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We report an exact renormalization-group treatment for general Fibonacci chains, including the electronic tight-binding, phonon
and diffusion probiems. Analysis of the fixed points and the cycles yields the scaling properties of the states and spectra. As an

example, we treat a lattice dynamic model.

The ability to produce superlattices by adding in-
dividual atomic layers [1] is a revolutionary ad-
vance, which has generated considerable interest in
the studies of physical properties of quasiperiodic
systems in one dimension [2-11]. Theoretically,
quasiperiodic potentials are interesting because
Bloch’s theorem is inapplicable. These potentials lead
to rich eigenvalue spectra and wave functions be-
cause they are intermedjate between random and pe-
riodic [2-11]. Periodic potentials lead to continuous
spectra with gaps and extended eigenstates, while
random and uncorrelated potentials exhibit pure-
point spectra and exponentially localized states. In
this Letter, we report an exact renormalization-group
(RG) approach to the study of spectra and wave
functions of Fibonacci chains. The approach is based
on an exact decimation yielding recursion relations
amenable to a fixed-point analysis which governs the
scaling properties of states and spectra. Previous at-
tempts either used approximations [ 5,6] or concen-
trated on the diagonal tight-binding model [3,4 ].In
contrast, we consider the general tight-binding model
and present the exact recursion relations, yielding, in
terms of a fixed-point analysis, the scaling properties
of the states and spectra. As a specific example, we
treat a lattice dynamic model.
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We consider the general tight-binding hamiltonian
tn+l,n¢n+l +tn—l,n¢n—l =(Vn‘MnZ)¢n . (1)

In the electronic problem, ¢, denotes the wave func-
tion at the nth site, {,+,,} and {V,} are Fibonacci
sequences of hopping matrix elements and poten-
tials, respectively, while M,z=w denotes the energy.
In the phonon problem on the other hand, ¢, now
describes the displacement of mass M, from its equi-
librium position. The spring constants ¢, potentials
V and masses M form Fibonacci sequences, and
z=w? is the frequency of the lattice vibrations.
Moreover, eq. (1) can also be interpreted as a dis-
crete imaginary-time Schrédinger problem, resulting
from a diffusion equation. The quasiperiodic struc-
ture is generated in terms of two different elemen-
tary units, according to the Fibonacci inflation rule.
The two units consist of two blocks A and B and two
bonds, weak (-) and strong (=). Connecting these
units =A and -B according to the Fibonacci inflation
rule, =A, =A-B, =A-B=A, =A-B=A=A-B, ... and so
forth, we identify two different blocks A: One is
embedded between two strong bonds, =A=, and the
other between a strong and a weak bond, =A-. We
distinguish between these two cases because the po-
tential ¥ may depend on the surrounding bonds.
Thus, we mark A followed by a weak bond with a
tilde A-. If A is the last black in a given sequence,
the information whether A is followed by a weak or
strong bond, will be obtained from the next infla-
tion. Formally, the sequence can be generated by ap-
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plication of the inflation rule Q,,,=Q/Q,_,, starting
with units Q,: A=: S and Q,: A=: L. The short and
long units are denote by S and L, respectively. The
generation of the sequence is illustrated in fig. la.

The renormalization-group approach can now be
invoked by decimating the system of size F; to a sys-
tem on the (/—1)th inflation level with rescaling
factor og(/)=F,/F,_,. The F;s are the Fibonacci
numbers F,.,=F,+F,_, with initial conditions
Fy=F,=1; a5(!) is the /th rational approximant to
the golden mean og=0g(/—00) = (ﬁ+ 1)/2. This
decimation transformation is identical to the defla-
tion where the blocks LS: A-B=A-gotoL’: A’'-B'=
and the remaining long blocks L: A—-Bgoto S’ :A’=.
This deflation, or decimation, scheme is illustrated
in fig. 1b. To be more specific, we revert to the tight-
binding hamiltonian (1),

Vn—MnZ tn—l.n

(¢n+l> - tn+l,n Lus 1, < ¢n )
¢n - ¢n—l

1 0

B #n
“Mn (¢n—l)' (2)

In terms of blocks L and S, three distinct Schrédin-
ger equations are then obtained:

(a)
=A= s
=A-B= L
=A-B=A= LS
=A-B=A=A-B= LSL
=A-B=A=A-B=A-B=A-= LSLLS

- e ~ et et St

® ¥ ! K
=A-B= A= A-B = LSt
= =A= —=A-B= LS—~L
= B = - =A= L —S

Fig. 1. (a) Inflation, and (b) decimation rules.
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S =A= ¢n+l+¢n—l=2x¢n ’
1
L:’A-B =A- ¢’l+l +;¢n-l =2y¢n ’
~-B=: ¢n+l+r¢n—l=22¢n s
(3)

where r is the ratio between the weak (-) and strong
(=) bonds, while the quantities (x, y, z) measure lo-
cal properties,

r=s/d, x,9,z=(Vazs—Mazsz)"?. 4)

Next, we implement the decimation from F; to F,_,.
In doing so, the three elementary sequences depicted
in fig. 1b must be distinguished and decimated ac-
cording to the rules given there. Then invoking egs.
(2), (3) and (4), we obtain the recursion relations

r=2y, x'=2yz-r/2-1/2r,
y =z—r/4y, z'=2xy—1/2r. (5)

These recursion relations ean be interpreted as fol-
lows: Given an eigenstate of a system of size F.,,
there exists a corresponding solution with parame-
ters (', X', y', z’ ) on a lattice with F; sites. Accord-
ingly, we can rewrite the recursion relations in the
discrete form

e =2y, X =2yzi—rn/2-1/2r,
Vi =z—r/4y, z=2xy,—1/2r, . (6)

It is also useful to express parameters 7, x, y, and z
in terms of the transfer matrices M/~ and M’, where

n=1

M= T] M, . (7)
Fr
This yields

n=M5/M5",
x1=5(M111+M122)=%TfM1,
e (v + Lo

1= 22 PR
=3 (M5 +rMi7") .

Introducing new variables w,=y,—(x,—z;)/r; and
w,=r,y;— X, it is easily verified that trace x; satisfies
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the well-known trace recursion relation [3,4]

X1 =2X0X1y ~ X3 , (9)
with invariant

T=xi +x7+x7 = 2% XX, — 1. (10)

Previously, trace map (9) played a crucial role in
determining the energies belonging to the spectrum
[3,4,9,10]. In fact, if |x;| remains bounded (cyclic
or aperiodic), the energy will belong to the spec-
trum, while unbounded |x,|’s characterize gap states.
Moreover, the cycles are amenable to a fixed-point
analysis, allowing elucidation of certain scaling
properties of the spectrum. The important role of the
trace in determining the energy spectrum can be
understood from the fact that for systems subjected
to periodic or antiperiodic boundary conditions and
energies belonging to the spectrum, the trace satisfies
|x;{ < 1. In this context, it is important to recognize
that recursion relations (6) are more general. In fact,
from eq. (8) it is seen that for given initial values,
say M9}, M3 and M9, iteration of the recursion
relations determines M}, M’ and M%,. The fourth
matrix element follows' from the unimodularity of
the transfer matrix on the Fibonacci sublattice:
detM’=1. Accordingly, the RG-recursion relations
fix all elements of the transfer matrix for given initial
conditions. This opens up the possibility of analyz-
ing not only the energy spectrum but also the prop-
erties of the wave functions with the RG approach.

As an example, we consider the lattice dynamic
model

un+l+un—l=(2"an2)un ’ (ll)

to illustrate the application of the RG approach out-
lined above. We assume two kinds of masses M, and
My arranged according to the Fibonacci inflation
rule: A, AB, ABA, ABAAB, .... Numerical results for
the integrated density of states N(w) and the ex-
ponential growth rate y(w), as obtained from the re-
cursion relation

Rn+l=2"an2-1/Rn, Rn=un/un—l (12)

in terms of node counting, for M, =1 and My=3 are
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Fig. 2. Integrated density of states N(w) and exponential growth
rate y(w) versus frequeny w for the lattice dynamic model with
masses M, =1 and Mp=3.

shown in fig. 2. N(w) grows linearly for small w, and
becomes more fragmented with increasing . This
behvior is consistent with the w dependence of in-
variant (10) given by

I=3(M, -M;p)’w*, (13)
because

x_1=1, X={2-Mpw?),

x=4{2-M,w?). (14)

In fact, the fragmentation in N(w) increases with in-
creasing /(w). We also note that gaps can be labeled
by two integers, m and n. The integrated density of
states N(m, n) below gap m, n is then given by
0<n+mos<1. To elucidate the linear @ depen-
dence in the limit w—-0, we note that for w=0 re-
cursion relations (6) and trace map (9) exhibit a
fixed point with

X*=19 y‘=£aG’
*=06-1/205, rM=0dg. (15)

Linearization of trace map (9) around the fixed point
yields the three eigenvalues A, = -1, A,=A= c% and
A3=1/A. For energies w* + Aw, where w* leads to the
fixed point, scaling then implies

IN((0*+4w)*) —=N((0*)?) | ~ (Aw)*>*,
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PRRLL (16)
[InjA|]

Thus, scaling yields N(w?) ~ w, confirming the lin-
ear behavior seen in fig. 2.

Because the ground state with frequency w=0 is
extended, the leading term of N(w?) can be calcu-
lated exactly. Following ref. [12], we find

N(@)= 1My,

<M>=G—IG-MA+(1—;IG—>MB. (17)
In addition to this homogeneous fixed-point behav-
ior for w=0, there are many other energies in the
spectrum, where recursion relations (6) and trace
map (9) exhibit cyclic or aperiodic bounded iter-
ates. The fragmented, Cantor-set-like structure of the
integrated density of states N(w) implies, however,
that these energies do have measure zero. An ex-
ample is w=0.5048147789047881..., yielding the six-
cycle (a,—b, —a, b,—a,—b) in trace map (9). This
cycle is depicted in fig. 3, together with the associ-
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Fig. 3. Iterates r,, x, y, and z, of the RG-recursion relation for
w=0.5048..., and M, =1, Mg =3 yielding a six-cycle.
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ated six-cycle appearing in the variables of the RG-
recursion relations (6 ). On this basis, the properties
of the wave function are now readily deduced. In-
voking the boundary condition ¢,=0, eqs. (6) and
(8) yield

{
Or = _I_'Ilrj~(aﬁ)3"=(aﬂ)”2, (18)

where (a, —f§, —a, B, —a, — ) denote the elements
of the six-cycle in iterates r, and n=1//6 is the num-
ber of cycles. A plot of In|@,,| versus /, as obtained
from the RG-recursion relations is shown in fig. 4a,
yielding the slope In(apB)'/?>~0.49. Because F, and
cycle {r},scale as F,.s—0& F; and {r},.s— (aB)*{r},
respectively, we obtain ¢p~ (F;)’, with y=
3In(apf)/61n a5~ 1.02, as shown in fig. 4b. Com-
parison with wave function |¢,| indicates that on
the real lattice scaling is governed by a distribution
of exponents [12] with an average close to the ex-
ponent on the Fibonacci sublattice.

Finally, we turn to the scaling properties of the in-
tegrated density of states N(w), which are fully de-
termined by trace map (9). Assuming an initial
frequency w*, which under iterations yields a cycle
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Fig. 4. Scaling behavior of the wave function for w=0.5058...,
and M, =1, Mg=3 yielding a six-cycle. (a) In|¢g,| versus ; (b)
In|¢r | versusln F;, and in the insert In| ¢, | versus In 7 on the real
lattice.
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Fig. 5. Scaling of the integrated density of states N(w) around

the six-cycle with w=0.5048..., and M, =1, Mg=3. The straight
line corresponds to the siope 0.51.

of period six, scaling predicts, in close analogy to eq.
(16),

IN((0* £ Aw)?) = N((@*)?)]

6 1n|Aw|>
~ 2’2 —_—

. 6lnag *
X= m : o (19)
Amplitude G is periodic. The argument is the ratio
between In|Aw| and 4/2x, where 2 is the slope and
4=Ino¢ the spacing between major gaps on a log-
arithmic scale. |A| ., denotes the largest eigenvalue
of the trace map, linearized around the cycle. For the
six-cycle depicted in fig. 3, we find | 4| max~ (6.951)3,
yielding with eq. (19) 2x~0.50. These scaling pre-
dictions are nicely confirmed by the numerical re-
sults depicted in fig. 5, including the period of
amplitude G, p={In|A|ma~0.97.

In this Letter, we have presented an exact renor-
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malization-group approach to general Fibonacci
chains, yielding the scaling properties of states and
spectra from the fixed-point analysis of the recursion
relations. Recognizing that a veriety of physical sys-
tems can be reduced to the tight-binding form given
by eq. (1) including the continuous Kronig-Penney
model [13] and light propagation in multilayers
[10,14], our exact RG treatment will have a wide
range of applications. Moreover, it provides a sound
basis for determining the global scaling properties

[11].
We thank F. Rys for useful discussions.
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