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Almost Periodic Schr6dinger Operators: 
A Review* 
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California 91125 

We review the recent rigorous literature on the one-dimensional Schr/Sdinger 
equation, H = - d Z / d x  z + V(x )  with V(x)  almost periodic and the discrete ( =  
tight binding) analog, i.e., the doubly infinite Jacobi matrix, hij = 8i, j+ 1 + 8i, j - t + 
~3i, j with V, almost periodic on the integers. Two themes dominate. The first is that 
the gaps in the spectrum tend to be dense, so that the spectrum is a Cantor set. We 
describe intuitions for this from the point of view of where gaps open, and from the 
point of view of anomalous long time behavior. We give a theorem of Avron and 
Simon, Chulaevsky, and Moser that for a generic sequence with 5"la~l < oo, the 
cont inuum operator with V(x)  = Y~a~cos(x/2 ~) has a Cantor spectrum_ The second 
theme involves unusual  spectral types that tend to occur. We describe recurrent 
absolutely continuous spectrum, and show it occurs in some examples of the type 
just  discussed. We give an intuition for dense point spectrum to occur, and some 
theorems on the occurrence of point spectrum. We sketch the proof of Avron and 
Simon, that for the discrete case with V,, = Xcos(2~ran + 0), if )t > 2 and a is a 
Liouville number,  then for a_e. 0, h has purely singular continuous spectrum. 

1. INTRODUCTION 

In many years, flu sweeps the world. The actual strain varies from year to 
year; some years it has been Hong Kong flu, some years swine flu. In 1981, 
it was the almost periodic flu! There has been recent work on Schr6dinger's 
operators with almost periodic potentials, by Avron and Simon [1-5], 
Bellisard and Testard [6, 7], Bellisard et al. [8], Chulaevsky [9], Johnson [10], 
Moser [11], Johnson and Moser [12], and Sarnak [13]. It has been an 
international outbreak; the above includes several Americans and French- 
men, and an Israeli, a Russian, a German, and a South African. As with 
other strains of flu, there were earlier isolated outbreaks: We mention 
important earlier nonrigorous work by Az'bel [14], Aubry [15], Aubry and 

*Based, in part, on a talk at the Vlth  International Conference on Mathematical Physics, 
Berlin, August  11-20, 1981 
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Andr6 [16], Hofstader [17], and Sokolov [181; and rigorous results by 
Gordon [19], see Section 7 and by Dinaburg and Sinai [2], see Section 3, 
extended by Russmann [21]. Moreover, as we shall explain, a.p. potentials 
can be viewed as a kind of ergodic random potential, so that work of 
Benderskii and Pasteur [22] (extended by Shubin [23]), Pasteur [24, 25], 
Kunz and Soulliard [26] and Kirsch-Martinelli [27] become relevant. (But 
the deeper results of Goldshade, Molchanov, and Pasteur [28] are not 
applicable, and seem to require at least "mixing" randomness.) 

We consider two classes of operators: 

_ d  2 
- -  + V ( x )  on L 2 ( -  oc, oc) 
dx 2 

with V a.p. on ( -  oo, oo) and the discrete analog: 

h 0 + V o n  12, 

( h 0 ) i j  = 8i, j+ l  + 8 i+ l , j ,  (1) 

( V ) , j  = V(j) i,j, (2) 

with V a.p. on Z (the -26~j one would like to put in h 0 has been suppressed 
since it is just a multiple of the identity). Below, we review the definition 
and some properties of a.p. functions; think of them as uniform limits of 
finite linear combinations of unitary exponentials e ekx. 

Two main themes concern us here: 
(1) There is a tendency for the spectrum to be a Cantor set, i.e., a closed 

set with no isolated points and whose complement is dense. 
(2) Normally, in the strong coupling regime there is some dense point 

spectrum. This will only be true if the frequency module (defined below) has 
typical diophantine properties (as specified below). If the ratios of genera- 
tors of the frequency module are Liouville numbers, then there tends to be 
singular continuous spectrum instead. 

I was careful to use the words " t endency"  and "normal"  because these 
things are at best generic results. Just as there are very special periodic 
potentials on ( -  oo, oo) whose associated Schr6dinger operator has a spec- 
trum with only finitely many gaps [29, 30], so there are a.p, potentials [30] 
with the same property. But just as a generic periodic potential has all its 
gaps open [31], I believe that in a sense to be made precise in Section 4, 
generic a.p. potentials have a dense set of gaps open. 

I should emphasize that these properties have not yet been proven in any 
great generality; thus far, we only have results for some rather special 
examples, as I shall describe in this review. 

To give a spectacular example, consider the l 2 operator with 

V ( j )  = 3 cos(2Traj), 
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where c~ is a parameter. We believe the following is the case. [0, 1] is the 
union of three disjoint sets S~, S 2, S 3. S 1 is the rationals, and when a ~ S1, 
o(h o + V) is an interval with finitely many subintervals removed, and the 
spectral measures are absolutely continuous. S 2 is an uncountable set of 
measure zero, and if c~ ~ $2, then all spectral measures are singular continu- 
ous, and o(h o + V) is a Cantor set, albeit one which locally has strictly 
positive Lebesque measure. If a ~ S 3 (a set of full measure), then there is 
only a point spectrum which locally has strictly positive Lebesque measures. 
Thus, as an innocent looking parameter is varied in a simple Hamiltonian, 
rather spectacular spectral fireworks take place. 

Actually, this potential is one of the few on which there are lots of results. 
More precisely, consider the family with two added parameters, X and 0: 

V ( j )  = ~tcos(Z~raj + 0). 

The quoted result for S~ is true for all X, 0 and is standard periodic 
SchriSdinger operator theory (see, e.g., [32, 33]). In Section 10, we will see [5] 
that if ~, > 2, if a is a Liouville number, then for all 0, h 0 + V has only 
singular continuous spectral measures. In Section 9, we will see [7] that if 
has typical Diophantine properties, then for X large, we have at least some 
point spectrum (for some 0) whose closure is locally uncountable. 

Next, a brief summary of the notion of a.p. function, etc. Given a 
function, f ,  on ( -  oc, m), we let f t (x )  =- f ( x  - t) be a translate of f .  A 
continuous function, f ,  is called almost periodic (a.p.) if and only if 
( f r ) t ~ ( - ~ , ~  has a compact closure, F, in the uniform norm. F (with the 
uniform topology) can be given the structure of a topological group in 
exactly one way, so that t ~ f, is a continuous homomorphism of R into F. 
Since R ~ F, by duality I' ~ k = R, so there is a distinguished subgroup 
of R, I', called the frequency module o f f .  By the Peter-Weyl Theorem on F, 
f is a uniform limit of linear combinations of e 2'~i"~ with a ~ 1". Automati- 
cally, I" is countable. 

A good example is a quasiperiodic functton, i.e., f ( x )  = g ( a l x , . . . ,  a ,x) ,  
where g is a function on N ", of period 1 in each variable (i.e., g is essentially 
a function on T ", the n toms). If the a 's  are rationally independent, and g 
has enough nonzero Fourier coefficients (to be precise, (kl~(k)  ~ 0) must 
generate Z ' ) ,  then F is naturally isomorphic to T" under Oi ~ T" ~ fo~ with 
f,0 (x)  = g(alx  + 01,. . . ,  ~ ,x  + On) and F is generated by a l , . . . ,  %, i.e., 
F = {mla 1 + . . -  + m,a,]m i ~ Z). f is quasiperiodic if and only if [" is 
finitely generated. 

Another class of interest to us is the limit periodic potentials, i.e., functions 
f which are uniform limits of periodic potentials, albeit perhaps with longer 
and longer periods. A good example is 

f ( x )  = ~ a.con(Z~rx/2"); ~]a~] < ~ .  (3) 
tl= 1 
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In this case, I" is the set of dyadic rationals, f is limit periodic if and only if 
f' has the divisor property, i.e., for all a, fi ~ I', there is 7 ~ F with a / y  and 
f i /y  both in Z. 

We say a rational number a has typical Diophantine properties if and only 
if for some C, k and all p, q, we have 

a P[  - k -1  - q  >~Cq (4) 

As the name implies, the set of such a 's  has full measure in R. An N-tuple 
( a t , . . . ,  aN) will be called typically Diophantine if there is C and k with 

n 

m i a  i >~ C m 

for all integers m r a has typical Diophantine properties, if and only if (a, 1) 
is typically Diophantine. 

a is called a Liouville number if it is irrational and (4) fails in the strong 
sense that there is C and there are integers p,,  q, ~ ~z with 

- P-~ <~ Cn q" (5) o/ 

Similar definitions hold for a.p. functions on Z. 
If V is a.p., then rather than consider the single operator, H 0 + V (with 

H o = - d 2 / d x  2 or the h 0 of (2)), we should consider the family H 0 + W as 
W runs through the hull of V. Putting Haar measure on F, we have a 
random set of operators. In this sense, we can think of a.p. potentials as a 
special set of random potentials. The process, x ~ W(x)  is ergodic but not 
(weakly) mixing. Thus, in a certain sense, these are intermediate between 
periodic and random potentials. 

At this point in time, it seems wisest to concentrate on the rather 
surprizing mathematical properties of the a.p. SchrOdinger operators. How- 
ever, we should mention, en passant, some potential applications: 

(1) - d Z / d t  2 + V(t) enters not only in quantum theory but also in the 
linear stability theory of classical mechanics. Thus these ideas may be 
relevant to stability of motion in the presence of several periodic motions 
with incommensurate periods. See [2] for speculations on the rings of 
Saturn. 

(2) As Aubry [15] has emphasized, these ideas may be relevant to 
understanding electron transport in some one dimensional organic mole- 
cules.. 

(3) There exist "solid" alloys AxB, where x appears to vary continuously 
with temperature. If x is irrational, the substrate must be a.p., not periodic. 
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(4) If one puts low-frequency phonons through a solid, to the extent that 
one can use an adiabatic one electron approximation, at any instant the 
distribution of nucleii will be a.p. if the phonon wave number is irrational. 

(5) Similar ideas may describe light propagation through a.p. glass, which 
can probably be made with modern technology [34]. 

(6) One of the prettiest results in the K dV theory is the theorem of 
McKean and Trubowitz [35] that if the initial data is periodic in space, then 
the solution of K dV is a.p. in time. Symmetry suggests one should only 
need the initial data to be a.p. in space. Given the methods of [35], one 
needs to study a.p. Schr/Sdinger operators to attack this problem. 

(7) For reasons I won't go into here, there is a close analogy between a.p. 
Schr6dinger operators and a two dimensional electron in a crystal and 
constant magnetic field with the flux through a unit cell an irrational 
number. 

In Section 2, we present a general result, most of them quite soft, on the 
spectrum of general a.p. Schr6dinger operators. Sections 3-6  discuss Cantor 
spectrum. Two distinct intuitions are described in Sections 3 and 5; Section 
4 expands on Section 3 using the notion of integrated density of states (IDS) 
which plays a role in later developments also. Section 6 gives the one 
existing theorem on the occurrence of Cantor spectrum.* Section 7 proves 
Gordon's theory on the absence of point spectrum in certain cases; this is 
one of the few places we give complex details, in part, because the result is 
not available in English. In Section 8, we discuss an important formula of 
Thouless, which relates the IDS to the Lyaponov index. In Sections 9, 10 we 
discuss some special examples where very suggestive results have been 
found, In the last section, we present some open problems. 

2. SOME GENERAL THEOREMS 

The first two results are very general; they automatically hold also in 
v-dimensions, and are essentially specializations of results on random poten- 
tials (see, e.g., Pasteur [25]); the only difference is that things that hold a.e. 
in the random case, here hold everywhere. 

THEOREM 2.1. The spectrum, o ( H  o + W),  of an a.p. Schr6dinger opera- 
tor is the same for all W in the hull, F, of a fixed a.p. potential V. 

THEOREM 2.2. An a.p. Schr6dinger operator has no discrete spectrum, 
i.e., no isolated eigenvalues of finite multiplicity. 

Since one dimensional second order difference or differential equations 
can have no more than multiplicity two (in fact, by Wronskian arguments at 

*See Note added in proof. 
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most multiplicity one) eigenvalues, we have 

COROLLARY 2.3. A one dimensional a.p.  Schr6dinger operator has no 
isolated points in its spectrum; i.e., its spectrum is a perfect set. 

Another general one dimensional result (Pasteur [25]): 

THEORE~ 2.4 (One dim.). Fix  a real number E and hull I'. Then ( W I E  is 
an eigenvalue of  H o + W; W ~ F) has measure O. 

The next result is due to K_irsch and Martinelli [27]; some related results 
are earlier in Kunz and Soulliard [26]. 

THEOREM 2.5. Let  F be the hull of  an a .p .  function V. Then there exist 
f i xed  closed sets $1, $2, S 3 so that for almost all W operator H = H o + W has 
point spectrum (---- closure of  the set of  eigenvalues) SI, a.c. spectrum S 2 and 
singular continuous spectrum S 3. 

We emphasize the almost in "almost all" above because, unlike Theorems 
2.1 and 2.2, this result is only proven a.e. and is almost surely not true for 
all. Gordon [19] and subsequently Moser [36] and Johnson [37] constructed 
a.p. potentials V with an eigenvalue at i n f sp (H  0 + V). For these examples 
it is surely true that the point spectrum of H o + W is empty for, e.g., 
W ~ F .  

As a simple consequence of Theorems 2.4 and 2.5, one has 

COROLLARY 2.6 (Avron and Simon [5]). The generic point spectrum S 1 is 
locally uncountable, i.e., i f  ?% E Sj,  then Sj A (?% - c, ~o + c) is uncount- 
able for all ~ > O. 

Thus, if S~ ~= ~ ,  it is thick in the sense of [1]. 

3. GAPS AND CANTOR SETS 

To explain the first intuition behind Cantor spectrum, let f be a doubly 
periodic function of the form 

f ( x ,  y ) =  ~7~ a . . . .  e x p [ 2 ~ r i ( n , x  + n2y ) ]  , 
n I , 1"l 2 

where a is real, a _ ,  = a, ,  a n > 0 for all n (this is chosen to avoid certain 
cancellations) and 

lanl ~ C e -  AI,I 

for A, C > 0 (so f is analytic). Let a = p / q  with p, q relatively prime, and 
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let 

V(x)  = f ( x ,  

which is periodic of period q. The usual analysis of periodic potentials (e.g., 
[32, 33]) shows that for ~k small, - d 2 / d x  2 + X V ( x )  will have gaps about the 
points E t = [2~r(I/q)] 2, indeed the size of the gap about E/is exactly 

2~( ~ an,,,2) + 0(~2 ) . 
nl + n 2 a = l / q  

It is natural to suppose that for a irrational, there is still a tendency for 
gaps to open about the points [2~r(n~ + n2a)] 2. Since these points are dense, 
we see that the resolvent set wants to be dense, i.e., the spectrum is a Cantor 
set. Note that since the total gap size wants to be 0[~E]an[ ], the resolvent 
seems to want to be a semi-infinite interval and lots of small intervals whose 
total size is finite; thus the Cantor set is not one of measure zero (as is the 
conventional no middle third set) but rather one of infinite Lebesgue 
measure. 

The first hint of this gap picture was in a paper of Dinaburg and Sinai 
[20] who proved the following deep result: 

THEOREM 3.1 (Dinaburg-Sinai [20]). Let  

f ( t l , . . .  , t , )  = E ameXp[2~ri(mltl  + "'" + m,,tn)] 
m 1 . . . .  , m n E Z  

be a function on T"  with 

[am[ <~ C e x p ( - A [ m [ ) .  

Le t  a 1 . . . .  , a n have typical Diophantine properties. Then, there exist  

(Xm)m~zn, ( C.,)m~zn, EO 

with 

~lCml < O0 

so that for  E in 

( E  >/ E o I [ E -  ?'m -(27r)2(Ernia~)21 >i c~ allm} S 

the equation 

H u  ~ 0, 

_ d  2 
H =  + U(x),  

dx 2 

V ( x )  ~- f ( a l  x . . . .  , OZnX), 
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has only almost periodic solutions (and, in particular, only bounded solutions). 
Moreover, H has an absolutely continuous component of its spectrum on any 
positive measure subset of S. 

Remarks. 1. Reference [20] exploits a KAM type argument. 
2. Russmann [21] has extended and developed the results in [20]. 
3. As [Emiail ---, oo or as an overall constant in front of V goes to zero, 

the shifts X,~ go to zero. 
4. Since E{ c m I < oo, S has infinite measure. 
5. This theorem does not say that o(H)  is a Cantor set, although it is 

suggestive. First of all, S may not be a Cantor set since no control is given 
on the Xm's (and indeed, the theorem is applicable to some special finite gap 
potentials [30] when we know o(H)  is not a Cantor set). Moreover, the 
theorem does not assert that o(H)  = S; indeed, the use of KAM requires 
one to definitely exclude a bit of the spectrum. 

6. In fact, there exists a function c (E)  on S so that Hu has solutions u] 
and u 2 = 171 with ul(x ) = eic(E)X~(x) and ~ ( x )  has its frequency spectrum 
in that of V. 

4. THE IDS  AND THE GAP LABELLING THEOREM 

If the gaps are dense, clearly they cannot be ordered by the integers (i.e., 
there is no " third gap"). It is remarkable that there appears to be a natural 
labelling of the gaps. This depends on an object which will be useful later. 
In the context of random potentials, this object was first proven to exist by 
Benderskii and Pasteur [22]. Interestingly enough, the approaches of Avron 
and Simon [5], Bellisard, Lima, and Testard [55], and Johnson and Moser 
[12] emphasize different aspects of this quantity: respectively as a density of 
states, as a C*-algebraic quantity, and as a rotation number. 

Let H be an a.p. Schri3dinger operator on ( - c e ,  ~ ) .  Let E(_~,x~(H ) 
denote its spectral projections, and let %(0, b) be the characteristic function 
of the interval x ~ (a, b). We define the integrated density of states (IDS) by 

k ( ~ )  = lim L-1Tr (%,o .L )E(_~ ,x ) (H) ) .  (6) 
L-~oc 

A similar definition holds in the discrete case. The following combines 
results in [5, 12, 22]: 

THEOREM 4.1. The limit in (6) exists for every a.p. potential, k has the 
following properties: 

(1) 0 ~< k(X) and in the discrete case k(X)  <~ 1. 
(2) k(X) is monotone in ~ and continuous. 
(3) k is independent of the choice of W in the hull of some V. 
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(4) o(H)  is the set (hlall c > O, k (h  + e) -* k()t - e)) of points of noncon- 
stancy of k. 

Moreover, the Bruit in (6) is the same if H is replaced by a sequence HE, of 
operators equal to H on (0, L)  with some boundary conditions at 0 and L. 

Remarks. 1. One way of thinking of k that yields point (4) is the 
following: Pick a n y f o n  ( -  c¢, or) with f l f ]  2 dx = 1. Let owbe  the spectral 
measure defined by 

o w ( A )  = T r ( f E a ( H  o + W ) f ) .  

Then, with d W  being Haar measure on the hull 

k(X)  = fdWow(- X). (7) 

2. The continuity (point (2)) is a reflection of the occurrence of X as an 
eigenvalue only on a set of measure 0 and egn (7). 

3. The existence of the limit and b.c. independence can be proven by an 
argument which is standard in the statistical mechanical literature. Using 
H r, one has an operator with discrete spectrum and T r ( - - )  is just the 
number of eigenvalues in ( -  ~ ,  ?,); hence the name density of states. 

Picking Dirichlet b.c., we see that in the continuous case k ( ) t ) =  
l i m L _ ~ L  lnL(?t ) when nL(X ) is the number of zeros in (0, L)  of the 
solution of Hu = hu, u(O) = 0. From this, a simple argument implies: 

COROLLARY 4.2 (Continuous case only). Let u be real valued, and solve 
Hu = Xu and let R(u,  L)  be the number of times the vector (u(x) ,  u'(x)) 
rotates about (0, O) in the interval (0, L)  (i.e., (27r) -1 times the change of the 
argument). Then the rotation number 

r (X)  = lim L - I R ( u ,  L)  (8) 
L--* ec 

exists (and is independent of u) and 

r (X)  = ½k(x) .  (9) 

To Johnson and Moser [12], (8) is the basic object, and (6) is proven using 
(8). Our ordering follows Avron and Simon [5]. There is a third, attractive 
and interesting way to look at k(X). Let R 0 be the C* algebra generated by 
( f i r  has the same frequency spectrum as V) and by the family of unitary 
translation operators and let R = R~, the corresponding Von Neumann 
algebra. In the discrete case, H ~ R0, and in the continuous case, H is 
affiliated to R 0 in the sense that ( H  + i) 1 ~ R0" 
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THEOREM 4.3 ([38]). R is a type II~ algebra in the continuous case, and a 
type II 1 algebra in the discrete case. 

If " t r"  is the corresponding trace, Shubin has proven the remarkable: 

THEOREM 4.4 ([23]). With the natural normalization in with II 1 case, and 
suitable normalization in the discrete case: 

k(X) = " t r "  (E(_ ~, x)(H)) .  (lO) 

By Theorem 4.1 (4), k(X) is constant on any gap of a ( H )  and equal to a 
different constant on distinct gaps. We have the beautiful: 

THEOREM 4.5 (Johnson and Moser [12]; Bellisard, Lima, and Testard 
[55]). In the continuous case, in any gap, k(X) has a value in the frequency 
module of V. 

Tn~om~M 4.6 (Bellisard, Lima, and Testard [55]). In the discrete case, 
suppose that the frequency module of V lies in (nla + n2ln ~, n 2 integer}. 
Then, in any gap, k(X) lies in this same set. 

Remarks. 1. We emphasize that in the discrete case, even if the frequency 
module is (na) (e.g., cos(2~ran)) k(X) will still have values in general in 
(nla + n2) because in some sense, 1 is in the "frequency module of h0." 

2. The J - M  proof depends critically on the continuous nature of N and 
does not obviously extend to the discrete case. J - M  normalize k and I" 
differently. 

3. The restriction to the simple frequency module in Theorem 4.6 is due 
to the existing C* algebra results, and eventually, the method should extend 
to more general cases. 

4. Thus, if V has a frequency module generated by a l , . . . ,  a,,, we can 
label gaps by multiples of integers. We call these two theorems Gap labelling 
theorems. 

The BLT proof comes from (1) the observation that if X is in a gap we can 
find a continuous function f so that E(_ ~, x) = f ( H )  and thus E( ~, x)(H) 
is in R o rather than just in R and (2) the following: 

THEOREM 4.7. (a) (A. Connes [391). In the case of Theorem 4.5, if P ~ R o 
is a projection, then " t r " (P )  is in the frequency module of V. 

(b) (Voiculescu and Pinsker [39, 40].) In the case of Theorem 4.6, if 
P ~ R o is aprojection, then " t r " (P )  is m (nla + n2). 

The J - M  proof [12] is a beautiful homotopy argument: Let G(x, y; V) be 
the integral kernel of (H  - X) - 1 which exists and is continuous in V since 
X ff spec(H). By general principles, G(x,  x; V)  - F(x; V)  is the product of 
two solutions of Hu = Xu, so by the argument before Corollary 4.2, k(X) 
= ½ 1 i m L ~ L  -1 ( #  of zeros of F(x; V)  on [0, L]). Moreover, it is not hard 
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to show that where F is zero, F '  is non-zero so that as in Corollary 4.2, 
k(X) = limL_~o~L-1 ( #  of times H ( x )  = F ' (x )  + iF(x)  rotates about 0). 
Now arg H(0, W) defines a continuous function from F to T 1, the circle. 
Since F is an m-torus, such a map defines m winding numbers, nl . . . . .  nm. 
The result now follows from following through the various definitions. 

The following can be used in place of the Green's function: 

THEOREM 4.8 (Johnson [10]; continuous case). (a) I f  ~ ~ spec(H), then 
for some W in the hull of V, ( H o + W ) u  = ~u has a solution in L ~ ( -  oo, oe). 

(b) I f ~  f~ spec(H), then there is a continuous function W ~ P ( W )  from F 
to rank one (not necessarily orthogonal) projections on R 2, so that a solution 
of ( H  o+ W ) u = ~ u  tends to zero at +oo (resp. - o o )  if and only if 
(u, u') ~ Ran P (resp. Ran(1 - P)). 

Remarks. 1. In (b) more is true; solutions either go to zero exponentially 
or blow up exponentially. 

2. The proof is an easy combining of deep results of Sachet and Sell [41], 
the abstract eigenfunction expansion theory [42, 43] and its converse 
[44, 45]. 

3. The proof extends to the discrete case. 
4. In the J - M  proof, the integers n i can be defined as winding numbers 

associated to the map W ~ R on P ( W )  from F to RP(2), the set of lines in 
R 2" 

The gap labeling theorem is an indication of how Cantor sets might come 
about: 

THEORE~ 4.9. Fix V a.p. but not periodic. I f  for any x in the frequency 
module with x > 0 (continuous case) or 0 < x < 1 (discrete case), there is a 
gap where k equals x, then a( H)  is a Cantor set. 

Proof. We must show that any point, ~oo in o ( H )  is a limit of points not 
in o(H) .  Since the frequency module is dense in R and xo~ = k(~oo ) >/0 (in 
[0, 1] in the discrete case) we can find x n --* xoo with x n in the frequency 
module. By assumption, we find 3k not in o ( H )  so k(? , , )  = x,.  By passing 
to a subsequence, ~ ~ ?~o~. Thus k ( ? ~ )  9 k ( ?~ ) .  If ?~o~ = ~ ,  then 
~,  ~ X~ so we are done. If ?~  < ?~ ,  ( ~ ,  ? ~ )  is in the resolvent set since 
k is constant on that interval, so we are done. Similarly, if ~ < ?~ ,  we 
have that (?~o~, ? ~ )  is in the resolvent set. 

In the periodic case, we know that generically all gaps are open ([31]). It is 
natural to conjecture that generically the hypotheses of Theorem 4.9 hold. 

As a final result of interest about the IDS, we note: 

THEOREM 4.10 (Avron and Simon [5]). Fix f a continuous function on 
T "~, the m-torus. Let k(~; a l , . . . ,  am) denote the I D S f o r  thepotential 

V ( x )  -~ f ( o t l x , . . .  , OtmX ). 
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k is continuous at all points where the (aj)  are rationally independent (and 
generally discontinuous at points of rational dependence). 

5. LONG TIME BEHAVIOR AND CANTOR SETS 

Avron and Simon [1] have pointed out another reason to expect Cantor 
sets. The point is that, in general, quantum particles get partially reflected 
from bumps even if the bumps have lower energy than the particles. Thus, 
an infinite sequence of bumps will generally trap quantum particles. In the 
periodic case, the first few bumps produce the coherences in the transmitted 
piece which allow almost perfect transmission in the latter bumps, and so 
there are many wave packets which move to infinity at finite velocity. In an 
a.p. potential, the particle will think it is moving in a periodic potential for a 
while, but eventually get reflected because things are not quite periodic, 
then move an even further distance, but then get reflected again. Thus, if 
there is escape to infinity, it is in a very anomalous way. 

Indeed, if a is a Liouville number, the successive distances are very large 
and we have a behavior reminiscent of Pearson's examples [46], so the 
singular spectrum we find in Section 10 is not surprising. 

But what of the cases where Dinaburg and Sinai tell us there is a.c. 
spectrum (Theorem 3.1)? How does one square that with anomalous long 
time behavior? The answer is that there is a refinement of a.c. spectrum. 

DEFINITION. ([1]) Let A be a self-adjoint operator. We say that qp is a 
transient vector for A if and only if (% e-itAcp)= O(t -N)  for all N. Any 
such qv is in %ac, the absolutely continuous space and the closure of such q~ 
is a subspace [1], called %tac' the transient space. %ac N %t~c - % .... the 
recurrent space. 

For the usual (e.g., periodic or N-body SchrOdinger operators) case, 
%rac = (0), but we have the elementary. 

THEOREM 5.1. ([1]) fro(A) is a Cantor set, then ~tac = (0). 
Thus, Cantor spectrum provides a synthesis of the intuition of anomalous 

long time behavior and the a.c. spectrum of Dinaburg and Sinai. Indeed, in 
the next section, we will describe simple a.p. SchriSdinger operators with 
%rac = %. 

6. THE SCAM THEORrMS 

In this section, we will describe a set of similar results obtained indepen- 
dently by Avron and Simon [3], Chulaevsky [9] and Moser [11] in 1980. We 
emphasized that the ordering of initials in the section title is purely for 
linguistic purposes. 
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The set of limit periodic potentials is a complete metric space, and, as 
such, there is a natural notion of generic [47], that of dense G 8. 

THEOREM 6.1 ([3, 9, 11]). For a dense G~ of limit periodic potentials, V, 
o ( -  d 2 / d x  2 -4- V )  is a Cantor set. 

Remarks. 1. It is not claimed to be a measure zero Cantor set; indeed, 
by construction [3], it is often not a zero measure set. 

2. A similar result holds in the discrete case. Also, if we consider 
potentials given by (3) with the natural 11 norm on (an), the dense G~ result 
remains true. One can therefore find V's which extend to entire analytic 
functions with Cantor spectrum. 

THEOREM 6.2 ([3, 9]). For a dense set of limit periodic V's,  o ( - d 2 / d x  2 
+ V(x))  is a Cantor set, and the spectrum is purely absolutely continuous. 

Remarks. 1. The set is only claimed to be dense, not G~. Indeed, we 
believe that in some regions the generic behavior will be some dense point 
spectrum. 

2. Avron and Simon obtain no explicit estimate on V's which yield a.c. 
spectrum. Chulaevsky considers potentials of the form (3) and proves a.c. 
spectrum, if for all A, there is a C with 

la,] ~< C e x p ( - A 2 " ) .  (11) 

3. The operators guaranteed by this theorem have ~rac = ~ (in the 
notation of Section 5). 

We cannot give the details of the proofs of these theorems. They are not 
hard; one can approximate V so well by periodic potentials that proving the 
right things in that case suffices. 

7. GORDON'S THEOREM 

Here we give with detailed proofs, a theorem proven by Gordon [19] in 
1976. It asserts that certain a.p. potentials have no point spectrum. If one is 
only accustomed to the periodic case, where it is easy to see that there is no 
point spectrum, this result appears to be of limited interest, and it has thus 
received limited attention until recently. However, as a.p. potentials should 
often produce some dense point spectrum, (see Section 9), it is extremely 
interesting to know that they sometimes do not. Indeed, as we will see in 
Section 10, the theorem below has striking consequences. 

DEFINITION. A potential, V, on ( -  oo, ~ )  is called a Gordon potential if 
and only if there exist periodic potentials Vm, of periodic T m ~ oo so that 
for s o m e C > 0  

sup IV(x)  - Vm(x)l Cm -To' 
- 2Tm <~x<~2T m 
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A similar definition is used in the discrete case. Gordon [19] proved: 

THEOREM 7.1 (Gordon's theorem, continuous case). Let  V be a Gordon 
potential on ( -  0% oo) and let u solve - u "  + Vu = Eu. Then 

lim []u'(x)[ 2 + ]u(x)]2]/[]u ' (O)[  2 + ]u(O)l 2] >~ ¼. (12) 
Ixl--, ~ 

The same method proves: 

THEOREM 7.2 (Gordon's theorem, discrete case). Let  V be a Gordon 
potential on Z and let u solve u(n + 1) + u(n  - 1) + V ( n ) u ( n )  = Eu(n) .  
Then 

l im [ lu(n) l  2 + lu(n + 1)12]/[lu(1)l 2 + lu(O)l 2] >/¼. (12') 
)nl--, ~ 

In the discrete case, an 12 eigeniunction trivially has u (n )  -~ 0 as Inl ~ ~ .  
In the continuous case, using H a r n a c k ' s  inequality, one can show [43] that 
lul 2 + [ut[ 2 ~ 0 i f u  ~ L 2. Thus: 

COROLLARY 7.3. A Schr6dinger operator (continuous or discrete) with a 
Gordon potential has no point spectrum. 

Before giving the proof, let us note two examples: 

EXAMPLE 1. If 
OO 

V( x ) = Y', a,cos(2 ~rx/2" ) 
1 

and the a n obey the Ctaulaevsky condition (11) (for any A, there is a C), 
then choosing 

V m (x )  = E a,cos(2 ~rx/2" ) 
1 

for suitable N m, we see that V is a Gordon potential. Gordon's theorem fits 
in well with the result of Chulaevsky saying that there is only a.c. spectrum 
in this case. 

EXAMPLE 2. On Z consider the potential 

V(n) = Xcos(Z~n + o) 

with a a Liouville number. If 

 jq n> =  oos(2opn + o) 
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then 

sup IV(n) - Vp/a(n)[ <~ 47rlXlq o~ - p 
-2q<~n<~2q 

so choosing p / q  suitably and using (5), we see that V is a Gordon potential. 
We will prove Theorem 7.2; the proof of Theorem 7.1 is similar. Let 

qbm(n ) be the column vector (um(n) ,  Um(n + 1)), where u m solves the 
Schr/3dinger equation with V replaced by V m and with the initial condition 
~m(0) = qb(0). Clearly for n > 0: 

d~m(n ) = A m ( n ) . . .  Am(1)~(0 ) 

with similar results for ~ (n )  and for n < 0, where Am(n  ) is the matrix: 

- 1 E - V m ( n  ) " 

Using the telescoping sum estimate 

IIAm(n) -- '  Am(1 ) - A ( n ) . . .  A(1)lf ~< n[  

).( 

(13) 

SmU, Pj l[Am ( J )l]] n 1 

sup ]lAin(j) - A ( j ) J [  
1 ~ j ~ n  

and the hypothesis on V, we see that 

LEMMA 7.4. 

sup []qbm(n ) -- dP(n)[[ ~ 0 a s m  ~ o¢. 
-- 2T.,~n~2T m 

Clearly, the theorem follows from this estimate and 

LEMMA 7.5. 

max(]J~m (Vm)[[, [l~m (2Tm)l[, [1~,,( - Tm)l[, I[~bm(- 2Tm)[0 > ½l[d~ (0)[I- 

Letting B = Am(Tin) • " " Am(1 ) and using periodicity, we see that Lemma 
7.5 follows from 

LEMMA 7.6. Let  B be any 2 × 2 invertible matrix, and let x be a unit 
vector. Then max(llBxl[, rlB2xfl, liB -lx[[, lib - ;x[I ) >j 1. 

Proof. Let a2 B2 + a lB  + a 0 = 0 be the characteristic equation for B. 
Normalize the a 's  so that the aj with maximum modulus is 1. Suppose that 
this maximum modulus aj is al, i.e., a 1 = 1 and lao[,!a2[ ~< 1. Apply the 
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basic equation to B -  ix and find 

x = - a 2 B x  - a o B - l x  (14) 

at least one of the vectors on the right of (14) must have norm ½. A similar 
argument works on the other two cases. 

( ,  -3 )  and Remark .  The ½ in the last lemma is optimal. Take B = ½ i 

8. THE THOULESS FORMULA 

Here we want to describe a result found by Thouless [48] in the context of 
discrete Schr0dinger operators with random potentials. Its importance in 
the a.p. case was emphasized by Aubry and Andr6 [16]. Actually, the result 
does not hold in the form given in [48, 16] because various sets of measure 
zero are ignored and an interchange of limit and integral made. A careful 
proof was found by Avron and Simon [5]. Johnson and Moser [12] have a 
somewhat related result. Interestingly enough, Gordon's theorem [19] im- 
plies that for some simple looking potentials, the sets of measure zero 
ignored in [48, 16] really are present. 

Given V and E, we define T L or T r ( V  - E )  to be the two by two matrix 

( u ( L )  I where u solves - u"  + Vu = Eu  with u(0) = a, given by T c ( ~ ) =  ~ u ' ( L ) / '  
u'(0) = b. In the discrete case T L = A ( L )  . . .  A(1) with A given by (13). 
(L  > 0 and T L = [A(0) - . .  A ( - L  + 1)]-1 if L < 0). 

DEFINITION. We say that V - E has Lyaponov  behavior with Lyaponov  

index 3 ' (E)  if and only if 

y ( E )  = lira ILI-qnllTzll 
ILl--, ~ 

exists. 
Since T r has determinant 1, we have 

y ( E )  >~ 0. (15) 

One particular reason for interest in Lyaponov behavior is the following 

TIJEOREM 8.1 (Osceledec [49]; see also Ruelle [50]). I f A  1 . . . . .  A . . . . .  are 

2 × 2 matrices  with 

(1) lim n-llnllA,II = 0, 
?/---~ oO 

(2) lim n-llnl[A~ . - -  A~II = ~'--, 
? / ~ o O  

(3) lira n-qn[det (An - - - A1)] = V+ + "/_, 
/~ ---* oC3 
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then, there exists a one dimensional subspace V of C 2 so that if 0 ~ 0 ~ V, 
then 

and if ~ ~ V 

lim n - q n l [ A . . . .  Alffl[ = 3'_ 
?/---)O(3 

lim n 1In[JAn--- AlOll=3,+. 
?/----~ O0 

In the a.p. case, T L is precisely of the form A L " ' "  A 1 with (1) holding 
(since sup,[lA,[[ < oo) and (3) holds with 3 ,  = -3 ,+=  -3,(E).  Thus: 

COROLLARY 8.4. I f  V -  E has Lyaponov behavior, there are subspaces 
V+ and II_ of C 2 (perhaps not distinct) with 

lim {tl-' ln[lO(t)l  [ = y ( E )  (resp -y(E)) 
t--* ± o¢ 

if 

ck(O ) ~ V+_ (resp q)(O) ~ V+, (~(0) ~ 0), where ~( t )  = (u ( t ) ,  u' ( t ) )  

[in the discrete case ~(n) = (u(n), u(n + 1))] and u solves the SchrOdinger 
equation Hu = Eu. In particular, if  3, > O, every solution is either exponen- 
tially growing or decaying. 

The remarkable fact is that not only is there Lyaponov behavior for many 
V - E (this actually follows from the subadditive ergodic theorem), but that 
3,(E) is intimately related to the IDS, k(E) ,  discussed in Section 4: 

THEOREM 8.5 ([5]). Let F be the hull of an a.p. function on Z. Consider 
F × R with Haar measure on F and Lebesgue measure on g~. Then for almost 
all (V, E)  c F × R, V - E has Lyaponov behavior with 

v ( E )  = f l n l E  - E'I dk ( E ' ) .  (16) 

The same result holds in the continuous case, but (16) is replaced by 

v ( E )  = v0(E) + f l n lE  - E'I d [ ( k  - k o ) ( E ) ] ,  (17) 

wh ere 

Y0(E) = [max(0 , -E) ]1 /2 ;  k o ( E  ) = ~r-l[max(0, E)] 1/2. (18) 

Equation (16) is the Thouless formula. 
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Remarks .  1. k o and "/0 are just the IDS and Lyponov index in case 
V = 0 .  

2. Let f ( z )  be the function on Im z > 0 

f ( z )  = f l n ( z  - E ' )  d k ( E ' )  

in the discrete case and 

f(z) = + f l n ( z  - E ' ) d [ ( k  - k 0 ) ( E ) ] ,  

which is analytic in Im z > 0. Since k is continuous, I m f ( z )  has the 
boundary value 

I m f ( E  + i0) = ~rk (E)  

and (16) (resp. (17)) says that 

R e f ( E  + i0) = 7 ( E ) .  

Thus the Thouless formula asserts that v ( E ) +  i r rk (E)  is the boundary 
value of analytic function. Equation (16) is just a dispersion relation and 
(17) a once subtracted dispersion relation. Johnson and Moser [12] precisely 
prove that - / +  iTrk (a slightly differently defined -/) is the boundary value of 
an analytic function. 

3. Thus the Thouless formula says that essentially ~rk and ~, are Hilbert 
transforms of one another. The proof of the Theorem uses the L2-continuity 
of the Hilbert transform. 

4. The mystery of this result is removed if one notes that if u ( x )  - -  e i'~x 

at infinity, then 3' measures the imaginary part of a and k, as a rotation 
number, measures Re a. Alternativdy (and this is the key step in the proof 
and is due to Thouless), matrix dements, t L, of T L are analytic functions 
given by Hadamard product formulae, i.e., tL (E  ) = ~r(E - El) (finite prod- 
uct in the discrete case; "renormalization" needed in the continuous case), 
so L -  qn tL(E  ) = E L - l l n ( E  - Ei) and formally the sum converges to f lnlE 
- E'[ dn(E ' ) ,  where n ( E )  is the density of zeros of t L. But zeros of t L are 
eigenvalues with suitable boundary conditions. 

9 .  AUBRY DUALITY, SARNAK'S ANALYSIS, AND THE FRENCH 
CONNECTION 

The results thus far have either applied to all a.p. potentials or to a broad 
class of potentials like all limit periodic potentials. In this section, we collect 
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some facts about some very special examples which allow more detailed 
analysis. We regard these examples as very instructive as to what should be 
expected in general situations. 

The first general result concerns what we call the almost Matthieu 
operator 

(Hu) (n )  = u(n + 1) + u(n - 1) + hcos(2~ran + O)u(n) (19) 

named because of its similarity to the Matthieu operator 

- d  ~ 
- - +  ?~cos(2crax + O) (20) 
dx z 

(by scaling and translation, one can take 0 = 0 and a = ~r- ~ in (20) as is 
conventionally done but these parameters are nontrivial in (19)), If a is 
irrational, the hull corresponds to running 0 through [0, 2rr). 

THEOREM 9.1 (Aubry [15]). Fix a irrational. Let k(a,  ?t, E) be the IDS 
for (19) (it is 0 independent). Then 

k(  a, ~, E)  = k(  a, 4 /2~,2E/~ ). 

In particular: 

o ( H ( a ,  X, O)) = ½ho(H(a,4/?t ,  O)). 

(21) 

(22) 

Remarks. 1. For a careful proof, see [5]. 
2. There are a variety of closely related connections between 

(H(a ,  ~t, 0))e~o,2~) and (()t /2)H(a, 4 /~ ,  0))o~o,2~) all going under the 
name Aubry duality. 

3. Some insight is gotten by looking at a = p/q ,  where p and q are 
relatively prime and at the operators on 12(0, q - 1) with periodic boundary 
conditions, i.e., let 

(Hq(2~)u)(n) = u(n + 1) + u(n - 1) -4- Xcos(2rran)u(n) 

(with u(q) = u(0), u ( -  1) - u(q - 1). Let V: 12(0, q - 1) ~ 12(0, q - 1) by 

q - I  

(Va)(n)  = E a(m)exp(2cripmn/q).  
m=0 

Because p and q are relatively prime, V is unitary and 

(V-1Hq(Tt )Va)(n)  = 2cos(2~ran)a(n) + ½~t[a(n + 1) + a(n - 1)], 
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i.e., V- IHq(X)V  = (h/2)[Hq(4/?Q]. Thus Aubry duality comes from the 
fact that under Fourier transform, the cosine and finite difference terms get 
interchanged. By taking suitable limits and using Theorem 4.10, one can 
turn the above into a proof of the theorem. We emphasize that V does not 
have a decent limit and for a irrational, H(a ,  X) is not claimed to be 
unitarily equivalent to ½H(a, 4/X). Indeed, for a with typical Diophantine 
properties, it is likely that they are not unitarily equivalent in that we believe 
(see Section 10) that for ?, < 2, H(a ,  ?~) will have only a.c. spectrum and 
H(c~, 4 / ?0  only point spectrum. 

An interesting use of Aubry duality has been made by Bellisard and 
Testard [7]. First, by mimicking the Dinaburg-Sinai-Russman [20, 21] work 
they prove: 

LEMMA 9.2 ([7]). Let ~ have typical Diophantine properties. Then, for all 
sufficiently small ~, there is a nonempty, closed set S a with 

[Sxl ~ 4(I. [ = Lebesgue measure; 4 = [o(ho)[) as h --+ 0 

and a function O ( E )  on Sx so that for E E Sx, there is a function u(n) on Z 
with 

u( n ) = ei°" ~,amexp(2rriamn ), (23) 

la,,,I ~< Ce -Din, D > O, (24) 

u(n + 1) + u(n - 1) + ~eos(2~ran)u(n)  = Eu(n) .  (25) 

In fact, as in Theorem 3.1, one can be somewhat explicit about the form 
of S. The interesting thing is to see what (23), (25) says about the a , .  It 
implies: 

½X[am+ 1 + a m  ,1 + 2 c o s ( 2 ~ r m a +  O)(am)=Ea,~.  

But (24) says that a ~ l 2. Thus: 

THEOREM 9.3 ([7]). For h sufficiently large, H(a,  2~, 0) has point spectrum 
for almost all O. 

By Cor. 2.6, the point spectrum is locally uncountable. Gordon [19] had 
constructed examples where H has an eigenvalue but only for one value 
of 0. 

There is a simple intuition [51] which explains why there is point 
spectrum for h large. Consider a general potential b. replacing cos(2cran + 
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0). Then  h 0 + Xb is for large X, up to a constant,  the matrix:  

483 

e b_ 1 e 0 0 

O e b o e 0 

0 0 e b 1 e 

with c = ~-1 small. When  e = 0, there is clearly poin t  spect rum with 
eigenvalues which are " local ized"  at a single point  in n-space. When  does 
the per turba t ion  delocalize such states? In  the two-by- two case 

(: ;) 
the si tuation is easy to describe. If  c << Ib - al, the eigenvalues look like 
(1, O) and (0, 1) but  if c >> Ib - al, they look like (1, + 1), i.e., they are 
delocalized. Thus, the natural  condi t ion for point  spec t rum to persist  is 

¢l . -ml  << Ib" _ b m  I 

for all n, m. This fails if a is rat ional  or Liouville no mat te r  how small E is, 
but  it will hold for n bounded  and a and 0 with typical d iophant ine  
properties.  A similar a rgument  is valid for strongly coupled con t inuum 
models  which at low energy look like the discrete model.  

The  next special example  is strictly speaking not  in the genre we have 
discussed, since the potent ial  is not  real, so H is not self-adjoint: 

THEOREM 9.4 (Sarnak [13]). Let H(?~ ) be the operator on 12: 

: u ( n  + 1) + u ( n  - 1) + 

where a has typical Diophantine properties. Then: 

(a) For ~ < 1, o(H()t)) = [ - 2 ,  2] and H()~) has no eigenvalues. 

(b) For ~ > 1, o(H(2t)) is the curve in the complex plane which is the 
ellipse with center (0, O) and semimajor axis ~ + ~t-1. Moreover, H(X ) has an 
infinite set of eigenvalues which are dense in o( HQt )). 

Remarks. 1. In  (b), no claim is made  about  whether  the corresponding 
eigenvectors are complete.  

2. Tha t  o(H(X))  has no gaps for 7~ < 1 may  seem counterindicat ive of the 
Cantor  spect rum idea, but  we note  that  the spect rum of - d 2 / d x  2 + ~te i~  
is [0, ~z) [52] even though we know real periodic potentials  always produce  
some gaps. 
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3. The operator of this theorem is special, because taking Fourier trans- 
forms in trying to solve (H(X) - E ) u  = 0 we find 

M~(p + 2~ra) = [E  - 2 c o s p l f i ( p )  

t/ 

and the equation is easily iterated. Sarnak [13] studies behavior of I--[(E - 
0 

2 cos(p + 27ra)) using the ergodic theorem. 

The final special result involves a striking connection found by a French 
group [8] between solutions of a Kronig-Penny Hamiltonian 

(Hq~) (x )  = E ~ ( x ) ,  (26a) 

_ d  2 
H -  + ~ b, f i ( x  - n ) ,  (26b) 

d x  2 _ ~  

and a discrete operator: 

( h u ) ( n )  = ~u(n) ,  

( h u ) ( n )  = u (n  + 1) + u(n  - 1) + c , u ( n ) .  

(27a) 

(27b) 

THEOREM 9.5 ([8]; the French connection). Let  E = k 2 and suppose k is 
not a multiple of  ~r. Let  c? solve (26) and let u (n )  = eg(n). Then u solves (27) 
with 

c = 2 cos k, (28a) 

c, = - [ k - l s i n  k ] b , .  (28b) 

Conversely, given any solution of  (27) with (28) holding, there is a (unique) 
solution ~ of  (26) with cp (n )=  u(n) .  Moreover,  ep is in LP(  - o¢, o¢) if  and 
only if  u is in l p and ~ has exponential growth (resp. decay) i f  and only if  u 
does and at the same rate. 

Remarks .  1. In [8], a somewhat weaker result is found; namely, the 
matrix equations for (u(n) ,  u(n  + 1)) and (qJ(n), qJ(n)) are proven equiva- 
lent by a sequence of complicated matrix transformations. The relation 
ep(n) = u (n )  is not realized; this is a finding of Avron and Simon [51]. 

2. In the Avron-Simon view [51], this theorem is a straightforward 
calculation; namely, if ~ solves (26), then in ( -  1, 0), 

qv (x )  = a cos k x  + b sin k x  

and in (0, 1) 

q~ ( x ) = c cos k x  + d sin kx .  
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We have 

and 

SO 

u ( O )  = a = c ,  

u(1)  = e c o s k  + ds in  k; u ( -  1) = a c o s k  - bs in  k 

cp'(O +) - cp'(O - )  = k (  d - b) = boa 

k(u (1 )  + u ( - 1 ) )  = b0u(0)sin k + 2ku(0)cosk  

as claimed. 
3. In particular, b~ =/~cos(2~ran + 0) corresponds to c n = )~cos(2~ran + 

0) with 

~, = _ [ k - l s i n k ] / l .  

If X = 2 is the critical value at which there is a shift from a.c. to pure point 
spectrum (see the next section), then this suggests that for/~ < 2, there is 
only a.c. spectrum, but at/~ > 2, these occur first one and then additional 
"bands"  of point spectrum (determined by [/~k lsin k[ > 2). 

10. ALMOST MATTHIEU OPERATORS WITHOUT A.C. SPECTRUM 

In [16], Aubry and Andrb state the following: 

PSEUDO-THEOREM. Fix a irrational; O. Then, for ~ < 2, the almost 
Matthieu operator (19) has only a.c. spectrum, and for ), > 2, H has only dense 
point spectrum with eigenfunctions which fall exponentially. 

We use the phrase "pseudo" not merely because the result is not 
rigorously proven, but because it is false as stated! Indeed, as Example 2 of 
Section 7 shows, if a is a Liouville number, there are no eigenvalues at all. 
Nevertheless, the idea of Aubry and Andr6 are sound ones, and by exercis- 
ing some care, Avron and Simon [4, 5] have proven that: 

THEOREM 10.1. Fix a irrational and )t > 2. Then, for a.e. 0 in [0,2~r) 
(with respect to Lebesgue measure), the operator (19) has no absolutely 
continuous spectrum. 

Proof Define 7 by (16) and use Aubry duality (21) to see that 

y ( E ,  a, )~) = 7(2E/)~,  a,4/)~) + ln()V2 ) (29) 
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so that, by (15) 

y ( E , a , ) ~ ) > ~ l n ( ) ~ / 2 ) > O  ifX > 2. 

Thus, by Corollary 8.4 and Theorem 8.5, for a.e. 0, there is a set S o of 
measure zero (relative to Lebesgue measure), so that if E ~ So, every 
solution of Hu = Eu is either exponentially growing or decaying both at 
+ ~ and - ~ .  In particular, any polynomially bounded solution is in L 2. 
General theory [42, 43], says that for a.e. E with respect to a spectral 
measure, there are polynomially bounded solutions. Thus a spectral measure 
is supported by S o U Po, where Po is the (countable) set of eigenvalues. Since 
the Lebesgue measure of So U Po is zero, the spectral measure can have no 
a.c. piece. 

Remarks. 1. Equation (29) is a result of Aubry and Andr6 [16]. In some 
sense, their error is that they ignored the possibility of the set S 0. 

2. Given 3' > 0, the proof that there is no a.c. spectrum is close to one 
Pasteur gave in the random case [24]. Thus, this is a kind of "Pasteurized 
Aubry and Andr6 theorem." 

Since Example 2 of Section 7 and Corollary 7.3 say that H has no point 
spectrum if a is a Liouville number, we have 

COROLLARY 10.2 ([4, 5]). I f  7~ > 2, and a is a Liouville number, then, for 
a.e. O, the almost Matthieu operator has purely singular continuous spectrum. 

Remarks. 1. Unfortunately, the proof  is rather unilluminating in the 
sense that there is no reason given for singular continuous spectrum other 
than the absence of the other types. In terms of the intuition of Section 5, 
the Liouville numbers suggest motion where there are reflections only after 
very long distances, and so a behavior close to that in the Pearson example 
[46]. 

2. Note that the continuum polynomially bounded eigenfunctions, u, 
which exist here must be at energies E in S o showing that S o is nonempty. 
Moreover, these u do not go to zero at _+ o¢ contrary to one mythology 
which suggests singular continuous eigenfunctions correspond to u ---, 0 but 
in a non-L 2 way. 

We expect that if a has typical Diophantine properties, then the 
Aubry-Andr6  theorem is valid, i.e., there is an abrupt transition from a.c. to 
dense point spectrum at )~ = 2. 

1 1. PROBLEMS AND CONJECTURES 

There have been a number of intriguing phenomena discovered or sus- 
pected in a.p. Schri3dinger operators, but so far the majority of interesti~ag 
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results have involved restricted classes a n d / o r  weaker conclusion than one 
would like. This makes a section of problems particularly appropriate. We 
begin with the special almost Matthieu operators where one has the most 
information, but where much is lacking. "Problems" which don't end in a ? 
should be viewed as conjectures! Since the ordinary Matthieu operator has 
all its gaps open, we begin with 

Problem 1 (The Ten Martini Problem). For all X ~= 0, all irrational a 
and all 0, the operator (19) has a Cantor spectrum. 

The name comes from the fact that Mark Kac [53] has offered ten 
Martinis to anyone who solves it. It is unclear what he will give for a partial 
solution like generic a but such results would be interesting. Actually, Kac 
said "has all its gaps there" so perhaps one should solve instead 

Problem 2 (The Ten Martini Problem--Strong Form or should it be Dry 
Form). For all )t ~ 0, all irrational a, and all integers n l, n2, with 0 < n l 
+ n2a < 1, there is a gap for (19) on which k ( E )  = n l + nza. 

The next problems involve spectral properties of (19): 

Problem 3. Let a have typical Diophantine properties. Prove that for 
)t < 2, the operator (19) has purely a.c. spectrum and for )t > 2, purely thick 
point spectrum. 

Problem 4. What happens if a has typical Diophantine properties and 
)t = 2? 

There seem to be four possibilities: (1) Purely singular continuous spec- 
trum (2) Overlapping dense point spectrum and a.c. spectrum (3) Overlap- 
ping spectrum of all three types (4) Some other possibility. The first three 
possibilities are those consistent with the idea that point and a.c. spectrum 
are dual to each other and s.c. spectrum is self-dual. Since I see no reason 
for s.c. spectrum, I would vote for (2) if forced, but my preference is very 
weak.* Since s.c. spectrum appears to be self-dual, one expects: 

Problem 5. Prove that if c~ is a Liouville number and )t < 2, there is 
purely singular continuous spectrum. 

The next set of problems concern more general operators in one dimen- 
sion. 

Problem 6. Prove that a generic one dimensional a.p. Schr6dinger opera- 
tor has Cantor spectrum. 

There are different versions of this problem. For example, one can 
consider all a.p. potentials or alternatively all a.p. potentials with a fixed 
given frequency module. 

*See Note added in proof. 
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Problem 7. For  a generic a.p. potential ,  V, H 0 + XV has some thick 
point  spectrum for X large. 

The in tu i t ion  in Section 9 suggests a more explicit form: 

Problem 8. Fix a with typical Diophan t ine  properties. Let f be a C 2 

funct ion on the two torus with a unique  nondegenera te  min imum.  Then  
H o + X f ( x ,  a, x )  has some thick point  spectrum for X large. 

Next, it would be interest ing to f ind more examples with s.c. spectrum. 

Problem 9. Given a fixed mono tone  sequence n t , . . .  of integers and a 

sequence a m ~ ll, let 

H ( o m )  = H 0 ~- y ' a m c o s ( x / 2 " m  ). 

If n m increases sufficiently rapidly, does H have purely s.c. spectrum? 

Problem 10. If a is a Liouville number  and f is generic, does H 0 + 

f ( x ,  ax )  have only s.c. spectrum? 

The last three problems involve more than one dimension.  The first is an 
analog of Thomas '  theorem on the absence of eigenvalues in the periodic 

case [54]: 

Problem 11. Prove that for any a.p. potent ia l  V ~= constant  and any E, 

( W I W  in hull  of V; E an eigenvahie of H 0 + W)  has zero (Haar)  measure. 

Problem 12. What  features of a.p. problems extend to N-dimensions?  

We expect that the Cantor  spectrum does not but  thick point  and singular 

cont inuous  spectrum do. 

Problem 13. What  features of a.p. problems extend to the Hami l ton ian  
of an electron in two dimensions,  with i rrat ional  magnet ic  field and periodic 

potential? 

So there is still lots to do. perhaps this article will succeed in spreading 

the a.p. flu! 
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Note added in proof. In the year plus e between when this article was written and 
publication, there has been additional progress, including solutions of some of the listed 
problems. We mention: 

1. A weak solution of Problem I has been found by Bellisard-Simon (J. Funct. Anal., to 
appear), who prove there is a Cantor spectrum for a dense G 8 of all pairs (,k, ~). 



SCHRODINGER OPERATORS 489 

2. There is numerical evidence that for }t = 2, a irrational, o(H)  has zero Lebesgue measure 
suggesting possibility (1) is the correct answer to Problem 4 . .  

3. W. Craig and B. Simon (in preparation) have solved Problem 11 affirmatively in the 
discrete case. 

4. W. Craig (Caltech preprint), using KAM theory, has constructed a variety of weakly 
almost periodic sequences so that h 0 + V has only dense point spectrum. Extending Craig's 
work, Poschel (ETH preprint) and Bellisard, Lima, Scoppola (Marseille preprint) have con- 
structed many additional examples, including some limit periodic examples (Poschel). 

5. Prange et al. (Maryland preprint) have found explicitly the eigenvalues in a particularly 
weakly almost periodic potential. 

6. Bessis et al. (Saclay preprint) have found an a.p. tridiagonal matrix (but not just l 's off 
diagonal) with exactly computable spectrum. 

7. Johnson (U.S.C. preprint) (see also Craig-Simon (Caltech preprint)) has proven spec(H) 
must have positive logarithmic capacity. 

8. M. Hermann (Ecole Polytechnique preprint) has found an alternate and very elegant proof 
that -{ > 0 for the ~ > 2 almost Mathieu operator. His proof extends to a much larger class of 
potentials. 
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