self-
adjoint and A > 0. If there is an orthonormal sequence, {{,},.n S H such that
¥, = 0, (n —» o) weakly and ||(4 + 1)"(4 — 2)y, || = 0, (n = ©), then z € g,,(A).
This can be seen by the spectral mapping theorem, i.e., 0€a,,,((4 + 1)"(4 — 2))
if and only if z € g,,,(A4), and by applying the usual Weyl criterion to the operator
(A + 1)7Y(4 - 2)([292, p. 237)).

Step 4. We show that there is a sequence {x,},.n S R® such that |x,| — oo,
(n — o0) and a sequence of vector potentials, {a,},.n With

V xa,=B (neN) such that
sup la,(x)] <cn™' (neN) (6.6)

lx-x,l<n
for a suitable ¢ > 0.
Proof. (Step 4). Let ne N, choose x, € R” such that
sup |B(x)| <cn”?,

Ix-x,I<n

for a suitable ¢ which is possible due to the decay of B. If v = 2, choose

a,(x) = (o. i B, y)dt) :
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where x = (x, y) and x,, = (x,, y,), and if v = 3, choose a,(x) = (t,, S,,0) where

y z
t(x):= — [ By(x,1,0)dt + | By(x,y,s)ds
Yn Zn

Sa(x) == — j' B,(x,y,t)dt ,

where x = (x, y,2) and x, = (x,, yn. 2,)- Now using V- B = 0, one checks easily
that ¥ x a, = B. Now (6.6) follows just by the estimate we assumed for B in the
ball {|x — x,| < n}.

Step 5. Given ke R®, we construct a sequence {{,},.n S H, for which Step 3
applies, i.e.,

I(H(@) + 1)"'(H(a@) — k*)y,| =0, (n— o) . (6.7)

First, note thatsince foranyne N, ¥ x (a — a,) = 0, there exists a gauge function
A,€ C(R") such that

H(a,0) = ¢*H(a,,0)e""*~ .

Now select a subsequence from {x,} in Step 4 (also denoted by {x,}) such that
|x, — x,-1] > 2n. Choose a g€ C3(R") such that

L1 oifx <3 )
g(‘)_{o ifx>1 *R

with |g|l, = 1, denote

1
gn(x) == 2,9 (;' (x — x,.)) ,

where a,-is chosen so ||g,/l, = 1 and
Yn(x) 1= e etk xg (x)

Then {,} . is obviously an orthonormal sequence in L(R") which goes weakly
to 0. Thus, we have only to show (6.7). Note that

I[H(@ + 117'[H(a) — &*1y |l = |[H(a,) + 117" [H(a,) — k*14, .
where ¢,(x) := exp(ik - x)g,(x). Now we insert the identity

H(a,) = Hy + 2a? + (iV — a,)-a, + ia, V
and use

(Ho — k?)¢,(x) = €* *Hog,(x) + 2ie* *k -V g,(x)
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to get

I[H(a,) + 117 [H(a,) — k*18,|l < |Hog,ll + 21k|[17gall
+ ”[H(an) + l]-l(—|7— an)” ”angn”
+ 2|(a7 + kap)g,|l + lla, Vgl .

The first two terms on the R.H.S. above go to 0 as n — oc, since ||Vg,]l <cl/n
and |44, < c1/n? for suitable ¢ > 0, and the last three terms go to 0 because
of (7.6) in Step 4. Note that [H(a,) + 1]7'(—i¥ — a,) is a vector of bounded
operators.

Thus, we have shown that, for any k% e R*, we have k* e g,,(H(a, 0)) by Step 3,
i.e.. [0, ) € a.,(H(a,0)), which concludes the proof of the theorem. O

6.2 A Schridinger Operator with Dense Point Spectrum

We will give next an example of a magnetic Schrodinger operator which has
rather surprising spectral properties. Depending on the decay of the magnetic
field B we can show that the operator has purely absolutely continuous spectrum,
dense point spectrum in [0, c0), or it has a “mobility edge”, i.e., thereisad > 0
such that the spectrum is a dense point spectrum in [0,d] and absolutely
continuous in [d, oc).

Theorem 6.2 (Miller and Simon [244]). Let v = 2, and consider the Hamiltonian

y 2 X 2
"'=<”‘_”(l+pv> +<”’”(l+p)¥> ’

where ¢ > 0, p := |x| = (x? + y?)"? and y€(0, 0). Then we have the following
cases:

(@) if y > 1, then o(H) = 0,.(H) = [0, ), 7, = 6, = ¢,

(b) if y < 1, then a(H) = a,,(H) = [0, o), a =0,=¢,

(c) if y =1, then o,,(H) [0,c?], a,.(H) = [c?, ), and o, (H) = ¢, i.e. c? is a
“mobility edge.”

Proof. First of all, we remark that

2l e
ox ey (L+py (Lt

B(x) =

where

_ (o ex
"““""”‘( (T+pyQ1 +m") '
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Thus, by Theorem 6.1, we have

o(H) = 6.(H) =[0,x) . (6.8)
Now, if we expand H, we get

c?p? 2c

H=-4+ + L
+p% (A+py—

where L. := —i(x(¢/Cy) — y(¢/x)) is the operator of the angular momentum
(pointing into the “z-direction”). This means that H commutes with rotations (in
the plane R?), since all terms are rotational invariant. We can express this by

[L.,H]=0.

Therefore, we can write the Hilbert space H = L?(R?) as a direct sum of eigen-
spaces of L.. L. has the eigenvalues me {0, + 1, +2,...} (see [182, p. 231]), and
if we restrict H to the eigenspace with eigenvalue m,i.e., {p e H|L.p = m}, we get

c2p? N 2mc
+p¥ (L +py°

H,:=HNL,=m)= -4+

But this is just a Schrodinger operator without magnetic field with the potential

. ctp? N 2me
"+ p)T T (L4p)

Now we consider

Case (a). If y > 1, then V,, is a short-range potential, and it is well known [305,
226] that H,, only has a.c. spectrum, and by (6.8), we have the assertion of case (a).

Case (b). If y < 1, then V,(x) = oo as |x| = o0. So H,,, and therefore also H, has
pure point spectrum [295, Theorem XII1.16]. But by (6.8), this must be neces-
sarily dense in [0, o0).

Case (c). If y = 1, then V,, — c? is a long-range potential going to 0 as |x| = o0.
Thus, H,, (and therefore H) has absolutely continuous spectrum in [¢2, oc) and
pure point spectrum in [0, ¢2], which must be dense because of (6.8). [

Remark. We note that in the case y = 0, we have a constant magnetic field
(orthogonal to the (x, y)-plane). It is a classical result that one has point spectrum
in this case. The eigenfunctions correspond to closed orbits, the so-called Landau
orbits (see [224, Sect. 111]).

6.3 Supersymmetry (in 0-Space Dimensions)

We discuss now a simple abstract set-up which has, at first sight, nothing to do
with Schrodinger operators (it is actually more related to high energy physics).
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But we will see that there are quite interesting Schrodinger operator examples
having this structure.

The structure is a specialization of supersymmetry from field theory contexts.
There one introduces operators Q,,,,, where u is a “vector index™, a a “spin index”,
and « an internal index. The Q’s transform under Lorentz transformation by

U(A)QuaaU(A)_l = Z"AvyA(A)avab: ’

where A(A) is a spinor representation of the Lorentz group, and obey “com-
mutation” relations

{Qua:n vaﬁ} = 2guvdab6¢ﬁpv ’

where {4, B} :== AB + BA, g is the metric tensor, 4 a bi-linear form in spinor
indices transforming as a scalar, and P, is the four momentum.

This extension of Lorentz invariance is of especial interest since the Q’s link
Bose and Fermi states. There is an especially attractive supersymmetry version
of gravity called N = 8 supergravity. These are areas of intense current interest,
although they have no experimental verification. See [369] for further discussion.

Below we specialize to zero-space dimensions. In terms of the operators P,
Q discussed below, the operators Q, = Q, @, = iQP obey

Q: = Q:n {Q:’Qﬁ} = 26«#” .

This picture of zero-dimensional supersymmetry was emphasized especially by
Witten [370]; see Chap. 11.

Consider the Hilbert space H and let ‘and Q be self-adjoint, and P be a
bounded self-adjoint operator in H such that

H=0%*>0, (6.9a)
P2 =1 (6.9b)
{O,P}:=QP+PQ=0. (6.9¢c)

Then we say the system (H, P, Q) has supersymmetry. Since P is self-adjoint and
P? = 1, it only has the eigenvalues 1, — 1. We denote the associated eigenspaces
by

H;:= {peH|Pp = — ¢}
H,:= {peH|Py = ¢}

and we have the decomposition
H=H;®H, .

We call the vectors in H, the fermionic states, and the vectors in H, the bosonic
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states. Using this decomposition, we can write

1, 0
”‘(o -11,)’

where 1, and 1, are the unit operators in H, and Hq, respectively, but in the
following, we drop 1; and 1, and write

P=(o -1):

Since P and Q anti-commute and Q is self-adjoint, Q has always the form

0o A
Q=<A O)' (6.10)

where A is an operator which maps H, into H,, and its adjoint A* maps H; into
H,. This implies that Q “flips fermionic and bosonic states.” i.e.,

Q:H,-H, and Q:H,—H;.

Remark. As we will see in Example 1a below, we might call 4 the “annihilation
operator” and A* the “creation operator,” concepts which are well-known for
the harmonic oscillator [292, p. 142; 182, p. 211]. From (6.9) and the above, we
have the representation

A*4 0
H=( . AA‘). 6.11)

Thus, P commutes with H, and H,; and H, are invariant under H.
We now define a “supersymmetric” index of H which has some remarkable

stability properties.
Definition:

ind,(H) := dim(Ker(H ' H,)) — dim(Ker(H ' H)) .

Remark. ind, should not be mixed up with the usual index one defines for a
semi-Fredholm operator F, i.e.,

ind(F) := dim(Ker F) — dim(Ker F*) ,
(see [196, p. 230]). But there is a connection between these two conceptfs, i.e.,

ind,(H) = ind(A)

where A4 is the “annihilation™ operator defined by (6.10). Now we show a funda-
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mental property of supersymmetric systems, which says that non-zero eigen-
values have the same number of bosonic and fermionic eigenstates.

Theorem 6.3. If the system (H, P, Q) has supersymmetry, then for any bounded
open set 2 < (0, o) we have

dim(Eq(H)} H,) = dim(Eg(H)! Hy) ,

where Eg(H) is the spectral projector of H on Q.

Proof. Denote by P, , the projectors on H, and H; respectively, and by
Ej := Eq(H)P, .

Note by the above discussion that we know that P, and therefore also P,,
commutes with Eg(H). Since Q anti-commutes with P, and Q is bounded on
Eqo(H)H, we get

QE; = EGQ . 6.12)
Now, because 0¢ 2, Q is invertible on Eg(H)H, (6.12) implies that

dim(Eg) = dim(Eg) .
But dim(Eqo(H)| H,) = dim(Eg), and dim(Eg(H)| H;) = dim(Eg), and therefore

we have the theorem. [J
Now we discuss some examples.

Example 0. Laplace-Beltrami operator on forms on compact manifolds. This will
be discussed in Chap. 11.

Example 1 (Deift [77]). Let H = L*(R) ® C2, and q be a polynomial in x.
Set A := (d/dx) + q(x), and thus (on the same domain), 4A* = —d/dx + q(x).
Then we have, with (6.10),

Note that (on suitable domains)

dZ
A*A= ——— +-¢%(x) — q'(
a2 +-9*(x) — q'(x) and

dz
AA* = ~ +q%(x) + q'(x) .
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Thus,

H:=Q*=

and the system (H, P, Q) is supersymmetric.

Example 1a (Harmonic Oscillator). Set g(x) = x in Example 1. Then A*A4 =
—(d?/dx?) + q*(x) — 1 is the (shifted) harmonic oscillator. 4 is known as the
“annihilation” operator and A* as the “creation” operator [ 182, p. 211]. We have

AA* = A%A + 2 (6.13)

and, therefore
dim(E 4(A* A)) = dim(E,_,(AA*)) for 4 < (0, ) . (6.14)

Using the fact that o(H) = 6(A* A) U 6(AA*), we can almost read off the spec-
trum H: Since A*A > 0, we know by (6.13) that AA* > 2, thus 6(AA*) > 2. By
(6.14), we know there is no spectrum of H in (0, 2), and therefore no spectrum in
(2n,2(n + 1)), ne N. Thus, H can only have spectrum in the set {2,4,6,...}.

Example 1b (Herbst and Simon [158]). Set q(x) = x + gx? in Example 1, where
g€ [0, o) is a coupling constant. Then

@*(x) + @'(x) = x2(1 + gx)2 F (1 + 29x) ,

which means that A*4 and AA4* have almost the same potentials. They are
actually equivalent by “parity,” i.e.,

A*A = U(AA*)U™' , where
1
U(p(.t):=(p(—x—£—’>, peL*R) .

If g # 0, then ind,(H) = 0, since H! H; and H| H,, are unitarily equivalent. This
means, in physical terms, that the only way to get new eigenvalues at 0 is for a
pair of eigenvalues, a fermion one and a boson one to come down. But if g = 0,
ind,(H) = 1, since H'H; = AA* > 2, HIH, = A*A and dim(Ker(4*A4)) = 1.
Physically this can be understood as the fermionic eigenstate being localized
farther and farther out, and vanishing eventually if g — 0. This example was
invented in [158], because the ground state eigenvalue goes to zero exponentially
ing 2asg—0.

Our last example states a supersymmetry result for magnetic fields in two
dimensions. We state it as a theorem.
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Theorem 6.4. Let v = 2 and ae(C'(R?))?, such that B=F x a. Then(p — a)> + B
and (p — a)? — B have the same spectrum except perhaps at 0.

Proof. Let a = (a,,a,), ¢ = (6,,4,), and choose

2
Q=I’—¢=;(Pi—a.‘)¢i

p= 1 0
0 -1/)°
Then, by (6.3')

H=H(a0)=Q2=<(p_a)z+B 0 )

0 (p—ai-B

Since P = a5, we have {Q, P} = 0. Thus, the system (A(a,0),P,Q) is supersym-
metric, which implies, by Theorem 6.3, that H} H, = (p — a)> + Band H! H, =
(p— a)?> — B have the same spectrum except at0. [

We note that this is a result which is not true in 3 dimensions with non-
constant B.

6.4 The Aharonov-Casher Result on Zero Energy Eigenstates

It is an almost classical piece of folklore that the Hamiltonians of constant
magnetic fields, restricted to a finite region in the plane orthogonal to the field,
have eigenvalues with finite degeneracy (see, for example, [224, Sect. 111]). If the
field is extended to the whole plane, there is an infinite degeneracy. This is also
true for some non-constant fields (see [26] for rigorous arguments in the case of
polynomial fields).

In this section, we will discuss two-dimensional Pauli-Hamiltonians with
non-constant B’s. We know from Theorem 6.4 that the two components of
Ala, 0), i.e. (p — @)? + B and (p — a)*> — B have the same spectrum except at 0.
Here we will discuss a result d